Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-t5pn6 Total loading time: 0 Render date: 2024-04-19T14:36:55.629Z Has data issue: false hasContentIssue false

4 - Physiology of supraspinal pain-related structures

Published online by Cambridge University Press:  05 October 2010

Frederick A. Lenz
Affiliation:
The Johns Hopkins Hospital
Kenneth L. Casey
Affiliation:
University of Michigan, Ann Arbor
Edward G. Jones
Affiliation:
University of California, Davis
William D. Willis
Affiliation:
University of Texas Medical Branch, Galveston
Get access

Summary

Introduction

It is well understood that there are different components to the sensation of pain (Melzack and Casey,1968). The sensory-discriminative aspect of pain refers to the location, intensity and quality of the sensory experience of pain. The affective-motivational aspect of pain refers to the unpleasantness of the pain and how likely it is that it will motivate the animal to escape the pain. We refer to these different components of the pain sensation throughout this review as we examine the possibility that these different components are mediated by different structures in the brain.

The spinothalamic tract (STT) is the spinal tract projecting toward the brain which is most often associated with the sensation of pain (Price and Dubner, 1977; Willis, 1985; Price et al., 2003). Cells of origin of the STT can be divided into those which respond to low-threshold stimuli (LT cells), those which respond to stimuli across the intensive continuum into the noxious range (wide dynamic range, WDR), and those that respond only to noxious stimuli (nociceptive specific, NS). Evidence that any structure mediates the sensory aspect of pain is grouped into four lines: that the structure is connected to other structures known to demonstrate pain-related activity; that neural elements in that structure respond to noxious stimuli; that stimulation of that structure produces pain; and that interventions which interfere with the function of that structure interfere with the sensation of pain evoked by noxious stimuli (Price and Dubner, 1977).

Type
Chapter
Information
The Human Pain System
Experimental and Clinical Perspectives
, pp. 237 - 328
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abdelaziz, O. S., Cosgrove, G. R. (2002) Stereotactic cingulotomy for the treatment of chronic pain. In Surgical Management of Pain (Burchiel, K. J., ed.), pp. 812–820. New York: Thieme.Google Scholar
Adriaensen, H., Gybels, J., Handwerker, H. O., Hees, J. (1984) Nociceptor discharges and sensations due to prolonged noxious mechanical stimulation – a paradox. Hum Neurobiol 3: 53–58.Google ScholarPubMed
Al Chaer, E. D., Feng, Y., Willis, W. D. (1998) A role for the dorsal column in nociceptive visceral input into the thalamus of primates. J Neurophysiol 79: 3143–3150.CrossRefGoogle ScholarPubMed
Albe-Fessard, D., Dondey, M., Nicolaidis, S., Beau, J. (1970) Remarks concerning the effect of diencephalic lesions on pain and sensitivity with special reference to lemniscally mediated control of noxious afferences. Confin Neurol 32: 174–184.CrossRefGoogle ScholarPubMed
Amano, K., Tanikawa, T., Iseki, H.et al. (1978) Single neuron analysis of the human midbrain tegmentum. Appl Neurophysiol 41: 66–78.Google ScholarPubMed
Andres, F. G., Mima, T., Schulman, A. E.et al. (1999) Functional coupling of human cortical sensorimotor areas during bimanual skill acquisition. Brain 122: 855–870.CrossRefGoogle ScholarPubMed
Apkarian, A. V., Hodge, C. J. (1989a) A dorsolateral spinothalamic tract in macaque monkey. Pain 37: 323–333.CrossRefGoogle ScholarPubMed
Apkarian, A. V., Hodge, C. J. (1989b) Primate spinothalamic pathways: II. The cells of origin of the dorsolateral and ventral spinothalamic pathways. J Comp Neurol 288: 474–492.CrossRefGoogle ScholarPubMed
Apkarian, A. V., Hodge, C. J. (1989c) Primate spinothalamic pathways: III. Thalamic terminations of the dorsolateral and ventral spinothalamic pathways. J Comp Neurol 288: 493–511.CrossRefGoogle ScholarPubMed
Apkarian, A. V., Shi, T. (1994) Squirrel monkey lateral thalamus. I. Somatic nociresponsive neurons and their relation to spinothalamic terminals. J Neurosci 14: 6779–6795.CrossRefGoogle ScholarPubMed
Apkarian, A. V., Shi, T., Stevens, R. T., Kniffki, Kt-D., Hodge, C. J. (1991) Properties of nociceptive neurons in the lateral thalamus of the squirrel monkey. Society Neurosci Abstr 17: 838.Google Scholar
Apkarian, A. V., Shi, T., Bruggemann, J., Airapetian, L. R. (2000) Segregation of nociceptive and non-nociceptive networks in the squirrel monkey somatosensory thalamus. J Neurophysiol 84: 484–494.CrossRefGoogle ScholarPubMed
Apkarian, A. V., Bushnell, M. C., Treede, R.-D., Zubieta, J. K. (2005) Human brain mechanisms of pain perception and regulation in health and disease. Eur J Pain 9: 463–484.CrossRefGoogle ScholarPubMed
Bandler, R., Shipley, M. T. (1994a) Columnar organization in the midbrain periaqueductal gray: modules for emotional expression?Trends Neurosci 17: 379–389.CrossRefGoogle ScholarPubMed
Bandler, R., Shipley, M. T. (1994b) Columnar organization in the midbrain periaqueductal gray: modules for emotional expression? [published erratum appears in Trends Neurosci 1994 Nov, 17(11): 445]. Trends Neurosci 17: 379–389.CrossRefGoogle Scholar
Barba, C., Frot, M., Mauguiere, F. (2002) Early secondary somatosensory area (SII) SEPs. Data from intracerebral recordings in humans. Clin Neurophysiol 113: 1778–1786.CrossRefGoogle ScholarPubMed
Baumgartner, U., Tiede, W., Treede, R. D., Craig, A. D. (2006) Laser-evoked potentials are graded and somatotopically organized anteroposteriorly in the operculoinsular cortex of anesthetized monkeys. J Neurophysiol 96: 2802–2808.CrossRefGoogle ScholarPubMed
Becker, D. E., Yingling, C. D., Fein, G. (1993) Identification of pain, intensity, and P300 components in the pain evoked potential. EEG Clin Neurophysiol 88: 290–301.Google ScholarPubMed
Bench, C. J., Frith, C. D., Grasby, P. M.et al. (1993) Investigations of the functional anatomy of attention using the Stroop test. Neuropsychologia 31: 907–922.CrossRefGoogle ScholarPubMed
Berkley, K. J. (1980) Spatial relationships between the terminations of somatic sensory and motor pathways in the rostral brainstem of cats and monkeys. I. Ascending somatic sensory inputs to lateral diencephalon. J Comp Neurol 193: 283–317.CrossRefGoogle ScholarPubMed
Berkley, K. J., Hubscher, C. H., Wall, P. D. (1993) Neuronal responses to stimulation of the cervix, uterus, colon, and skin in the rat spinal cord. J Neurophysiol 69: 545–556.CrossRefGoogle ScholarPubMed
Bernard, J. F., Besson, J. M. (1990) The spino(trigemino)pontoamygdaloid pathway: electrophysiological evidence for an involvement in pain processes. J Neurophysiol 63: 473–490.CrossRefGoogle ScholarPubMed
Berthier, M., Starkstein, S., Leiguarda, R. (1988) Asymbolia for pain: a sensory-limbic disconnection syndrome. Ann Neurol 24: 41–49.CrossRefGoogle ScholarPubMed
Beydoun, A., Morrow, T. J., Shen, J. F., Casey, K. L. (1993) Variability of laser-evoked potentials: attention, arousal and lateralized differences. Electroencephalogr Clin Neurophysiol 88: 173–181.CrossRefGoogle ScholarPubMed
Beydoun, A., Morrow, T. J., Casey, K. L. (1997) Pain-related laser-evoked potentials in awake monkeys: identification of components, behavioral correlates and drug effects. Pain 72: 319–324.CrossRefGoogle ScholarPubMed
Biedenbach, M. A., Hassel, H. J., Brown, A. C. (1979) Tooth pulp-driven neurons in somatosensory cortex of primates: role in pain mechanisms including a review of the literature. Pain 7: 31–50.CrossRefGoogle ScholarPubMed
Biemond, A. (1956) The conduction of pain above the level of the thalamus opticus. Arch Neurol Psychiat 75: 231–244.CrossRefGoogle ScholarPubMed
Blair, R. W., Weber, N., Foreman, R. D. (1982) Responses of thoracic spinothalamic neurons to intracardiac injection of bradykinin in the monkey. Circ Res 51: 83–94.CrossRefGoogle ScholarPubMed
Blair, R. W., Ammons, W. S., Foreman, R. D. (1984) Responses of thoracic spinothalamic and spinoreticular cells to coronary artery occlusion. J Neurophysiol 51: 636–648.CrossRefGoogle ScholarPubMed
Blitz, B., Dinnerstein, A. J. (1968) Effects of different types of instructions on pain parameters. J Abnorm Psychol 73: 276–280.CrossRefGoogle ScholarPubMed
Blomqvist, A., Zhang, E. T., Craig, A. D. (2000) Cytoarchitectonic and immunohistochemical characterization of a specific pain and temperature relay, the posterior portion of the ventral medial nucleus, in the human thalamus. Brain 123(3): 601–619.CrossRefGoogle ScholarPubMed
Boivie, J. (1979) An anatomic reinvestigation of the termination of the spinothalamic tract in the monkey. J Comp Neurol 186: 343–369.CrossRefGoogle Scholar
