Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-2xdlg Total loading time: 0 Render date: 2024-06-26T23:40:43.854Z Has data issue: false hasContentIssue false

2 - Cellular mechanisms underlying network synchrony in the medial temporal lobe

Published online by Cambridge University Press:  14 August 2009

Christian Holscher
Affiliation:
University of Ulster
Matthias Munk
Affiliation:
Max-Planck-Institut für biologische Kybernetik, Tübingen
Get access

Summary

Introduction

The hippocampus lies at the apex of the hierarchical organization of cortical connectivity, receiving convergent multimodal inputs that are funneled through the adjacent entorhinal cortex (Fig. 2.1). The output of the hippocampus is relayed back through the entorhinal cortex, and thus these structures are ideally placed to both store novel associations and detect predictive errors (Lavenex and Amaral,2000; Witter et al., 2000). Indeed, while memories are likely to be stored across distributed brain regions, the learning and consolidation of explicit memories appear to depend upon the hippocampus and surrounding parahippocampal regions (Morris et al., 2003; Squire et al., 2004). However, while the anatomical substrate of such learning is becoming increasingly well defined, it remains unclear how cells act collectively within these neuronal networks to extract and store salient input correlations.

Over 50 years ago, Donald Hebb postulated a simple cellular learning rule, whereby the strength of the synaptic connection between two neurons would be increased if activity in the presynaptic neuron persistently contributed to discharging the postsynaptic neuron (Hebb, 1949). It has since then been shown that such repeated pairings of synaptic events with postsynaptic action potentials (spikes), within a window of tens of milliseconds, can produce long-term changes in synaptic efficacy in many different neuronal systems, both in vitro and in vivo (Paulsen and Sejnowski, 2000; Bi and Poo, 2001).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alonso, A. and Kohler, C. (1982). Evidence for separate projections of hippocampal pyramidal and non-pyramidal neurons to different parts of the septum in the rat brain. Neurosci Lett 31:209–214.CrossRefGoogle ScholarPubMed
Alonso, A. and Llinas, R. R. (1989). Subthreshold Na+-dependent theta-like rhythmicity in stellate cells of entorhinal cortex layer II. Nature 342:175–177.CrossRefGoogle ScholarPubMed
Axmacher, N., Mormann, F., Fernandez, G., Elger, C. E., and Fell, J. (2006). Memory formation by neuronal synchronization. Brain Res Brain Res Rev 52:170–182.CrossRefGoogle ScholarPubMed
Bacci, A. and Huguenard, J. R. (2006). Enhancement of spike-timing precision by autaptic transmission in neocortical inhibitory interneurons. Neuron 49:119–130.CrossRefGoogle ScholarPubMed
Bal, T. and McCormick, D. A. (1993). Mechanisms of oscillatory activity in guinea-pig nucleus reticularis thalami in vitro: a mammalian pacemaker. J Physiol 468:669–691.CrossRefGoogle ScholarPubMed
Bal, T. and McCormick, D. A. (1997). Synchronized oscillations in the inferior olive are controlled by the hyperpolarization-activated cation current I(h). J Neurophysiol 77:3145–3156.CrossRefGoogle Scholar
Bal, T., Krosigk, M., and McCormick, D. A. (1995). Synaptic and membrane mechanisms underlying synchronized oscillations in the ferret lateral geniculate nucleus in vitro. J Physiol 483:641–663.CrossRefGoogle ScholarPubMed
Bartos, M., Vida, I., and Jonas, P. (2007). Synaptic mechanisms of synchronized gamma oscillations in inhibitory interneuron networks. Nat Rev Neurosci 8:45–56.CrossRefGoogle ScholarPubMed
Battaglia, F. P., Sutherland, G. R., and McNaughton, B. L. (2004). Hippocampal sharp wave bursts coincide with neocortical “up-state” transitions. Learn Mem 11:697–704.CrossRefGoogle ScholarPubMed
Beierlein, M., Gibson, J. R., and Connors, B. W. (2000). A network of electrically coupled interneurons drives synchronized inhibition in neocortex. Nat Neurosci 3:904–910.CrossRefGoogle ScholarPubMed