Bornhovd, K., Quante, M., Glauche, V.et al. (2002) Painful stimuli evoke different stimulus-response functions in the amygdala, prefrontal, insula and somatosensory cortex: a single-trial fMRI study. Brain 125: 1326–1336.CrossRefGoogle ScholarPubMed
Bosch, D. A. (1991) Stereotactic rostral mesencephalotomy in cancer pain and deafferentation pain. A series of 40 cases with follow-up results. J Neurosurg 75: 747–751.CrossRefGoogle ScholarPubMed
Bourassa, J., Pinault, D., Deschenes, M. (1995) Corticothalamic projections from the cortical barrel field to the somatosensory thalamus in rats: a single-fibre study using biocytin as an anterograde tracer. Eur J Neurosci 7: 19–30.CrossRefGoogle Scholar
Bowsher, D. (1957) Termination of the central pain pathway in man: the conscious appreciation of pain. Brain 80: 606–620.CrossRefGoogle Scholar
Bowsher, D. (1960) The terminal distribution of the pathways subserving pain. J Neurol Neurosurg Psychiatry 23: 351.Google Scholar
Bowsher, D. (1996) Central pain: clinical and physiological characteristics. J Neurol Neurosurg Psychiatry 61: 62–69.CrossRefGoogle ScholarPubMed
Bowsher, D., Leijon, G., Thuomas, K. A. (1998) Central poststroke pain: correlation of MRI with clinical pain characteristics and sensory abnormalities. Neurology 51: 1352–1358.CrossRefGoogle ScholarPubMed
Braunwald, E. (1988) The history. In Heart Disease: A Textbook of Cardiovascular Medicine (Braunwald, E., ed.), pp. 1–12. Philadelphia: W.B. Saunders Company.Google Scholar
Brodmann, K. (1907) Vergleichende Lokalisationslehre der Grosshirnrinde. Leipzig: J. A. Barth.Google Scholar
Bromm, B., Scharein, E. (1982) Principal component analysis of pain-related cerebral potentials to mechanical and electrical stimulation in man. EEG Clin Neurophysiol94–103.CrossRefGoogle ScholarPubMed
Bromm, B., Treede, R. D. (1984) Nerve fibre discharges, cerebral potentials and sensations induced by CO2 laser stimulation. Hum Neurobiol 3: 33–40.Google ScholarPubMed
Bromm, B., Forth, W., Scharien, E. (1992) Effects of acetaminophen and antipyrine on non-inflammatory pain and EEG activity. EEG Clin Neurophysiol 50: 213–221.Google ScholarPubMed
Bruggemann, J., Shi, T., Stea, R. A., Stevens, R. T., Apkarian, A. V. (1992) Representation of bladder, colon and esophagus in the lateral thalamus of the squirrel monkey. Society Neurosci Abstr 18: 495.Google Scholar
Bruggemann, J., Shi, T., Apkarian, A. V. (1994) Squirrel monkey lateral thalamus. II. Viscerosomatic convergent representation of urinary bladder, colon, and esophagus. J Neurosci 14: 6796–6814.CrossRefGoogle ScholarPubMed
Buchner, H., Richrath, P., Grunholz, J.et al. (2000) Differential effects of pain and spatial attention on digit representation in the human primary somatosensory cortex. Neuroreport 11: 1289–1293.CrossRefGoogle ScholarPubMed
Bullinaria, J. A. (2002) Lesioned networks as models of neuropsychological deficits. In The Handbook of Brain Theory and Neural Networks (Arbib, M. A., ed.), pp. 635–638. Cambridge, MA: MIT Press.Google Scholar
Bullinaria, J. A., Chater, N. (1995) Connectionist modelling: implications for cognitive neuropsychology. Lang Cogn Proc 10: 227–264.CrossRefGoogle Scholar
Burstein, R., Dado, R. J., Cliffer, K. D., Giesler, G. J.. (1991) Physiological characterization of spinohypothalamic tract neurons in the lumbar enlargement of rats. J Neurophysiol 66: 261–284.CrossRefGoogle ScholarPubMed
Burton, H., Craig, A. D. (1983) Spinothalamic projections in cat, raccoon and monkey: a study based on anterograde transport of horseradish peroxidase. In Somatosensory Integration in the Thalamus (Macchi, G., ed.), pp. 17–41. Amsterdam: Elsevier.Google Scholar
Burton, H., Forbes, D. J., Benjamin, R. M. (1970) Thalamic neurons responsive to temperature changes of glabrous hand and foot skin in squirrel monkey. Brain Res 24: 179–190.CrossRefGoogle ScholarPubMed
Bushnell, M. C., Duncan, G. H. (1987) Mechanical response properties of ventroposterior medial thalamic neurons in the alert monkey. Exp Brain Res 67: 603–614.CrossRefGoogle ScholarPubMed
Bushnell, M. C., Duncan, G. H. (1989) Sensory and affective aspects of pain perception: is medial thalamus restricted to emotional issues?Exp Brain Res 78: 415–418.CrossRefGoogle ScholarPubMed
Bushnell, M. C., Taylor, M. B., Duncan, G. H., Dubner, R. (1983) Discrimination of innocuous and noxious thermal stimuli applied to the face in human and monkey. Somatosens Res 1: 119–129.CrossRefGoogle ScholarPubMed
Bushnell, M. C., Duncan, G. H., Dubner, R., Jones, R. L., Maixner, W. (1985) Attentional influences on noxious and innocuous cutaneous heat detection in humans and monkeys. J Neurosci 5: 1103–1110.CrossRefGoogle ScholarPubMed
Bushnell, M. C., Duncan, G. H., Tremblay, N. (1993) Thalamic VPM nucleus in the behaving monkey. I. Multimodal and discriminative properties of thermosensitive neurons. J Neurophysiol 69: 739–752.CrossRefGoogle ScholarPubMed
Bushnell, M. C., Duncan, G. H., Hofbauer, R. K.et al. (1999) Pain perception: is there a role for primary somatosensory cortex?Proc Natl Acad Sci USA 96: 7705–7709.CrossRefGoogle Scholar
Carmon, A., Mor, J., Goldberg, J. (1976) Evoked cerebral responses to noxious thermal stimuli in humans. Exp Brain Res 25: 103–107.CrossRefGoogle ScholarPubMed
Carmon, A., Dotan, Y., Sarne, Y. (1978) Correlation of subjective pain experience with cerebral evoked responses to noxious thermal stimulations. Exp Brain Res 33: 445–453.CrossRefGoogle ScholarPubMed
Casey, K. L. (1966) Unit analysis of nociceptive mechanisms in the thalamus of the awake squirrel monkey. J Neurophysiol 29: 727–750.CrossRefGoogle ScholarPubMed
Casey, K. L. (1971) Responses of bulboreticular units to somatic stimuli eliciting escape behavior in the cat. Int J Neurosci 2: 15–28.CrossRefGoogle ScholarPubMed
Casey, K. L. (2000) Concepts of pain mechanisms: the contribution of functional imaging of the human brain. Prog Brain Res 129: 277–287.CrossRefGoogle ScholarPubMed
Casey, K. L., Morrow, T. J. (1983) Ventral posterior thalamic neurons differentially responsive to noxious stimulation of the awake monkey. Science 221: 675–677.CrossRefGoogle ScholarPubMed
Casey, K. L., Minoshima, S., Berger, K. L.et al. (1994) Positron emission tomographic analysis of cerebral structures activated specifically by repetitive noxious heat stimuli. J Neurophysiol 71: 802–807.CrossRefGoogle ScholarPubMed
Casey, K. L., Minoshima, S., Morrow, T. J., Koeppe, R. A. (1996) Comparison of human cerebral activation pattern during cutaneous warmth, heat pain, and deep cold pain. J Neurophysiol 76: 571–581.CrossRefGoogle ScholarPubMed
Cesaro, P., Mann, M. W., Moretti, J. L.et al. (1991) Central pain and thalamic hyperactivity: a single photon emission computerized tomographic study. Pain 47: 329–336.Google ScholarPubMed
Chandler, M. J., Hobbs, S. F., Fu, Q.-G.et al. (1992) Responses of neurons in ventroposterolateral nucleus of primate thalamus to urinary bladder distension. Brain Res 571: 26–34.CrossRefGoogle ScholarPubMed
Chatrian, G. E., Canfield, R. C., Knauss, T. A., Eegt, E. L. (1975) Cerebral responses to electrical tooth pulp stimulation in man. An objective correlate of acute experimental pain. Neurology 25: 745–757.CrossRefGoogle Scholar
Chen, A. C. N., Bromm, B. (1995) Pain-related generators of laser-evoked brain potentials: brain mapping and dipole modeling. In Pain and the Brain: From Nociception to Cognition (Bromm, B., Desmedt, J. E., eds), pp. 245–266. New York: Raven Press.Google Scholar
Chen, A. C., Dworkin, S. F., Haug, J., Gehrig, J. (1989) Human pain responsivity in a tonic pain model: psychological determinants. Pain 37: 143–160.CrossRefGoogle Scholar
Chudler, E. H., Dong, W. K., Kawakami, Y. (1985) Tooth pulp-evoked potentials in the monkey: cortical surface and intracortical distribution. Pain 2: 221–223.CrossRefGoogle Scholar
Chudler, E. H., Dong, W. K., Kawakami, Y. (1986) Cortical nociceptive responses and behavioral correlates in the monkey. Brain Res 397: 47–60.CrossRefGoogle ScholarPubMed
Chung, J. M., Lee, K. H., Surmeier, D. J.et al. (1986a) Response characteristics of neurons in the ventral posterior lateral nucleus of the monkey thalamus. J Neurophysiol 56: 370–390.CrossRefGoogle ScholarPubMed
Chung, J. M., Surmeier, D. J., Lee, K. H.et al. (1986b) Classification of primate spinothalamic and somatosensory thalamic neurons based on cluster analysis. J Neurophysiol 56: 308–327.CrossRefGoogle ScholarPubMed
Churchland, P. S., Sejnowski, T. J. (1992) The Computational Brain. Cambridge, MA: MIT Press.Google Scholar
Classen, J., Gerloff, C., Honda, M., Hallett, M. (1998) Integrative visuomotor behavior is associated with interregionally coherent oscillations in the human brain. J Neurophysiol 79: 1567–1573.CrossRefGoogle ScholarPubMed