Bi, G. Q. and Poo, M. M. (1998). Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type. J Neurosci 18:10464–10472.CrossRefGoogle ScholarPubMed
Bi, G. and Poo, M. (2001). Synaptic modification by correlated activity: Hebb's postulate revisited. Annu Rev Neurosci 24:139–166.CrossRefGoogle ScholarPubMed
Blatow, M., Rozov, A., Katona, I., et al. (2003). A novel network of multipolar bursting interneurons generates theta frequency oscillations in neocortex. Neuron 38:805–817.CrossRefGoogle ScholarPubMed
Bragin, A., Mody, I., Wilson, C. L., and Engel, J. (2002). Local generation of fast ripples in epileptic brain. J Neurosci 22:2012–2021.CrossRefGoogle ScholarPubMed
Bragin, A., Jando, G., Nadasdy, Z., et al. (1995). Gamma (40–100 Hz) oscillation in the hippocampus of the behaving rat. J Neurosci 15:47–60.CrossRefGoogle ScholarPubMed
Brunel, N. and Wang, X. J. (2003). What determines the frequency of fast network oscillations with irregular neural discharges? I. Synaptic dynamics and excitation–inhibition balance. J Neurophysiol 90:415–430.CrossRefGoogle ScholarPubMed
Bruzzone, R., Hormuzdi, S. G., Barbe, M. T., Herb, A., and Monyer, H. (2003). Pannexins, a family of gap junction proteins expressed in brain. Proc Natl Acad Sci USA 100:13 644–13 649.CrossRefGoogle ScholarPubMed
Buhl, D. L., Harris, K. D., Hormuzdi, S. G., Monyer, H., and Buzsáki, G. (2003). Selective impairment of hippocampal gamma oscillations in connexin-36 knock-out mouse in vivo. J Neurosci 23:1013–1018.CrossRefGoogle ScholarPubMed
Buzsáki, G. (1986). Hippocampal sharp waves: their origin and significance. Brain Res 398:242–252.CrossRefGoogle ScholarPubMed
Buzsáki, G. (2002). Theta oscillations in the hippocampus. Neuron 33:325–340.CrossRefGoogle ScholarPubMed
Buzsáki, G. and Draguhn, A. (2004). Neuronal oscillations in cortical networks. Science 304:1926–1929.CrossRefGoogle ScholarPubMed
Buzsáki, G., Horvath, Z., Urioste, R., Hetke, J., and Wise, K. (1992). High-frequency network oscillation in the hippocampus. Science 256:1025–1027.CrossRefGoogle ScholarPubMed
Chrobak, J. J. and Buzsáki, G. (1996). High-frequency oscillations in the output networks of the hippocampal–entorhinal axis of the freely behaving rat. J Neurosci 16:3056–3066.CrossRefGoogle ScholarPubMed
Chrobak, J. J., Lorincz, A., and Buzsáki, G. (2000). Physiological patterns in the hippocampoentorhinal cortex system. Hippocampus 10:457–465.3.0.CO;2-Z>CrossRefGoogle ScholarPubMed
Cobb, S. R., Buhl, E. H., Halasy, K., Paulsen, O., and Somogyi, P. (1995). Synchronization of neuronal activity in hippocampus by individual GABAergic interneurons. Nature 378:75–78.CrossRefGoogle ScholarPubMed
Connors, B. W. and Long, M. A. (2004). Electrical synapses in the mammalian brain. Annu Rev Neurosci 27:393–418.CrossRefGoogle ScholarPubMed
Contreras, D. (2006). The role of T-channels in the generation of thalamocortical rhythms. CNS Neurol Disord Drug Targets 5:571–585.CrossRefGoogle ScholarPubMed
Csicsvari, J., Hirase, H., Czurko, A., Mamiya, A., and Buzsáki, G. (1999a). Fast network oscillations in the hippocampal CA1 region of the behaving rat. J Neurosci 19:RC20.CrossRefGoogle ScholarPubMed
Csicsvari, J., Hirase, H., Czurko, A., Mamiya, A., and Buzsáki, G. (1999b). Oscillatory coupling of hippocampal pyramidal cells and interneurons in the behaving rat. J Neurosci 19:274–287.CrossRefGoogle ScholarPubMed
Csicsvari, J., Jamieson, B., Wise, K. D., and Buzsáki, G. (2003). Mechanisms of gamma oscillations in the hippocampus of the behaving rat. Neuron 37:311–322.CrossRefGoogle ScholarPubMed
Cunningham, M. O., Davies, C. H., Buhl, E. H., Kopell, N., and Whittington, M. A. (2003). Gamma oscillations induced by kainate receptor activation in the entorhinal cortex in vitro. J Neurosci 23:9761–9769.CrossRefGoogle ScholarPubMed
Cunningham, M. O., Pervouchine, D. D., Racca, C., et al. (2006). Neuronal metabolism governs cortical network response state. Proc Natl Acad Sci USA 103:5597–5601.CrossRefGoogle ScholarPubMed