Coghill, R. C., Talbot, J. D., Evans, A. C.et al. (1994) Distributed processing of pain and vibration by the human brain. J Neurosci 14: 4095–4108.CrossRefGoogle ScholarPubMed
Coghill, R. C., Sang, C. N., Ma, J., Iadarola, M. J. (1997) Distributed representation of painful stimulus intensity in the human brain. Society Neurosci Abstr 23: 439.Google Scholar
Coghill, R. C., Sang, C. N., Maisog, J. M., Iadarola, M. J. (1999) Pain intensity processing within the human brain: a bilateral, distributed mechanism. J Neurophysiol 82: 1934–1943.CrossRefGoogle ScholarPubMed
Coghill, R. C., Gilron, I., Iadarola, M. J. (2001) Hemispheric lateralization of somatosensory processing. J Neurophysiol 85: 2602–2612.CrossRefGoogle ScholarPubMed
Cohen, R. A., Kaplan, R. F., Moser, D. J., Jenkins, M. A., Wilkinson, H. (1999) Impairments of attention after cingulotomy. Neurology 53: 819–824.CrossRefGoogle ScholarPubMed
Cooper, R., Winter, A. L., Crow, H. J., Walter, W. G. (1965) Comparison of subcortical, cortical and scalp activity using chronically indwelling electrodes in man. EEG Clin Neurophysiol 18: 217–228.CrossRefGoogle ScholarPubMed
Corbetta, M., Miezin, F. M., Dobmeyer, S., Shulman, G. l., Petersen, S. E. (1991) Selective and divided attention during visual discriminations of shape, colour, and speed: functional anatomy by positron emission tomography. J Neurosci 11: 2388–2402.CrossRefGoogle ScholarPubMed
Craig, A. D. (1990a) Nociceptive neurons in the nucleus submedius (Sm) in the medial thalamus of the cat. Pain 5: S492.CrossRefGoogle Scholar
Craig, A. D. (1990b) Trigeminothalamic projections in the monkey. Society Neurosci Abstr 16: 1144.Google Scholar
Craig, A. D. (1995) Supraspinal projections of lamina one neurons. In Forebrain Areas Involved in Pain Processing (Besson, J. M., Guilbaud, G., Ollat, H., eds), pp. 13–25. London: Libby.Google Scholar
Craig, A. D. (2006) Retrograde analyses of spinothalamic projections in the macaque monkey: input to ventral posterior nuclei. J Comp Neurol 499: 965–978.CrossRefGoogle ScholarPubMed
Craig, A. D., Burton, H. (1981) Spinal and medullary lamina I projection to nucleus submedius in medial thalamus: a possible pain center. J Neurophysiol 45: 443–466.CrossRefGoogle ScholarPubMed
Craig, A. D., Hunsley, S. J. (1991) Morphine enhances the activity of thermoreceptive cold-specific lamina I spinothalamic neurons in the cat. Brain Res 558: 93–97.CrossRefGoogle ScholarPubMed
Craig, A. D., Zhang, E. T. (1996) Anterior cingulate connection from MDvc (a lamina I spinothalamic target in the medial thalamus of the monkey). Society Neurosci Abstr 22: 111.Google Scholar
Craig, A. D., Zhang, E. T. (2006) Retrograde analyses of spinothalamic projections in the macaque monkey: input to posterolateral thalamus. J Comp Neurol 499: 953–964.CrossRefGoogle ScholarPubMed
Craig, A. D., Bushnell, M. C., Zhang, E. T., Blomqvist, A. (1994) A thalamic nucleus specific for pain and temperature sensation. Nature 372: 770–773.CrossRefGoogle ScholarPubMed
Craig, A. D., Reiman, E. M., Evans, A., Bushnell, M. C. (1996) Functional imaging of an illusion of pain. Nature 384: 258–260.CrossRefGoogle ScholarPubMed
Darian-Smith, C., Tan, A., Edwards, S. (1999) Comparing thalamocortical and corticothalamic microstructure and spatial reciprocity in the macaque ventral posterolateral nucleus (VPLc) and medial pulvinar. J Comp Neurol 410: 211–234.3.0.CO;2-X>CrossRefGoogle ScholarPubMed
Davis, K. D. (2000) Studies of pain using functional magnetic resonance imaging. In Pain Imaging (Casey, K. L., Bushnell, M. C., eds), pp. 195–210. Seattle: IASP Press.Google Scholar
Davis, K. D., Hutchison, W. D., Lozano, A. M., Dostrovsky, J. O. (1994) Altered pain and temperature perception following cingulotomy and capsulotomy in a patient with schizoaffective disorder. Pain 59: 189–199.CrossRefGoogle Scholar
Davis, K. D., Tasker, R. R., Kiss, Z. H. T., Hutchison, W. D., Dostrovsky, J. O. (1995a) Visceral pain evoked by thalamic microstimulation in humans. Neuroreport 6: 369–374.CrossRefGoogle ScholarPubMed
Davis, K. D., Wood, M. L., Crawley, A. P., Mikulis, D. J. (1995b) fMRI of human somatosensory and cingulate cortex during painful electrical nerve stimulation. Neuroreport 7: 321–325.CrossRefGoogle ScholarPubMed
Davis, K. D., Kiss, Z. H. T., Tasker, R. R., Dostrovsky, J. O. (1996) Thalamic stimulation-evoked sensations in chronic pain patients and nonpain (movement disorder) patients. J Neurophysiol 75: 1026–1037.CrossRefGoogle ScholarPubMed
Davis, K. D., Taylor, S. J., Crawley, A. P., Wood, M. L., Mikulis, D. J. (1997) Functional MRI of pain- and attention-related activation in the human cingulate cortex. J Neurophysiol 77: 3370–3380.CrossRefGoogle ScholarPubMed
Davis, K. D., Kwan, C. L., Crawley, A. P., Mikulis, D. J. (1998) Functional MRI study of thalamic and cortical activations evoked by cutaneous heat, cold, and tactile stimuli. J Neurophysiol 80: 1533–1546.CrossRefGoogle ScholarPubMed
Davis, K. D., Lozano, R. M., Manduch, M.et al. (1999) Thalamic relay site for cold perception in humans. J Neurophysiol 81: 1970–1973.CrossRefGoogle ScholarPubMed
Davison, C., Schick, W. (1935) Spontaneous pain and other subjective sensory disturbances. Arch Neurol Psychiat 34: 1204–1237.CrossRefGoogle Scholar
Delgado, J. M. R. (1955) Cerebral structures involved in transmission and elaboration of noxious stimulation. J Neurophysiol 18: 261–275.CrossRefGoogle ScholarPubMed
Depaulis, A., Keay, K. A., Bandler, R. (1994) Quiescence and hyporeactivity evoked by activation of cell bodies in the ventrolateral midbrain periaqueductal gray of the rat. Exp Brain Res 99: 75–83.CrossRefGoogle ScholarPubMed
Derbyshire, S. W., Jones, A. K., Devani, P.et al. (1994) Cerebral responses to pain in patients with atypical facial pain measured by positron emission tomography. J Neurol Neurosurg Psychiatry 57: 1166–1172.CrossRefGoogle ScholarPubMed
Derbyshire, S. W. G., Jones, A. K. P., Gyulai, F.et al. (1997) Pain processing during three levels of noxious stimulation produces different pattern of central activity. Pain 73: 431–445.CrossRefGoogle Scholar
Derbyshire, S. W. G., Vogt, B. A., Jones, A. K. P. (1998) Pain and Stroop interference tasks activate separate processing modules in anterior cingulate cortex. Exp Brain Res 118: 52–60.CrossRefGoogle ScholarPubMed
Deschenes, M., Paradis, M., Roy, J. P., Steriade, M. (1984) Electrophysiology of neurons of lateral thalamic nuclei in cat: resting properties and burst discharges. J Neurophysiol 51: 1196–1219.CrossRefGoogle ScholarPubMed
Deschenes, M., Bourassa, J., Pinault, D. (1994) Corticothalamic projections from layer V cells in rat are collaterals of long-range corticofugal axons. Brain Res 664: 215–219.CrossRefGoogle Scholar
Deuschl, G., Bain, P., Brin, M. (1998) Consensus statement of the Movement Disorder Society on Tremor. Ad Hoc Scientific Committee. Mov Disord 13 (Suppl 3): 2–23.CrossRefGoogle ScholarPubMed
Devinsky, O., Morrell, M. J., Vogt, B. A. (1995) Contributions of anterior cingulate cortex to behaviour. Brain 118: 279–306.CrossRefGoogle ScholarPubMed
Disbrow, E., Roberts, T., Krubitzer, L. (2000) Somatotopic organization of cortical fields in the lateral sulcus of Homo sapiens: evidence for SII and PV. J Comp Neurol 418: 1–21.3.0.CO;2-P>CrossRefGoogle ScholarPubMed
Domich, L., Oakson, G., Steriade, M. (1986) Thalamic burst patterns in the naturally sleeping cat: a comparison between cortically-projecting and reticularis neurones. J Physiol (Lond) 379: 429–449.CrossRefGoogle ScholarPubMed
Dong, W. K., Salonen, L. D., Kawakami, Y.et al. (1989) Nociceptive responses of trigeminal neurons in SII-7b cortex of awake monkeys. Brain Res 484: 314–324.CrossRefGoogle ScholarPubMed
Dong, W. K., Chudler, E. H., Sugiyama, K., Roberts, V. J., Hayashi, T. (1994) Somatosensory, multisensory, and task-related neurons in cortical area 7b (PF) of unanesthetized monkeys. J Neurophysiol 72: 542–564.CrossRefGoogle ScholarPubMed
Dong, W. K., Hayashi, T., Roberts, V. J., Fusco, B. M., Chudler, E. H. (1996) Behavioral outcome of posterior parietal cortex injury in the monkey. Pain 64: 579–587.CrossRefGoogle ScholarPubMed
Dostrovsky, J. O., Craig, A. D. (1996) Cooling-specific spinothalamic neurons in the monkey. J Neurophysiol 76: 3656–3665.CrossRefGoogle ScholarPubMed
Dostrovsky, J. O., Manduch, M., Davis, K. D., Tasker, R. R., Lozano, A. M. (2000) Thalamic stimulation-evoked pain and temperature sites in pain and non-pain patients. In Proceedings of the 9th World Congress on Pain, Progress in Pain Research and Management (M. Devor, M. C. Rowbotham, Z. Wiesenfeld-Hallin, eds), Chapter 41, pp. 419–425.