Dan, Y. and Poo, M. M. (2004). Spike timing-dependent plasticity of neural circuits. Neuron 44:23–30.CrossRefGoogle ScholarPubMed
Zeeuw, C. I., Chorev, E., Devor, A., et al. (2003). Deformation of network connectivity in the inferior olive of connexin 36-deficient mice is compensated by morphological and electrophysiological changes at the single neuron level. J Neurosci 23:4700–4711.CrossRefGoogle ScholarPubMed
Deans, M. R., Gibson, J. R., Sellitto, C., Connors, B. W., and Paul, D. L. (2001). Synchronous activity of inhibitory networks in neocortex requires electrical synapses containing connexin-36. Neuron 31:477–485.CrossRefGoogle Scholar
Descarries, L., Gisiger, V., and Steriade, M. (1997). Diffuse transmission by acetylcholine in the CNS. Prog Neurobiol 53:603–625.CrossRefGoogle ScholarPubMed
Dickinson, P. S. (2006). Neuromodulation of central pattern generators in invertebrates and vertebrates. Curr Opin Neurobiol 16:604–614.CrossRefGoogle ScholarPubMed
Dickson, C. T., Magistretti, J., Shalinsky, M. H., et al. (2000). Properties and role of I(h) in the pacing of subthreshold oscillations in entorhinal cortex layer II neurons. J Neurophysiol 83:2562–2579.CrossRefGoogle ScholarPubMed
Dorval, A. D. and White, J. A. (2005). Channel noise is essential for perithreshold oscillations in entorhinal stellate neurons. J Neurosci 25:10 025–10 028.CrossRefGoogle ScholarPubMed
Draguhn, A., Traub, R. D., Schmitz, D., and Jefferys, J. G. (1998). Electrical coupling underlies high-frequency oscillations in the hippocampus in vitro. Nature 394:189–192.CrossRefGoogle ScholarPubMed
Ego-Stengel, V. and Wilson, M. A. (2007). Spatial selectivity and theta phase precession in CA1 interneurons. Hippocampus 17:161–174.CrossRefGoogle ScholarPubMed
Ekstrom, A. D., Meltzer, J., McNaughton, B. L., and Barnes, C. A. (2001). NMDA receptor antagonism blocks experience-dependent expansion of hippocampal “place fields.”Neuron 31:631–638.CrossRefGoogle ScholarPubMed
Elson, R. C., Selverston, A. I., Abarbanel, H. D., and Rabinovich, M. I. (2002). Inhibitory synchronization of bursting in biological neurons: dependence on synaptic time constant. J Neurophysiol 88:1166–1176.CrossRefGoogle ScholarPubMed
Erchova, I., Kreck, G., Heinemann, U., and Herz, A. V. (2004). Dynamics of rat entorhinal cortex layer II and III cells: characteristics of membrane potential resonance at rest predict oscillation properties near threshold. J Physiol 560:89–110.CrossRefGoogle ScholarPubMed
Fell, J., Klaver, P., Lehnertz, K., et al. (2001). Human memory formation is accompanied by rhinal–hippocampal coupling and decoupling. Nat Neurosci 4:1259–1264.CrossRefGoogle ScholarPubMed
Fisahn, A., Pike, F. G., Buhl, E. H., and Paulsen, O. (1998). Cholinergic induction of network oscillations at 40 Hz in the hippocampus in vitro. Nature 394:186–189.CrossRefGoogle ScholarPubMed
Freeman, W. J. (1968). Relations between unit activity and evoked potentials in prepyriform cortex of cats. J Neurophysiol 31:337–348.CrossRefGoogle ScholarPubMed
Freund, T. F. and Antal, M. (1988). GABA-containing neurons in the septum control inhibitory interneurons in the hippocampus. Nature 336:170–173.CrossRefGoogle ScholarPubMed
Freund, T. F. and Buzsáki, G. (1996). Interneurons of the hippocampus. Hippocampus 6:347–470.3.0.CO;2-I>CrossRefGoogle ScholarPubMed
Fricker, D. and Miles, R. (2000). EPSP amplification and the precision of spike timing in hippocampal neurons. Neuron 28:559–569.CrossRefGoogle ScholarPubMed
Froemke, R. C. and Dan, Y. (2002). Spike-timing-dependent synaptic modification induced by natural spike trains. Nature 416:433–438.CrossRefGoogle ScholarPubMed
Fuchs, E. C., Zivkovic, A. R., Cunningham, M. O., et al. (2007). Recruitment of parvalbumin-positive interneurons determines hippocampal function and associated behavior. Neuron 53:591–604.CrossRefGoogle ScholarPubMed
Fyhn, M., Hafting, T., Moser, M. B., and Moser, E. I. (2006). Theta modulation and phase precession in grid cells in the medial entorhinal cortex. FENS Abstr 3:A197.130.Google Scholar
Galarreta, M. and Hestrin, S. (1999). A network of fast-spiking cells in the neocortex connected by electrical synapses. Nature 402:72–75.CrossRefGoogle ScholarPubMed
Gibson, J. R., Beierlein, M., and Connors, B. W. (1999). Two networks of electrically coupled inhibitory neurons in neocortex. Nature 402:75–79.CrossRefGoogle ScholarPubMed
Gillies, M. J., Traub, R. D., LeBeau, F. E., et al. (2002). A model of atropine-resistant theta oscillations in rat hippocampal area CA1. J Physiol 543:779–793.CrossRefGoogle ScholarPubMed
Green, J. D. and Arduini, A. A. (1954). Hippocampal electrical activity in arousal. J Neurophysiol 17:533–557.CrossRefGoogle ScholarPubMed
Grillner, S. (2006). Biological pattern generation: the cellular and computational logic of networks in motion. Neuron 52:751–766.CrossRefGoogle ScholarPubMed
Hahn, T. T., Sakmann, B., and Mehta, M. R. (2006). Phase-locking of hippocampal interneurons' membrane potential to neocortical up–down states. Nat Neurosci 9:1359–1361.CrossRefGoogle ScholarPubMed
Hajos, N., Palhalmi, J., Mann, E. O., et al. (2004). Spike timing of distinct types of GABAergic interneuron during hippocampal gamma oscillations in vitro. J Neurosci 24:9127–9137.CrossRefGoogle ScholarPubMed
Hasenstaub, A., Shu, Y., Haider, B., et al. (2005). Inhibitory postsynaptic potentials carry synchronized frequency information in active cortical networks. Neuron 47:423–435.CrossRefGoogle ScholarPubMed
Hebb, D. O. (1949). The Organization of Behavior. New York: John Wiley.Google Scholar
Hormuzdi, S. G., Pais, I., LeBeau, F. E., et al. (2001). Impaired electrical signaling disrupts gamma frequency oscillations in connexin 36-deficient mice. Neuron 31:487–495.CrossRefGoogle ScholarPubMed
Hu, H., Vervaeke, K., and Storm, J. F. (2002). Two forms of electrical resonance at theta frequencies, generated by M-current, h-current and persistent Na+ current in rat hippocampal pyramidal cells. J Physiol 545:783–805.CrossRefGoogle ScholarPubMed
Hutcheon, B. and Yarom, Y. (2000). Resonance, oscillation and the intrinsic frequency preferences of neurons. Trends Neurosci 23:216–222.CrossRefGoogle ScholarPubMed
Isomura, Y., Sirota, A., Ozen, S., et al. (2006). Integration and segregation of activity in entorhinal–hippocampal subregions by neocortical slow oscillations. Neuron 52:871–882.CrossRefGoogle ScholarPubMed
Jakab, R. L. and Leranth, C. (1995). Septum. In: The Rat Nervous System, 2nd edn, ed. Paxinos, G., pp. 405–442. San Diego, CA: Academic Press.Google Scholar
Jung, M. W., Wiener, S. I., and McNaughton, B. L. (1994). Comparison of spatial firing characteristics of units in dorsal and ventral hippocampus of the rat. J Neurosci 14:7347–7356.CrossRefGoogle ScholarPubMed
Kiehn, O. (2006). Locomotor circuits in the mammalian spinal cord. Annu Rev Neurosci 29:279–306.CrossRefGoogle ScholarPubMed
Kjelstrup, K. B., Solstad, T., Brun, V. H., et al. (2006). Spatial scale expansion along the dorsal-to-ventral axis of hippocampal area CA3 in the rat. FENS Abstr 3:A197.133.Google Scholar
Klausberger, T., Magill, P. J., Marton, L. F., et al. (2003). Brain-state- and cell-type-specific firing of hippocampal interneurons in vivo. Nature 421:844–848.CrossRefGoogle ScholarPubMed
Klausberger, T., Marton, L. F., Baude, A., et al. (2004). Spike timing of dendrite-targeting bistratified cells during hippocampal network oscillations in vivo. Nat Neurosci 7:41–47.CrossRefGoogle ScholarPubMed
Kohler, C., Chan-Palay, V., and Wu, J. Y. (1984). Septal neurons containing glutamic acid decarboxylase immunoreactivity project to the hippocampal region in the rat brain. Anat Embryol (Berl) 169:41–44.CrossRefGoogle ScholarPubMed
Konopacki, J., Maciver, M. B., Bland, B. H., and Roth, S. H. (1987). Theta in hippocampal slices: relation to synaptic responses of dentate neurons. Brain Res Bull 18:25–27.CrossRefGoogle ScholarPubMed