Dougherty, P. M., Sluka, K. A., Sorkin, L. S., Westlund, K. N., Willis, W. D. (1992) Neural changes in acute arthritis in monkeys. I. Parallel enhancement of responses of spinothalamic tract neurons to mechanical stimulation and excitatory amino acids. Brain Res Rev 17: 1–13.CrossRefGoogle ScholarPubMed
Dougherty, P. M., Schwartz, A., Lenz, F. A. (1999) Responses of primate spinomesencephalic tract cells to intradermal capsaicin. Neuroscience 90: 1377–1392.CrossRefGoogle ScholarPubMed
Dowman, R. (2001) Attentional set effects on spinal and supraspinal responses to pain. Psychophysiology 38: 451–464.CrossRefGoogle Scholar
Duncan, G. H., Bushnell, M. C., Oliveras, J. L., Bastrash, N., Tremblay, N. (1993) Thalamic VPM nucleus in the behaving monkey. III. Effects of reversible inactivation by lidocaine on thermal and mechanical discrimination. J Neurophysiol 70: 2086–2096.CrossRefGoogle ScholarPubMed
Dykes, R. W., Sur, M., Merzenich, M. M., Kaas, J. H., Nelson, R. J. (1981) Regional segregation of neurons responding to quickly adapting, slowly adapting, deep and Pacinian receptors within thalamic ventroposterior lateral and ventroposterior inferior nuclei in the squirrel monkey. Neuroscience 6: 1687–1692.CrossRefGoogle ScholarPubMed
Eickhoff, R., Handwerker, H. O., McQueen, D. S., Schick, E. (1978) Noxious and tactile input to medial structures of midbrain and pons in the rat. Pain 5: 99–113.CrossRefGoogle ScholarPubMed
Emmers, R., Tasker, R. R. (1975) The Human Somesthetic Thalamus. New York: Raven Press.Google Scholar
Fairman, D. (1966) Evaluation of results in stereotactic thalamotomy for the treatment of intractable pain. Confin Neurol 27: 67–70.CrossRefGoogle ScholarPubMed
Fairman, D., Llavallol, M. A. (1973) Thalamic tractotomy for the alleviation of intractable pain in cancer. Cancer 31: 700–707.3.0.CO;2-7>CrossRefGoogle Scholar
Faymonville, M. E., Roediger, L., Del Fiore, G.et al. (2003) Increased cerebral functional connectivity underlying the antinociceptive effects of hypnosis. Brain Res Cogn Brain Res 17: 255–262.CrossRefGoogle Scholar
Ferrington, D. G., Sorkin, L. S., Willis, W. D. (1987) Responses of spinothalamic tract cells in the superficial dorsal horn of the primate lumbar spinal cord. J Physiol 388: 681–703.CrossRefGoogle ScholarPubMed
Ferrington, D. G., Downie, J. W., Willis, W. D. (1988) Primate nucleus gracilis neurons: responses to innocuous and noxious stimuli. J Neurophysiol 59: 886–907.CrossRefGoogle ScholarPubMed
Fessler, R. G., Brown, F. D., Rachlin, J. R., Mullan, S. (1984) Elevated ß-endorphin in cerebrospinal fluid after electrical brain stimulation: artifact of contrast infusion?Science 224: 1017–1019.CrossRefGoogle Scholar
Fields, H. L., Clanton, C. H., Anderson, S. D. (1977) Somatosensory properties of spinoreticular neurons in the cat. Brain Res 120: 49–66.CrossRefGoogle ScholarPubMed
Foltz, E. L., White, L. E. (1962) Pain “relief” by frontal cingulumotomy. J Neurosurg 19: 89–100.CrossRefGoogle ScholarPubMed
Foreman, R. D., Kenshalo, D. R., Schmidt, R. F., Willis, W. D. (1979) Field potentials and excitation of primate spinothalamic neurons in response to volleys in muscle afferents. J Physiol (Lond) 286: 197–213.CrossRefGoogle ScholarPubMed
Foreman, R. D., Hancock, M. B., Willis, W. D. (1981) Responses of spinothalamic tract cells in the thoracic spinal cord of the monkey to cutaneous and visceral inputs. Pain 11: 149–162.CrossRefGoogle ScholarPubMed
Friedman, D. P., Murray, E. A., O'Neill, J. B., Mishkin, M. (1986) Cortical connections of the somatosensory fields of the lateral sulcus of macaques: evidence for a corticolimbic pathway for touch. J Comp Neurol 252: 323–347.CrossRefGoogle ScholarPubMed
Frot, M., Mauguiere, F. (1999) Timing and spatial distribution of somatosensory responses recorded in the upper bank of the sylvian fissure (SII area) in humans. Cereb Cortex 9: 854–863.CrossRefGoogle ScholarPubMed
Frot, M., Rambaud, L., Guenot, M., Mauguiere, F. (1999) Intracortical recordings of early pain-related CO2-laser evoked potentials in the human second somatosensory (SII) area. Clin Neurophysiol 110: 133–145.CrossRefGoogle ScholarPubMed
Frot, M., Garcia-Larrea, L., Guenot, M., Mauguiere, F. (2001) Responses of the supra-sylvian (SII) cortex in humans to painful and innocuous stimuli. A study using intra-cerebral recordings. Pain 94: 65–73.CrossRefGoogle ScholarPubMed
Gautron, M., Guilbaud, G. (1982) Somatic responses of ventrobasal thalamic neurones in polyarthritic rats. Brain Res 237: 459–471.CrossRefGoogle ScholarPubMed
Gelnar, P. A., Krauss, B. R., Sheehe, P. R., Szeverenyi, N. M., Apkarian, A. V. (1999) A comparative fMRI study of cortical representations for thermal painful, vibrotactile, and motor performance tasks. Neuroimage 10: 460–482.CrossRefGoogle ScholarPubMed
Gerhart, K. D., Yezierski, R. P., Wilcox, T. K., Willis, W. D. (1984) Inhibition of primate spinothalamic tract neurons by stimulation in periaqueductal gray or adjacent midbrain reticular formation. J Neurophysiol 51: 450–466.CrossRefGoogle ScholarPubMed
Gevins, A., Cutillo, B., Desmond, J.et al. (1994) Subdural grid recordings of distributed neocortical networks involved with somatosensory discrimination. Electroencephalogr Clin Neurophysiol 92: 282–290.CrossRefGoogle ScholarPubMed
Gloor, P. (1990) Experiential phenomena of temporal lobe epilepsy. Facts and hypotheses. Brain 113: 1673–1694.CrossRefGoogle ScholarPubMed
Gloor, P., Olivier, A., Quesney, L. F., Andermann, F., Horowitz, S. (1982) The role of the limbic system in experiential phenomena of temporal lobe epilepsy. Ann Neurol 12: 129–144.CrossRefGoogle ScholarPubMed
Goldman-Rakic, P., Porrino, L. J. (1985) The primate mediodorsal nucleus and its projection to the frontal lobe. J Comp Neurol 242: 535–360.CrossRefGoogle ScholarPubMed
Gracely, R. H., Lota, L., Walter, D. J., Dubner, R. (1988) A multiple random staircase method of psychophysical pain assessment. Pain 32: 55–63.CrossRefGoogle ScholarPubMed
Graziano, A., Jones, E. G. (2004) Widespread thalamic terminations of fibers arising in the superficial medullary dorsal horn of monkeys and their relation to calbindin immunoreactivity. J Neurosci 24: 248–256.CrossRefGoogle ScholarPubMed
Greenspan, J. D., Lee, R. R., Lenz, F. A. (1999) Pain sensitivity alterations as a function of lesion location in the parasylvian cortex. Pain 81: 273–282.CrossRefGoogle ScholarPubMed
Greenspan, J. D., Ohara, S., Sarlani, E., Lenz, F. A. (2004) Allodynia in patients with post-stroke central pain (CPSP) studied by statistical quantitative sensory testing within individuals. Pain 109: 357–366.CrossRefGoogle ScholarPubMed
Greenspan, J. D., Coghill, R. C., Gilron, I.et al. (2008) Quantitative somatic sensory testing and functional imaging of the response to painful stimuli before and after cingulotomy for obsessive compulsive disorder (OCD). Eur J Pain 12: 990–999.CrossRefGoogle Scholar
Haber, L. H., Moore, B. D., Willis, W. D. (1982) Electrophysiological response properties of spinoreticular neurons in the monkey. J Comp Neurol 207: 75–84.CrossRefGoogle ScholarPubMed
Halgren, E., Walter, R. D., Cherlow, D. G., Crandall, P. H. (1978) Mental phenomena evoked by electrical stimulation of the human hippocampal formation and amygdala. Brain 101: 83–117.CrossRefGoogle ScholarPubMed
Halgren, E., Baudena, P., Clarke, J. M.et al. (1995a) Intracerebral potentials to rare target and distractor auditory and visual stimuli. I. Superior temporal plane and parietal lobe. Electroencephalogr Clin Neurophysiol 94: 191–220.CrossRefGoogle ScholarPubMed
Halgren, E., Baudena, P., Clarke, J. M.et al. (1995b) Intracerebral potentials to rare target and distractor auditory and visual stimuli. II. Medial, lateral and posterior temporal lobe. Electroencephalogr Clin Neurophysiol 94: 229–250.CrossRefGoogle ScholarPubMed
Hassler, R. (1959a) Anatomy of the thalamus. In Introduction to Stereotaxis with an Atlas of the Human Brain (Schaltenbrand, G., Bailey, P., eds), pp. 230–290. Stuttgart: Theime.Google Scholar
Hassler, R. (1959b) Die zentralen systeme des schmerzes. Acta Neurochir 8: 353–423.CrossRefGoogle Scholar
Hassler, R. (1970) Dichotomy of facial pain conduction in the diencephalon. In Trigeminal Neuralgia (Walker, A. E., ed.), pp. 123–138. Philadelphia: W. B. Saunders.Google Scholar
Hassler, R., Reichert, T. (1959) Klinische und anatomische Befunde bei stereotaktischen Schmerzoperationen im Thalamus. Arch Psychiat Nerverkr 200: 93–122.CrossRefGoogle Scholar
Heilman, K. M., Watson, R. T., Valenstein, E. (1993) Neglect and related disorders. In Clinical Neuropsychology (Heilman, K. M., Valenstein, E., eds), pp. 279–336. New York: Oxford University Press.Google Scholar
Hirai, T., Jones, E. G. (1989) A new parcellation of the human thalamus on the basis of histochemical staining. Brain Res Rev 14: 1–34.CrossRefGoogle ScholarPubMed
Hirai, T., Ohye, C., Nagaseki, Y., Matsumura, M. (1989) Cytometric analysis of the thalamic ventralis intermedius nucleus in man and a comparison with the monkey. J Neurophysiol 61: 478–487.CrossRefGoogle Scholar