Konopacki, J., Bland, B. H., and Roth, S. H. (1988). Carbachol-induced EEG ‘theta’ in hippocampal formation slices: evidence for a third generator of theta in CA3c area. Brain Res 451:33–42.CrossRefGoogle ScholarPubMed
Lampl, I. and Yarom, Y. (1997). Subthreshold oscillations and resonant behavior: two manifestations of the same mechanism. Neuroscience 78:325–341.CrossRefGoogle ScholarPubMed
Landisman, C. E., Long, M. A., Beierlein, M., et al. (2002). Electrical synapses in the thalamic reticular nucleus. J Neurosci 22:1002–1009.CrossRefGoogle ScholarPubMed
Lavenex, P. and Amaral, D. G. (2000). Hippocampal–neocortical interaction: a hierarchy of associativity. Hippocampus 10:420–430.3.0.CO;2-5>CrossRefGoogle ScholarPubMed
Van Quyen, M., Khalilov, I., and Ben-Ari, Y. (2006). The dark side of high-frequency oscillations in the developing brain. Trends Neurosci 29:419–427.CrossRefGoogle ScholarPubMed
Lee, M. G., Chrobak, J. J., Sik, A., Wiley, R. G., and Buzsáki, G. (1994). Hippocampal theta activity following selective lesion of the septal cholinergic system. Neuroscience 62:1033–1047.CrossRefGoogle ScholarPubMed
Lengyel, M., Kwag, J., Paulsen, O., and Dayan, P. (2005). Matching storage and recall: hippocampal spike timing-dependent plasticity and phase response curves. Nat Neurosci 8:1677–1683.CrossRefGoogle ScholarPubMed
Leung, L. S. and Yu, H. W. (1998). Theta-frequency resonance in hippocampal CA1 neurons in vitro demonstrated by sinusoidal current injection. J Neurophysiol 79:1592–1596.CrossRefGoogle ScholarPubMed
Leung, L. W. and Yim, C. Y. (1991). Intrinsic membrane potential oscillations in hippocampal neurons in vitro. Brain Res 553:261–274.CrossRefGoogle ScholarPubMed
Lewis, P. R. and Shute, C. C. (1967). The cholinergic limbic system: projections to hippocampal formation, medial cortex, nuclei of the ascending cholinergic reticular system, and the subfornical organ and supra-optic crest. Brain 90:521–540.CrossRefGoogle ScholarPubMed
Llinas, R. R. (1988). The intrinsic electrophysiological properties of mammalian neurons: insights into central nervous system function. Science 242:1654–1664.CrossRefGoogle ScholarPubMed
Llinas, R. R. and Steriade, M. (2006). Bursting of thalamic neurons and states of vigilance. J Neurophysiol 95:3297–3308.CrossRefGoogle ScholarPubMed
Llinas, R. R. and Yarom, Y. (1981). Electrophysiology of mammalian inferior olivary neurones in vitro: different types of voltage-dependent ionic conductances. J Physiol 315:549–567.CrossRefGoogle ScholarPubMed
Llinas, R. R., Baker, R., and Sotelo, C. (1974). Electrotonic coupling between neurons in cat inferior olive. J Neurophysiol 37:560–571.CrossRefGoogle ScholarPubMed
Long, M. A., Deans, M. R., Paul, D. L., and Connors, B. W. (2002). Rhythmicity without synchrony in the electrically uncoupled inferior olive. J Neurosci 22:10 898–10 905.CrossRefGoogle ScholarPubMed
Long, M. A., Landisman, C. E., and Connors, B. W. (2004). Small clusters of electrically coupled neurons generate synchronous rhythms in the thalamic reticular nucleus. J Neurosci 24:341–349.CrossRefGoogle ScholarPubMed
Louie, K. and Wilson, M. A. (2001). Temporally structured replay of awake hippocampal ensemble activity during rapid eye movement sleep. Neuron 29:145–156.CrossRefGoogle ScholarPubMed
MacVicar, B. A. and Tse, F. W. (1989). Local neuronal circuitry underlying cholinergic rhythmical slow activity in CA3 area of rat hippocampal slices. J Physiol 417:197–212.CrossRefGoogle ScholarPubMed
Maier, N., Nimmrich, V., and Draguhn, A. (2003). Cellular and network mechanisms underlying spontaneous sharp wave–ripple complexes in mouse hippocampal slices. J Physiol 550:873–887.CrossRefGoogle ScholarPubMed
Mann, E. O. and Paulsen, O. (2005). Mechanisms underlying gamma (“40 Hz”) network oscillations in the hippocampus: a mini-review. Prog Biophys Mol Biol 87:67–76.CrossRefGoogle Scholar
Mann, E. O. and Paulsen, O. (2006). Keeping inhibition timely. Neuron 49:8–9.CrossRefGoogle ScholarPubMed
Mann, E. O., Suckling, J. M., Hajos, N., Greenfield, S. A., and Paulsen, O. (2005). Perisomatic feedback inhibition underlies cholinergically induced fast network oscillations in the rat hippocampus in vitro. Neuron 45:105–117.CrossRefGoogle ScholarPubMed
Markram, H., Lubke, J., Frotscher, M., and Sakmann, B. (1997). Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs. Science 275:213–215.CrossRefGoogle ScholarPubMed
Maurer, A. P., Cowen, S. L., Burke, S. N., Barnes, C. A. and McNaughton, B. L. (2006). Phase precession in hippocampal interneurons showing strong functional coupling to individual pyramidal cells. J Neurosci 26:13 485–13 492.CrossRefGoogle ScholarPubMed
Maxeiner, S., Kruger, O., Schilling, K., et al. (2003). Spatiotemporal transcription of connexin45 during brain development results in neuronal expression in adult mice. Neuroscience 119:689–700.CrossRefGoogle ScholarPubMed
McNaughton, B. L., Battaglia, F. P., Jensen, O., Moser, E. I., and Moser, M. B. (2006). Path integration and the neural basis of the “cognitive map.”Nat Rev Neurosci 7:663–678.CrossRefGoogle Scholar
Mehta, M. R., Barnes, C. A., and McNaughton, B. L. (1997). Experience-dependent, asymmetric expansion of hippocampal place fields. Proc Natl Acad Sci USA 94:8918–8921.CrossRefGoogle ScholarPubMed
Mehta, M. R., Quirk, M. C. and Wilson, M. A. (2000). Experience-dependent asymmetric shape of hippocampal receptive fields. Neuron 25:707–715.CrossRefGoogle ScholarPubMed
Menendez de la Prida, L. M., Huberfeld, G., Cohen, I., and Miles, R. (2006). Threshold behavior in the initiation of hippocampal population bursts. Neuron 49:131–142.CrossRefGoogle Scholar
Meyer, A. H., Katona, I., Blatow, M., Rozov, A., and Monyer, H. (2002). In vivo labeling of parvalbumin-positive interneurons and analysis of electrical coupling in identified neurons. J Neurosci 22:7055–7064.CrossRefGoogle ScholarPubMed
Molle, M., Yeshenko, O., Marshall, L., Sara, S. J., and Born, J. (2006). Hippocampal sharp wave–ripples linked to slow oscillations in rat slow-wave sleep. J Neurophysiol 96:62–70.CrossRefGoogle ScholarPubMed
Morris, R. G., Moser, E. I., Riedel, G., et al. (2003). Elements of a neurobiological theory of the hippocampus: the role of activity-dependent synaptic plasticity in memory. Phil Trans R Soc Lond B 358:773–786.CrossRefGoogle ScholarPubMed
Nadasdy, Z., Hirase, H., Czurko, A., Csicsvari, J., and Buzsáki, G. (1999). Replay and time compression of recurring spike sequences in the hippocampus. J Neurosci 19:9497–9507.CrossRefGoogle ScholarPubMed
Nimmrich, V., Maier, N., Schmitz, D., and Draguhn, A. (2005). Induced sharp wave–ripple complexes in the absence of synaptic inhibition in mouse hippocampal slices. J Physiol 563:663–670.CrossRefGoogle ScholarPubMed
Nolan, M. F., Malleret, G., Dudman, J. T., et al. (2004). A behavioral role for dendritic integration: HCN1 channels constrain spatial memory and plasticity at inputs to distal dendrites of CA1 pyramidal neurons. Cell 119:719–732.Google ScholarPubMed
O'Keefe, J. and Nadel, L. (1978). The Hippocampus as a Cognitive Map. Oxford, UK: Oxford University Press.Google Scholar
O'Keefe, J. and Recce, M. L. (1993). Phase relationship between hippocampal place units and the EEG theta rhythm. Hippocampus 3:317–330.CrossRefGoogle ScholarPubMed
O'Neill, J., Senior, T., and Csicsvari, J. (2006). Place-selective firing of CA1 pyramidal cells during sharp wave/ripple network patterns in exploratory behavior. Neuron 49:143–155.CrossRefGoogle ScholarPubMed
Oren, I., Mann, E. O., Paulsen, O., and Hajos, N. (2006). Synaptic currents in anatomically identified CA3 neurons during hippocampal gamma oscillations in vitro. J Neurosci 26:9923–9934.CrossRefGoogle ScholarPubMed
Paulsen, O. and Sejnowski, T. J. (2000). Natural patterns of activity and long-term synaptic plasticity. Curr Opin Neurobiol 10:172–179.CrossRefGoogle ScholarPubMed
Paulsen, O. and Vida, I. (1996). Sustained dendritic oscillations at theta frequencies elicited in CA1 pyramidal cells in rat hippocampal slices. J Physiol 495:P50–P51.Google Scholar