Hirato, M., Watanabe, K., Takahashi, A.et al. (1994) Pathophysiology of central (thalamic) pain: combined change of sensory thalamus with cerebral cortex around central sulcus. Stereotact Funct Neurosurg 62: 300–303.CrossRefGoogle ScholarPubMed
Hirshberg, R. M., Al Chaer, E. D., Lawand, N. B., Westlund, K. N., Willis, W. D. (1996) Is there a pathway in the posterior funiculus that signals visceral pain?Pain 67: 291–305.CrossRefGoogle Scholar
Hitchcock, E. (1972) Electrophysiological exploration of the cervico-medullary region. In Neurophysiology Studied in Man (Somjen, G. G., ed.), pp. 237–245. Amsterdam: Excerpta Medica.Google Scholar
Hitchcock, E. R. (1973) Stereotaxic pontine spinothalamic tractotomy. J Neurosurg 39: 746–752.CrossRefGoogle ScholarPubMed
Horie, H., Yokota, T. (1990) Responses of nociceptive VPL neurons to intracardiac injection of bradykinin in the cat. Brain Res 516: 161–164.CrossRefGoogle ScholarPubMed
Hosobuchi, Y., Adams, J. E., Linchitz, R. (1977) Pain relief by electrical stimulation of the central gray matter in humans and its reversal by naloxone. Science 197: 183–186.CrossRefGoogle ScholarPubMed
Hosobuchi, Y., Rossier, J., Bloom, F. E., Guillemin, R. (1979) Stimulation of human periaqueductal gray for pain relief increases immunoreactive beta-endorphin in ventricular fluid. Science 203: 279–281.CrossRefGoogle ScholarPubMed
Hsieh, J. C., Belfrage, M., Stone-Elander, S., Hansson, P., Ingvar, M. (1995) Central representation of chronic ongoing neuropathic pain studied by positron emission tomography. Pain 63: 225–236.CrossRefGoogle ScholarPubMed
Hua, S. E., Lenz, F. A. (2005) Posture-related oscillations in human cerebellar thalamus in essential tremor are enabled by voluntary motor circuits. J Neurophysiol 93: 117–127.CrossRefGoogle ScholarPubMed
Hutchison, W. D., Davis, K. D., Lozano, A. M., Tasker, R. R., Dostrovsky, J. O. (1999) Pain-related neurons in the human cingulate cortex. Nat Neurosci 2: 403–405.CrossRefGoogle ScholarPubMed
Hyland, B., Chen, D. F., Maier, V., Palmeri, A., Wiesendanger, M. (1989) What is the role of the supplementary motor area in movement initiation?Prog Brain Res 80: 431–436.CrossRefGoogle ScholarPubMed
Hylden, J. L., Hayashi, H., Dubner, R., Bennett, G. J. (1986) Physiology and morphology of the lamina I spinomesencephalic projection. J Comp Neurol 247: 505–515.CrossRefGoogle ScholarPubMed
Iadarola, M. J., Berman, K. F., Zeffiro, T. A.et al. (1998) Neural activation during acute capsaicin-evoked pain and allodynia assessed with PET. Brain 121: 931–947.CrossRefGoogle ScholarPubMed
Iggo, A. (1969) Cutaneous thermoreceptors in primates and sub-primates. J Physiol 200: 403–430.CrossRefGoogle ScholarPubMed
Iggo, A. (1985) Sensory receptors in the skin of mammals and their sensory functions. Rev Neurol (Paris) 141: 599–613.Google ScholarPubMed
Iggo, A., Ramsey, R. L. (1976) Thermosensory mechanisms of the spinal cord of monkeys. In Sensory Mechanisms of the Skin in Primates with Special Reference to Man (Zotterman, Y., ed.), pp. 285–304. Oxford: Pergamon Press.Google Scholar
Ishijima, B., Yoshimasu, N., Fukushima, T.et al. (1975) Nociceptive neurons in the human thalamus. Confin Neurol 37: 99–106.CrossRefGoogle ScholarPubMed
Jahnsen, H., Llinas, R. (1984a) Electrophysiological properties of guinea-pig thalamic neurones: an in vitro study. J Physiol 349: 205–226.CrossRefGoogle Scholar
Jahnsen, H., Llinas, R. (1984b) Ionic basis for the electro-responsiveness and oscillatory properties of guinea-pig thalamic neurones in vitro. J Physiol 349: 227–247.CrossRefGoogle ScholarPubMed
Jeanmonod, D., Magnin, M., Morel, A. (1993) Thalamus and neurogenic pain: physiological, anatomical and clinical data. Neuroreport 4: 475–478.CrossRefGoogle ScholarPubMed
Jeanmonod, D., Magnin, M., Morel, A. (1994) A thalamic concept of neurogenic pain. In Proceedings of the 7th World Congress on Pain. Progress in Pain Research and Management, Vol. 2 (Gebhart, G. F., Hammond, D. L., Jensen, T. S., eds), pp. 767–787. Seattle: IASP Press.Google Scholar
Jones, A. K., Brown, W. D., Friston, K. J., Qi, L. Y., Frackowiak, R. S. (1991) Cortical and subcortical localization of response to pain in man using positron emission tomography. Proc R Soc Lond B Biol Sci 244: 39–44.CrossRefGoogle ScholarPubMed
Jones, E. G. (1985) The Thalamus. New York: Plenum.CrossRefGoogle Scholar
Jones, E. G., Friedman, D. P., Hendry, S. H. (1982) Thalamic basis of place- and modality-specific columns in monkey somatosensory cortex: a correlative anatomical and physiological study. J Neurophysiol 48: 545–568.CrossRefGoogle ScholarPubMed
Kakigi, R., Shibasaki, H., Ikeda, A. (1989) Pain-related somatosensory evoked potentials following CO2 laser stimulation in man. Electroencephalogr Clin Neurophysiol 74: 139–146.CrossRefGoogle ScholarPubMed
Kalil, K. (1978) Patch-like termination of thalamic fibers in the putamen of the rhesus monkey: an autoradiographic study. Brain Res 140: 333–339.CrossRefGoogle Scholar
Kanda, M., Fujiwara, N., Xu, X.et al. (1996) Pain-related and cognitive components of somatosensory evoked potentials following CO2 laser stimulation. EEG Clin Neurophysiol 100: 105–114.Google ScholarPubMed
Kanda, M., Nagamine, T., Ikeda, A.et al. (2000) Primary somatosensory cortex is actively involved in pain processing in human. Brain Res 853: 282–289.CrossRefGoogle ScholarPubMed
Katter, J. T., Dado, R. J., Kostarczyk, E., Giesler, G. J. (1996) Spinothalamic and spinohypothalamic tract neurons in the sacral spinal cord of rats. II. Responses to cutaneous and visceral stimuli. J Neurophysiol 75: 2606–2628.CrossRefGoogle ScholarPubMed
Kenshalo, D. R., Duclaux, R. (1977) Response characteristics of cutaneous cold receptors in the monkey. J Neurophysiol 40: 319–332.CrossRefGoogle ScholarPubMed
Kenshalo, D. R., Isensee, O. (1983) Responses of primate SI cortical neurons to noxious stimuli. J Neurophysiol 50: 1479–1496.CrossRefGoogle ScholarPubMed
Kenshalo, D. R., Willis, W. D. (1991) The role of the cerebral cortex in pain sensation. In Cerebral Cortex, Vol. 9. Normal and Altered States of Function (Peters, A., Jones, E. G., eds), pp. 153–212. New York: Plenum Press.CrossRefGoogle Scholar
Kenshalo, D. R., Giesler, G. J., Leonard, R. B., Willis, W. D. (1980) Responses of neurons in primate ventral posterior lateral nucleus to noxious stimuli. J Neurophysiol 43: 1594–1614.CrossRefGoogle ScholarPubMed
Kenshalo, D. R., Chudler, E. H., Anton, F., Dubner, R. (1988) SI nociceptive neurons participate in the encoding process by which monkeys perceive the intensity of noxious thermal stimulation. Brain Res 454: 378–382.CrossRefGoogle ScholarPubMed
Kenshalo, D. R., Iwata, K., Sholas, M., Thomas, D. A. (2000) Response properties and organization of nociceptive neurons in area 1 of monkey primary somatosensory cortex. J Neurophysiol 84: 719–729.CrossRefGoogle ScholarPubMed
Kerr, F. W. L. (1975) The ventral spinothalamic tract and other ascending systems of the ventral funiculus of the spinal cord. J Comp Neurol 159: 335–356.CrossRefGoogle ScholarPubMed
Kievit, J., Kuypers, H. G. (1975) Subcortical afferents to the frontal lobe in the rhesus monkey studied by means of retrograde horseradish peroxidase transport. Brain Res 85: 261–266.CrossRefGoogle ScholarPubMed
Kim, J. H., Greenspan, J. D., Coghill, R. C., Ohara, S., Lenz, F. A. (2007) Lesions limited to the human thalamic principal somatosensory nucleus (ventral caudal) are associated with loss of cold sensations and central pain. J Neurosci 27: 4995–5004.CrossRefGoogle ScholarPubMed
Kiss, I., Dashieff, R. M., Lordeon, P. (1989) A parieto-occipital generator for the P300: evidence from human intracranial recordings. Int J Neurosci49: 133–139.CrossRefGoogle ScholarPubMed
Kitamura, Y., Kakigi, R., Hoshiyama, M.et al. (1995) Pain-related somatosensory evoked magnetic fields. Electroencephalogr Clin Neurophysiol 95: 463–474.CrossRefGoogle ScholarPubMed
Knight, R. T., Grabowecky, M. (2000) Prefrontal cortex, time, and consciousness. In The New Cognitive Neurosciences (Gazzaniga, M. S., ed.), pp. 1319–1340. Cambridge, MA:MIT Press.Google Scholar
Koyama, T., Tanaka, Y. Z., Mikami, A. (1998) Nociceptive neurons in the macaque anterior cingulate activate during anticipation of pain. Neuroreport 9: 2663–2667.CrossRefGoogle Scholar
Kumazawa, T., Perl, E. R. (1978) Excitation of marginal and substantia gelatinosa neurons in the primate spinal cord: indications of their place in dorsal horn functional organization. J Comp Neurol 177: 417–434.CrossRefGoogle ScholarPubMed
Kumazawa, T., Perl, E. R., Burgess, P. R., Whitehorn, D. (1975) Ascending projections from marginal zone (lamina I) neurons of the spinal dorsal horn. J Comp Neurol 162: 1–12.CrossRefGoogle Scholar
Lachaux, J. P., Rodriguez, E., Martinerie, J., Varela, F. J. (1999) Measuring phase synchrony in brain signals. Hum Brain Mapp 8: 194–208.3.0.CO;2-C>CrossRefGoogle ScholarPubMed
Lee, J., Dougherty, P. M., Antezana, D., Lenz, F. A. (1999) Responses of neurons in the region of human thalamic principal somatic sensory nucleus to mechanical and thermal stimuli graded into the painful range. J Comp Neurol 410: 541–555.3.0.CO;2-8>CrossRefGoogle ScholarPubMed