Penttonen, M., Kamondi, A., Acsady, L., and Buzsáki, G. (1998). Gamma frequency oscillation in the hippocampus of the rat: intracellular analysis in vivo. Eur J Neurosci 10:718–728.CrossRefGoogle ScholarPubMed
Petsche, H., Stumpf, C., and Gogolak, G. (1962). The significance of the rabbit's septum as a relay station between the midbrain and the hippocampus. I. The control of hippocampus arousal activity by the septum cells. Electroencephalogr Clin Neurophysiol 14:202–211.CrossRefGoogle ScholarPubMed
Pike, F. G., Goddard, R. S., Suckling, J. M., et al. (2000). Distinct frequency preferences of different types of rat hippocampal neurones in response to oscillatory input currents. J Physiol 529:205–213.CrossRefGoogle ScholarPubMed
Ponomarenko, A. A., Korotkova, T. M., Sergeeva, O. A., and Haas, H. L. (2004). Multiple GABAA receptor subtypes regulate hippocampal ripple oscillations. Eur J Neurosci 20:2141–2148.CrossRefGoogle ScholarPubMed
Puil, E., Gimbarzevsky, B., and Miura, R. M. (1986). Quantification of membrane properties of trigeminal root ganglion neurons in guinea pigs. J Neurophysiol 55:995–1016.CrossRefGoogle ScholarPubMed
Rotstein, H. G., Oppermann, T., White, J. A., and Kopell, N. (2006). The dynamic structure underlying subthreshold oscillatory activity and the onset of spikes in a model of medial entorhinal cortex stellate cells. J Comput Neurosci 21:271–292.CrossRefGoogle Scholar
Salinas, E. and Sejnowski, T. J. (2000). Impact of correlated synaptic input on output firing rate and variability in simple neuronal models. J Neurosci 20:6193–6209.CrossRefGoogle ScholarPubMed
Salinas, E. and Sejnowski, T. J. (2001). Correlated neuronal activity and the flow of neural information. Nat Rev Neurosci 2:539–550.CrossRefGoogle ScholarPubMed
Sanchez-Vives, M. V. and McCormick, D. A. (2000). Cellular and network mechanisms of rhythmic recurrent activity in neocortex. Nat Neurosci 3:1027–1034.CrossRefGoogle ScholarPubMed
Schmitz, D., Schuchmann, S., Fisahn, A., et al. (2001). Axo-axonal coupling: a novel mechanism for ultrafast neuronal communication. Neuron 31:831–840.CrossRefGoogle ScholarPubMed
Sejnowski, T. J. and Paulsen, O. (2006). Network oscillations: emerging computational principles. J Neurosci 26:1673–1676.CrossRefGoogle ScholarPubMed
Shu, Y., Hasenstaub, A., and McCormick, D. A. (2003). Turning on and off recurrent balanced cortical activity. Nature 423:288–293.CrossRefGoogle ScholarPubMed
Sjostrom, P. J. and Hausser, M. (2006). A cooperative switch determines the sign of synaptic plasticity in distal dendrites of neocortical pyramidal neurons. Neuron 51:227–238.CrossRefGoogle ScholarPubMed
Skaggs, W. E. and McNaughton, B. L. (1996). Replay of neuronal firing sequences in rat hippocampus during sleep following spatial experience. Science 271:1870–1873.CrossRefGoogle ScholarPubMed
Skaggs, W. E., McNaughton, B. L., Wilson, M. A., and Barnes, C. A. (1996). Theta phase precession in hippocampal neuronal populations and the compression of temporal sequences. Hippocampus 6:149–172.3.0.CO;2-K>CrossRefGoogle ScholarPubMed
Soltesz, I. and Deschenes, M. (1993). Low- and high-frequency membrane potential oscillations during theta activity in CA1 and CA3 pyramidal neurons of the rat hippocampus under ketamine-xylazine anesthesia. J Neurophysiol 70:97–116.CrossRefGoogle ScholarPubMed
Somogyi, P., Tamas, G., Lujan, R., and Buhl, E. H. (1998). Salient features of synaptic organization in the cerebral cortex. Brain Res Brain Res Rev 26:113–135.CrossRefGoogle ScholarPubMed
Song, S., Miller, K. D., and Abbott, L. F. (2000). Competitive Hebbian learning through spiketiming-dependent synaptic plasticity. Nat Neurosci 3:919–926.CrossRefGoogle ScholarPubMed
Squire, L. R., Stark, C. E., and Clark, R. E. (2004). The medial temporal lobe. Annu Rev Neurosci 27:279–306.CrossRefGoogle ScholarPubMed
Srinivas, M., Rozental, R., Kojima, T., et al. (1999). Functional properties of channels formed by the neuronal gap junction protein connexin36. J Neurosci 19:9848–9855.CrossRefGoogle ScholarPubMed
Steriade, M. (2006). Grouping of brain rhythms in corticothalamic systems. Neuroscience 137:1087–1106.CrossRefGoogle ScholarPubMed
Steriade, M., Nunez, A., and Amzica, F. (1993). A novel slow (<1 Hz) oscillation of neocortical neurons in vivo: depolarizing and hyperpolarizing components. J Neurosci 13:3252–3265.CrossRefGoogle ScholarPubMed
Stewart, M. and Fox, S. E. (1990). Do septal neurons pace the hippocampal theta rhythm?Trends Neurosci 13:163–168.CrossRefGoogle ScholarPubMed
Sudweeks, S. N. and Yakel, J. L. (2000). Functional and molecular characterization of neuronal nicotinic ACh receptors in rat CA1 hippocampal neurons. J Physiol 527:515–528.CrossRefGoogle ScholarPubMed
Toth, K., Borhegyi, Z., and Freund, T. F. (1993). Postsynaptic targets of GABAergic hippocampal neurons in the medial septum-diagonal band of broca complex. J Neurosci 13:3712–3724.CrossRefGoogle ScholarPubMed
Traub, R. D. and Wong, R. K. (1982). Cellular mechanism of neuronal synchronization in epilepsy. Science 216:745–747.CrossRefGoogle ScholarPubMed
Traub, R. D., Bibbig, A., Fisahn, A., et al. (2000). A model of gamma-frequency network oscillations induced in the rat CA3 region by carbachol in vitro. Eur J Neurosci 12:4093–4106.CrossRefGoogle ScholarPubMed
Traub, R. D., Pais, I., Bibbig, A., et al. (2003). Contrasting roles of axonal (pyramidal cell) and dendritic (interneuron) electrical coupling in the generation of neuronal network oscillations. Proc Natl Acad Sci USA 100:1370–1374.CrossRefGoogle ScholarPubMed
Tsubokawa, H. and Ross, W. N. (1996). IPSPs modulate spike backpropagation and associated [Ca2+]i changes in the dendrites of hippocampal CA1 pyramidal neurons. J Neurophysiol 76:2896–2906.CrossRefGoogle Scholar
Tsubokawa, H. and Ross, W. N. (1997). Muscarinic modulation of spike backpropagation in the apical dendrites of hippocampal CA1 pyramidal neurons. J Neurosci 17:5782–5791.CrossRefGoogle ScholarPubMed
Venance, L., Rozov, A., Blatow, M., et al. (2000). Connexin expression in electrically coupled postnatal rat brain neurons. Proc Natl Acad Sci USA 97:10 260–10 265.CrossRefGoogle ScholarPubMed
Vida, I., Bartos, M., and Jonas, P. (2006). Shunting inhibition improves robustness of gamma oscillations in hippocampal interneuron networks by homogenizing firing rates. Neuron 49:107–117.CrossRefGoogle ScholarPubMed
Krosigk, M., Bal, T., and McCormick, D. A. (1993). Cellular mechanisms of a synchronized oscillation in the thalamus. Science 261:361–364.CrossRefGoogle Scholar
Wang, X. J. (2002). Pacemaker neurons for the theta rhythm and their synchronization in the septohippocampal reciprocal loop. J Neurophysiol 87:889–900.CrossRefGoogle ScholarPubMed
Whittington, M. A. and Traub, R. D. (2003). Interneuron diversity series: inhibitory interneurons and network oscillations in vitro. Trends Neurosci 26:676–682.CrossRefGoogle ScholarPubMed
Whittington, M. A., Traub, R. D., and Jefferys, J. G. (1995). Synchronized oscillations in interneuron networks driven by metabotropic glutamate receptor activation. Nature 373:612–615.CrossRefGoogle ScholarPubMed
Williams, J. H. and Kauer, J. A. (1997). Properties of carbachol-induced oscillatory activity in rat hippocampus. J Neurophysiol 78:2631–2640.CrossRefGoogle ScholarPubMed
Witter, M. P., Wouterlood, F. G., Naber, P. A. and Haeften, T. (2000). Anatomical organization of the parahippocampal–hippocampal network. Ann N Y Acad Sci 911:1–24.CrossRefGoogle ScholarPubMed
Wolansky, T., Clement, E. A., Peters, S. R., Palczak, M. A., and Dickson, C. T. (2006). Hippocampal slow oscillation: a novel EEG state and its coordination with ongoing neocortical activity. J Neurosci 26:6213–6229.CrossRefGoogle ScholarPubMed
Ylinen, A., Bragin, A., Nadasdy, Z., et al. (1995). Sharp wave associated high-frequency oscillation (200 Hz) in the intact hippocampus: network and intracellular mechanisms. J Neurosci 15:30–46.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×