Lee, J. I., Ohara, S., Dougherty, P. M., Lenz, F. A. (2005) Pain and temperature encoding in the human thalamic somatic sensory nucleus (ventral caudal): inhibition-related bursting evoked by somatic stimuli. J Neurophysiol 94: 1676–1687.CrossRefGoogle ScholarPubMed
Legrain, V., Guerit, J. M., Bruyer, R., Plaghki, L. (2002) Attentional modulation of the nociceptive processing into the human brain: selective spatial attention, probability of stimulus occurrence, and target detection effects on laser evoked potentials. Pain 99: 21–39.CrossRefGoogle ScholarPubMed
Leijon, G., Boivie, J., Johansson, I. (1989) Central post-stroke pain-neurological symptoms and pain characteristics. Pain 36: 13–25.CrossRefGoogle ScholarPubMed
Lenz, F. A., Byl, N. N. (1999) Reorganization in the cutaneous core of the human thalamic principal somatic sensory nucleus (ventral caudal) in patients with dystonia. J Neurophysiol 82: 3204–3212.CrossRefGoogle ScholarPubMed
Lenz, F. A., Dougherty, P. M. (1998) Cells in the human principal thalamic sensory nucleus (ventralis caudalis – Vc) respond to innocuous mechanical and cool stimuli. J Neurophysiol 79: 2227–2230.CrossRefGoogle Scholar
Lenz, F. A., Dostrovsky, J. O., Tasker, R. R.et al. (1988) Single-unit analysis of the human ventral thalamic nuclear group: somatosensory responses. J Neurophysiol 59: 299–316.CrossRefGoogle ScholarPubMed
Lenz, F. A., Seike, M., Lin, Y. C.et al. (1993a) Neurons in the area of human thalamic nucleus ventralis caudalis respond to painful heat stimuli. Brain Res 623: 235–240.CrossRefGoogle ScholarPubMed
Lenz, F. A., Seike, M., Richardson, R. T.et al. (1993b) Thermal and pain sensations evoked by microstimulation in the area of human ventrocaudal nucleus. J Neurophysiol 70: 200–212.CrossRefGoogle ScholarPubMed
Lenz, F. A., Gracely, R. H., Hope, E. J.et al. (1994a) The sensation of angina can be evoked by stimulation of the human thalamus. Pain 59: 119–125.CrossRefGoogle ScholarPubMed
Lenz, F. A., Gracely, R. H., Rowland, L. H., Dougherty, P. M. (1994b) A population of cells in the human thalamic principal sensory nucleus respond to painful mechanical stimuli. Neurosci Lett 180: 46–50.CrossRefGoogle ScholarPubMed
Lenz, F. A., Kwan, H. C., Martin, R.et al. (1994c) Characteristics of somatotopic organization and spontaneous neuronal activity in the region of the thalamic principal sensory nucleus in patients with spinal cord transection. J Neurophysiol 72: 1570–1587.CrossRefGoogle ScholarPubMed
Lenz, F. A., Gracely, R. H., Romanoski, A. J.et al. (1995) Stimulation in the human somatosensory thalamus can reproduce both the affective and sensory dimensions of previously experienced pain. Nat Med 1: 910–913.CrossRefGoogle ScholarPubMed
Lenz, F. A., Gracely, R. H., Zirh, T. A.et al. (1997) Human thalamic nucleus mediating taste and multiple other sensations related to ingestive behavior. J Neurophysiol 77: 3406–3409.CrossRefGoogle ScholarPubMed
Lenz, F. A., Rios, M., Chau, D.et al. (1998a) Painful stimuli evoke potentials recorded from the parasylvian cortex in humans. J Neurophysiol 80: 2077–2088.CrossRefGoogle ScholarPubMed
Lenz, F. A., Rios, M., Zirh, A.et al. (1998b) Painful stimuli evoke potentials recorded over the human anterior cingulate gyrus. J Neurophysiol 79: 2231–2234.CrossRefGoogle ScholarPubMed
Lenz, F. A., Krauss, G., Treede, R. D.et al. (2000) Different generators in human temporal-parasylvian cortex account for subdural laser-evoked potentials, auditory-evoked potentials, and event-related potentials. Neurosci Lett 279: 153–156.CrossRefGoogle ScholarPubMed
Lenz, F. A., Ohara, S., Gracely, R. H., Dougherty, P. M., Patel, S. H. (2004) Pain encoding in the human forebrain: binary and analog exteroceptive channels. J Neurosci 24: 6540–6544.CrossRefGoogle ScholarPubMed
Lezak, M. D. (1995) Neuropsychological Assessment. New York: Oxford University Press.Google Scholar
Locke, S., Angevine, J. B., Marin, O. S. M. (1961) Projection of magnocellular medial geniculate nucleus in man. Anat Rec 139: 249–250.Google Scholar
Lorenz, J., Cross, D., Minoshima, S.et al. (2002) A unique representation of heat allodynia in the human brain. Neuron 35: 383–393.CrossRefGoogle ScholarPubMed
Lorenz, J., Minoshima, S., Casey, K. L. (2003) Keeping pain out of mind: the role of the dorsolateral prefrontal cortex in pain modulation. Brain 126: 1079–1091.CrossRefGoogle ScholarPubMed
Lovick, T. A. (1993) Integrated activity of cardiovascular and pain regulatory systems: role in adaptive behavioural responses. Prog Neurobiol 40: 631–644.CrossRefGoogle ScholarPubMed
Lu, S. M., Guido, W., Sherman, S. M. (1992) Effects of membrane voltage on receptive field properties of lateral geniculate neurons in the cat: contributions of the low-threshold Ca2+conductance. J Neurophysiol 68: 2185–2198.CrossRefGoogle ScholarPubMed
Macchi, G., Bentivoglio, M. (1986) The thalamic intralaminar nuclei and the cerebral cortex. In Cerebral Cortex, Vol. 5. Sensory-Motor Areas and Aspects of Cortical Connectivity (Jones, E. G., Peters, A., eds), pp. 355–401. New York: Plenum Press.Google Scholar
Maixner, W., Dubner, R., Bushnell, M. C., Kenshalo, D. R., Oliveras, J. L. (1986) Wide-dynamic-range dorsal horn neurons participate in the encoding process by which monkeys perceive the intensity of noxious heat stimuli. Brain Res 374: 385–388.CrossRefGoogle ScholarPubMed
Mantyh, P. W. (1983a) Connections of midbrain periaqueductal gray in the monkey. I. Ascending efferent projections. J Neurophysiol 49: 567–581.CrossRefGoogle ScholarPubMed
Mantyh, P. W. (1983b) The spinothalamic tract in the primate: a re-examination using wheatgerm agglutinin conjugated to horseradish peroxidase. Neuroscience 9: 847–862.CrossRefGoogle ScholarPubMed
Mark, V. H., Ervin, F. R., Yakovlev, P. I. (1961) Correlation of pain relief, sensory loss and anatomical lesion sites in pain patients treated by stereotactic thalamotomy. Trans Am Neurol Assoc 86: 86–90.Google ScholarPubMed
Marshall, J. (1951) Sensory disturbances in cortical wounds with special reference to pain. J Neurol Neurosurg Psychiatry 14: 187–204.CrossRefGoogle Scholar
Martin, H. F., Manning, J. W. (1971) Thalamic “warming” and “cooling” units responding to cutaneous stimulation. Brain Res 27: 377–381.CrossRefGoogle ScholarPubMed
Martinez-Conde, S., Macknik, S. L., Hubel, D. H. (2000) Microsaccadic eye movements and firing of single cells in the striate cortex of macaque monkeys. Nat Neurosci 3: 251–258.CrossRefGoogle ScholarPubMed
Martinez-Conde, S., Macknik, S. L., Hubel, D. H. (2002) The function of bursts of spikes during visual fixation in the awake primate lateral geniculate nucleus and primary visual cortex. Proc Natl Acad Sci USA 99: 13920–13925.CrossRefGoogle ScholarPubMed
Matthews, M. B. (1985) Clinical diagnosis. In Angina Pectoris (Julian, D. G., ed.), pp. 62–83. Edinburgh: Churchill Livingstone.Google Scholar
Mayer, D. J., Price, D. D., Becker, D. P. (1975) Neurophysiological characterization of the anterolateral spinal cord neurons contributing to pain perception in man. Pain 1: 51–58.CrossRefGoogle ScholarPubMed
McComas, A. J., Wilson, P., Martin-Rodriguez, J., Wallace, C., Hankinson, J. (1970) Properties of somatosensory neurons in the human thalamus. J Neurol Neurosurg Psychiatry 33: 716–717.CrossRefGoogle ScholarPubMed
Mehler, W. R. (1962) The anatomy of the so-called “pain tract” in man: an analysis of the course and distribution of the ascending fibers of the fasciculus anterolateralis. In Basic Research in Paraplegia (French, J. D., Porter, R. W., eds), pp. 26–55. Springfield: Thomas.Google Scholar
Mehler, W. R. (1966a) Some observations on secondary ascending afferent systems in the CNS. In Pain (Knighton, R. S., Dumke, P. R., eds), pp. 11–32. Boston: Brown and Little.Google Scholar
Mehler, W. R. (1966b) The posterior thalamic region in man. Confin Neurol 27: 18–29.CrossRefGoogle ScholarPubMed
Mehler, W. R. (1969) Some neurological species differences – a posteriori. Ann N Y Acad Sci 167: 424–468.CrossRefGoogle Scholar
Mehler, W. R., Feferman, M. E., Nauta, W. H. J. (1960) Ascending axon degeneration following anterolateral cordotomy. An experimental study in the monkey. Brain 83: 718–750.CrossRefGoogle ScholarPubMed
Meller, S. T., Gebhart, G. F. (1992) A critical review of the afferent pathways and the potential chemical mediators involved in cardiac pain. Neuroscience 48: 501–524.CrossRefGoogle ScholarPubMed
Meller, S. T., Pechman, P. S., Gebhart, G. F., Maves, T. J. (1992) Nitric oxide mediates the thermal hyperalgesia produced in a model of neuropathic pain in the rat. Neuroscience 50: 7–10.CrossRefGoogle Scholar
Melzack, R. (1990) Phantom limbs and the concept of a neuromatrix. Trends Neurosci 13: 88–92.CrossRefGoogle ScholarPubMed
Melzack, R., Casey, K. L. (1968) Sensory, motivational, and central control determinants of pain. In The Skin Senses (Kenshalo, D., ed.), pp. 423–443. Springfield: Thomas.Google Scholar
Miltner, W., Johnson, R., Braun, C., Larbig, W. (1989) Somatosensory event related potentials to painful and non-painful stimuli: effects of attention. Pain 38: 303–312.CrossRefGoogle Scholar
Mima, T., Oluwatimilehin, T., Hiraoka, T., Hallett, M. (2001) Transient interhemispheric neuronal synchrony correlates with object recognition. J Neurosci 21: 3942–3948.CrossRefGoogle ScholarPubMed
Minamimoto, T., Kimura, M. (2002) Participation of the thalamic CM-Pf complex in attentional orienting. J Neurophysiol 87: 3090–3101.CrossRefGoogle ScholarPubMed
Mishkin, M. (1979) Analogous neural models for tactual and visual learning. Neuropsych 17: 139–151.CrossRefGoogle ScholarPubMed
Molnar, G. F., Pilliar, A., Lozano, A. M., Dostrovsky, J. O. (2005) Differences in neuronal firing rates in pallidal and cerebellar receiving areas of thalamus in patients with Parkinson's disease, essential tremor, and pain. J Neurophysiol 93: 3094–3101.CrossRefGoogle ScholarPubMed
Montes, C., Magnin, M., Maarrawi, J.et al. (2005) Thalamic thermo-algesic transmission: ventral posterior (VP) complex versus VMpo in the light of a thalamic infarct with central pain. Pain 113: 223–232.CrossRefGoogle ScholarPubMed
Moriarity, J. L., Boatman, D., Krauss, G. L., Storm, P. B., Lenz, F. A. (2001) Human “memories” can be evoked by stimulation of the lateral temporal cortex after ipsilateral medial temporal lobe resection. J Neurol Neurosurg Psychiatry 71: 549–551.CrossRefGoogle ScholarPubMed
Morrow, T. J., Casey, K. L. (1992) State-related modulation of thalamic somatosensory responses in the awake monkey. J Neurophysiol 67: 305–317.CrossRefGoogle ScholarPubMed
Mountcastle, V. B. (1984) Central nervous mechanisms in mechanoreceptive sensibility. In Handbook of Physiology. Sensory Processes (Brookhart, J. M., Mountcastle, V. B., Smith, I. D., Geiger, S. R., eds), p. 789. Bethesda: American Physiological Society.Google Scholar
Mountcastle, V. B., Henneman, E. (1952) The representation of tactile sensibility in the thalamus of the monkey. J Comp Neurol 97: 409–440.CrossRefGoogle ScholarPubMed
Mountcastle, V. B., Lynch, J. C., Georgopoulos, A., Sakata, H., Acuna, C. (1975) Posterior parietal association cortex of the monkey: command functions for operations within extrapersonal space. J Neurophysiol 38: 871–908.CrossRefGoogle ScholarPubMed
Mouraux, A., Guerit, J. M., Plaghki, L. (2003) Non-phase locked electroencephalogram (EEG) responses to CO2 laser skin stimulations may reflect central interactions between partial differential- and C-fibre afferent volleys. Clin Neurophysiol 114: 710–722.CrossRefGoogle ScholarPubMed
Nakano, K., Hasegawa, Y., Tokushige, A.et al. (1990) Topographical projections from the thalamus, subthalamic nucleus and pedunculopontine tegmental nucleus to the striatum in the Japanese monkey, Macaca fuscata. Brain Res 537: 54–68.CrossRefGoogle ScholarPubMed
Nashold, B. S., Wilson, W. P. (1966) Central pain. Observations in man with chronic implanted electrodes in the midbrain tegmentum. Confin Neurol 27: 30–44.CrossRefGoogle ScholarPubMed
Nathan, P. W., Smith, M. C., Cook, A. W. (1986) Sensory effects in man of lesions of the posterior columns and of some other afferent pathways. Brain 109: 1003–1041.CrossRefGoogle ScholarPubMed
Nauta, H. J., Hewitt, E., Westlund, K. N., Willis, W. D. (1997) Surgical interruption of a midline dorsal column visceral pain pathway. Case report and review of the literature. J Neurosurg 86: 538–542.CrossRefGoogle ScholarPubMed
Nauta, H. J., Soukup, V. M., Fabian, R. H.et al. (2000) Punctate midline myelotomy for the relief of visceral cancer pain. J Neurosurg 92: 125–130.Google ScholarPubMed
Noordenbos, W., Wall, P. D. (1976) Diverse sensory functions with an almost totally divided spinal cord. A case of spinal cord transection with preservation of part of one anterolateral quadrant. Pain 2: 185–195.CrossRefGoogle Scholar
North, R. B., Kidd, D. H., Zahurak, M., James, C. S., Long, D. M. (1993) Spinal cord stimulation for chronic intractable pain: experience over two decades. J Neurosurg 32: 384–395.CrossRefGoogle ScholarPubMed
Nowinski, W., Bryan, R. N., Raghavan, R. (1996) The Electronic Clinical Brain Atlas. New York: Thieme.Google Scholar
Obrador, S., Dierssen, G., Ceballos, R. (1957) Consideraciones clinicas, neurologicas y anatomicas sobre el llamado dolor talamico. Acta Neurol Latinoamer 3: 58–77.Google Scholar
Ochoa, J., Torebjork, E. (1983) Sensations evoked by intraneural microstimulation of single mechanoreceptor units innervating the human hand. J Physiol (Lond) 342: 633–654.CrossRefGoogle ScholarPubMed
Ohara, S., Lenz, F. A. (2003) Medial lateral extent of thermal and pain sensations evoked by microstimulation in somatic sensory nuclei of human thalamus. J Neurophysiol 90: 2367–2377.CrossRefGoogle ScholarPubMed
Ohara, S., Ikeda, A., Kunieda, T.et al. (2000) Movement-related change of electrocorticographic activity in human supplementary motor area proper. Brain 123: 1203–1215.CrossRefGoogle ScholarPubMed
Ohara, S., Mima, T., Baba, K.et al. (2001) Increased synchronization of cortical oscillatory activities between human supplementary motor and primary sensorimotor areas during voluntary movements. J Neurosci 21: 9377–9386.CrossRefGoogle ScholarPubMed
Ohara, S., Crone, N. E., Weiss, N., Lenz, F. A. (2004a) Attention to a painful cutaneous laser stimulus modulates electrocorticographic event-related desynchronization in humans. Clin Neurophysiol 115: 1641–1652.CrossRefGoogle ScholarPubMed
Ohara, S., Crone, N. E., Weiss, N., Treede, R. D., Lenz, F. A. (2004b) Amplitudes of laser evoked potential recorded from primary somatosensory, parasylvian and medial frontal cortex are graded with stimulus intensity. Pain 110: 318–328.CrossRefGoogle ScholarPubMed
Ohara, S., Crone, N. E., Weiss, N., Treede, R. D., Lenz, F. A. (2004c) Cutaneous painful laser stimuli evoke responses recorded directly from primary somatosensory cortex in awake humans. J Neurophysiol 91: 2734–2746.CrossRefGoogle ScholarPubMed
Ohara, S., Crone, N. E., Weiss, N.et al. (2004d) Attention to pain is processed at multiple cortical sites in man. Exp Brain Res 156: 513–517.CrossRefGoogle ScholarPubMed
Ohara, S., Weiss, N., Lenz, F. A. (2004e) Microstimulation in the region of the human thalamic principal somatic sensory nucleus evokes sensations like those of mechanical stimulation and movement. J Neurophysiol 91: 736–745.CrossRefGoogle ScholarPubMed
Ohara, S., Crone, N. E., Weiss, N., Lenz, F. A. (2006) Analysis of synchrony demonstrates “pain networks” defined by rapidly switching, task-specific, functional connectivity between pain-related cortical structures. Pain 123: 244–253.CrossRefGoogle ScholarPubMed
Ohara, S., Taghva, A., Kim, J. H., Lenz, F. A. (2007) Spontaneous low threshold spike bursting in awake humans is different in different lateral thalamic nuclei. Exp Brain Res 180: 281–288.CrossRefGoogle ScholarPubMed
Olszewski, J. (1952) The Thalamus of Macaca mulatta. New York: Karger.Google Scholar
Ostrowsky, K., Magnin, M., Ryvlin, P.et al. (2002) Representation of pain and somatic sensation in the human insula: a study of responses to direct electrical cortical stimulation. Cereb Cortex 12: 376–385.CrossRefGoogle ScholarPubMed
Owen, A. M., Morris, R. G., Sahakian, B. J., Polkey, C. E., Robbins, T. W. (1996) Double dissociations of memory and executive functions in working memory tasks following frontal lobe excisions, temporal lobe excisions or amygdalo-hippocampectomy in man. Brain 119: 1597–1615.CrossRefGoogle ScholarPubMed
Palecek, J., Dougherty, P. M., Kim, S. H.et al. (1992a) Responses of spinothalamic tract neurons to mechanical and thermal stimuli in an experimental model of peripheral neuropathy in primates. J Neurophysiol 68: 1951–1966.CrossRefGoogle Scholar
Palecek, J., Paleckova, V., Dougherty, P. M., Carlton, S. M., Willis, W. D. (1992b) Responses of spinothalamic tract cells to mechanical and thermal stimulation of skin in rats with experimental peripheral neuropathy. J Neurophysiol 67: 1562–1573.CrossRefGoogle ScholarPubMed
Papanicolaou, A. C., Loring, D. W., Raz, N., Eisenberg, H. M. (1985) Relationship between stimulus intensity and the P300. Psychophysiology22: 326–329.CrossRefGoogle ScholarPubMed
Pasternak, R. C., Braunwald, E., Sobel, B. E. (1992) Acute myocardial infarction. In Cardiac Disease (Braunwald, E., ed.), pp. 1200–1291. Philadelphia: W.B. Saunders.Google Scholar
Patel, S., Ohara, S., Dougherty, P. M., Gracely, R. H., Lenz, F. A. (2006) Psychophysical elements of place and modality specificity in the thalamic somatic sensory nucleus (ventral caudal, vc) of awake humans. J Neurophysiol 95: 646–659.CrossRefGoogle ScholarPubMed
Penfield, W., Jasper, H. (1954a) Epilepsy and the Functional Anatomy of the Human Brain. Boston: Little Brown.Google Scholar
Penfield, W., Jasper, H. (1954b) Functional localization in the cerebral cortex. In Epilepsy and the Functional Anatomy of the Human Brain (Penfield, W., Jasper, H., eds), pp. 88–102. London: J. & A. Churchill.Google Scholar
Perl, E. R., Whitlock, D. G. (1961) Somatic stimuli exciting spinothalamic projections to thalamic neurons in cat and monkey. Exp Neurol 3: 256–296.CrossRefGoogle ScholarPubMed
Peyron, R., Garcia-Larrea, L., Gregoire, M. C.et al. (1998) Allodynia after lateral-medullary (Wallenberg) infarct: a PET study. Brain 121: 345–356.CrossRefGoogle ScholarPubMed
Peyron, R., Garcia-Larrea, L., Gregoire, M. C.et al. (1999) Haemodynamic brain responses to acute pain in humans: sensory and attentional networks. Brain 122: 1765–1780.CrossRefGoogle ScholarPubMed
Peyron, R., Laurent, B., Garcia-Larrea, L. (2000) Functional imaging of brain responses to pain. A review and meta-analysis. Neurophysiol Clin 30: 263–288.CrossRefGoogle Scholar
Peyron, R., Frot, M., Schneider, F.et al. (2002) Role of operculoinsular cortices in human pain processing: converging evidence from PET, fMRI, dipole modeling, and intracerebral recordings of evoked potentials. Neuroimage 17: 1336–1346.CrossRefGoogle ScholarPubMed
Pfurtscheller, G., Cooper, R. (1975) Frequency dependence of the transmission of the EEG from cortex to scalp. Electroencephalogr Clin Neurophysiol 38: 93–96.CrossRefGoogle Scholar
Picard, N., Strick, P. L. (1996) Motor areas of the medial wall: a review of their location and functional activation. Cereb Cortex 6: 342–353.CrossRefGoogle ScholarPubMed
Picton, T. W. (1992) The P300 wave of the human event-related potential. J Clin Neurophysiol 9: 456–479.CrossRefGoogle ScholarPubMed
Ploghaus, A., Tracey, I., Gati, J. S.et al. (1999) Dissociating pain from its anticipation in the human brain. Science 284: 1979–1981.CrossRefGoogle ScholarPubMed
Ploghaus, A., Narain, C., Beckmann, C. F.et al. (2001) Exacerbation of pain by anxiety is associated with activity in a hippocampal network. J Neurosci 21: 9896–9903.CrossRefGoogle Scholar
Ploner, M., Freund, H. -J., Schnitzler, A. (1999a) Pain affect without pain sensation in a patient with a postcentral lesion. Pain 81: 211–214.CrossRefGoogle Scholar
Ploner, M., Schmitz, F., Freund, H. J., Schnitzler, A. (1999b) Parallel activation of primary and secondary somatosensory cortices in human pain processing. J Neurophysiol 81: 3100–3104.CrossRefGoogle ScholarPubMed
Ploner, M., Schmitz, F., Freund, H. J., Schnitzler, A. (2000) Differential organization of touch and pain in human primary somatosensory cortex. J Neurophysiol 83: 1770–1776.CrossRefGoogle ScholarPubMed
Posner, M. I. (1978) Chronometric Explorations of Mind. Hillsdale: Lawrence Erlbaum Associates.Google Scholar
Posner, M. I. (2000) Attention in cognitive neuroscience: an overview. In The New Cognitive Neurosciences (Gazzaniga, M. S., ed.), pp. 623–632. Cambridge, MA: MIT Press.Google Scholar
Poulos, D. A. (1975) Central processing of peripheral temperature information. In The Somatosensory System (Kornhuber, H. H., ed.), pp. 78–93. Vienna: Thieme.Google Scholar
Poulos, D. A., Benjamin, R. M. (1968) Response of thalamic neurons to thermal stimulation of the tongue. J Neurophysiol 31: 28–43.CrossRefGoogle Scholar
Powell, T. P. S., Cowan, W. M. (1967) The interpretation of the degenerative changes in the intralaminar nuclei of the thalamus. J Neurol Neurosurg Psychiatry 30: 140–153.CrossRefGoogle ScholarPubMed
Price, D. D. (2000) Psychological and neural mechanisms of the affective dimension of pain. Science 288: 1769–1772.CrossRefGoogle ScholarPubMed
Price, D. D., Dubner, R. (1977) Neurons that subserve the sensory-discriminative aspects of pain. Pain 3: 307–338.CrossRefGoogle Scholar
Price, D. D., Mayer, D. J. (1975) Neurophysiological characterization of the anterolateral quadrant neurons subserving pain inM. mulatta. Pain 1: 59–72.Google ScholarPubMed
Price, D. D., Greenspan, J. D., Dubner, R. (2003) Neurons involved in the exteroceptive function of pain. Pain 106: 215–219.CrossRefGoogle Scholar
Pritchard, T., Hamilton, R. B., Norgren, R. (1989) Neural coding of gustatory information in the thalamus of Macaca mulatta. J Neurophysiol 61: 1–14.CrossRefGoogle ScholarPubMed
Procacci, P., Zoppi, M. (1989) Heart pain. In Textbook of Pain (Wall, P. D., Melzack, R., eds), pp. 410–419. Edinburgh: Churchill Livingstone.Google Scholar
Purpura, D. P., Housepian, E. M. (1961) Alterations in corticospinal neuron activity associated with thalamo-cortical recruiting responses. EEG Clin Neurophysiol 13: 365–381.CrossRefGoogle Scholar
Rainville, P., Duncan, G. H., Price, D. D., Carrier, B., Bushnell, M. C. (1997) Pain affect encoded in human anterior cingulate but not somatosensory cortex. Science 277: 968–971.CrossRefGoogle Scholar
Rainville, P., Bushnell, M. C., Duncan, G. H. (2000) PET studies of the subjective experience of pain. In Pain Imaging (Casey, K. L., Bushnell, M. C., eds), pp. 123–156. Seattle: IASP Press.Google Scholar
Ralston, H. J. (2003) Pain, the brain, and the (calbindin) stain. J Comp Neurol 459: 329–333.CrossRefGoogle ScholarPubMed
Ralston, H. J., Ralston, D. D. (1992) The primate dorsal spinothalamic tract: evidence for a specific termination in the posterior nuclei [Po/SG] of the thalamus. Pain 48: 107–118.CrossRefGoogle ScholarPubMed
Ralston, H. J., Ralston, D. D. (1994) Medial lemniscal and spinal projections to the macaque thalamus: an electron microscopic study of differing GABAergic circuitry serving thalamic somatosensory mechanisms. J Neurosci 14: 2485–2502.CrossRefGoogle ScholarPubMed
Ranck, J. B. (1975) Which elements are excited in electrical stimulation of mammalian central nervous system: a review. Brain Res 98: 417–440.CrossRefGoogle ScholarPubMed
Rasche, D., Rinaldi, P. C., Young, R. F., Tronnier, V. M. (2006) Deep brain stimulation for the treatment of various chronic pain syndromes. Neurosurg Focus 21: E8.CrossRefGoogle ScholarPubMed
Rausell, E., Jones, E. G. (1991a) Chemically distinct compartments of the thalamic VPM nucleus in monkeys relay principal and spinal trigeminal pathways to different layers of the somatosensory cortex. J Neurosci 11: 226–237.CrossRefGoogle ScholarPubMed
Rausell, E., Jones, E. G. (1991b) Histochemical and immunocytochemical compartments of the thalamic VPM nucleus in monkeys and their relationship to the representational map. J Neurosci 11: 210–225.CrossRefGoogle ScholarPubMed
Rausell, E., Bae, C. S., Vinuela, A., Huntley, G. W., Jones, E. G. (1992) Calbindin and parvalbumin cells in monkey VPL thalamic nucleus: distribution, laminar cortical projections, and relations to spinothalamic terminations. J Neurosci 12: 4088–4111.CrossRefGoogle ScholarPubMed
Reinagel, P., Godwin, D., Sherman, S. M., Koch, C. (1999) Encoding of visual information by LGN bursts. J Neurophysiol 81: 2558–2569.CrossRefGoogle ScholarPubMed
Richardson, D. E. (1967) Thalamotomy for intractable pain. Confin Neurol 29: 139–145.CrossRefGoogle ScholarPubMed
Richardson, D. E. (1974) Thalamotomy for control of chronic pain. Acta Neurochir (Wien) Suppl 21: 77–88.Google ScholarPubMed
Rinaldi, P. C., Young, R. F., Albe-Fessard, D. G., Chodakiewitz, J. (1991) Spontaneous neuronal hyperactivity in the medial and intralaminar thalamic nuclei in patients with deafferentation pain. J Neurosurg 74: 415–421.CrossRefGoogle ScholarPubMed
Rios, M., Treede, R., Lee, J., Lenz, F. A. (1999) Direct evidence of nociceptive input to human anterior cingulate gyrus and parasylvian cortex. Curr Rev Pain 3: 256–264.CrossRefGoogle ScholarPubMed
Rodriguez, E., George, N., Lachaux, J. P.et al. (1999) Perception's shadow: long-distance synchronization of human brain activity. Nature 397: 430–433.CrossRefGoogle ScholarPubMed
Romo, R., Salinas, E. (2003) Flutter discrimination: neural codes, perception, memory and decision making. Nat Rev Neurosci 4: 203–218.CrossRefGoogle ScholarPubMed
Rosen, S. D., Paulesu, E., Frith, C. D.et al. (1994) Central nervous pathways mediating angina pectoris. Lancet 344: 147–150.CrossRefGoogle ScholarPubMed
Roy, J. P., Clercq, M., Steriade, M., Deschenes, M. (1984) Electrophysiology of neurons of lateral thalamic nuclei in cat: mechanisms of long-lasting hyperpolarizations. J Neurophysiol 51: 1220–1235.CrossRefGoogle ScholarPubMed
Russell, W. R. (1945) Transient disturbances following gunshot wounds of the head. Brain 68: 79–97.CrossRefGoogle Scholar
Sadikot, A. F., Parent, A., Francois, C. (1990) The centre median and parafascicular thalamic nuclei project respectively to the sensorimotor and associative-limbic territories in the squirrel monkey. Brain Res 510: 161–165.CrossRefGoogle ScholarPubMed
Sadikot, A. F., Parent, A., Francois, C. (1992a) Efferent connections of the centromedian and parafascicular thalamic nuclei in the squirrel monkey: a PHA-L study of subcortical projections. J Comp Neurol 315: 137–159.CrossRefGoogle ScholarPubMed
Sadikot, A. F., Parent, W., Smith, Y., Bolam, J. P. (1992b) Efferent connections of the centromedian and parafascicular thalamic nuclei in the squirrel monkey: a light and electron microscopic study of the thalamostriatal projection in relation to striatal homogeneity. J Comp Neurol 320: 228–242.CrossRefGoogle Scholar
Salinas, E., Hernandez, A., Zainos, A., Romo, R. (2000) Periodicity and firing rate as candidate neural codes for the frequency of vibrotactile stimuli. J Neurosci 20: 5503–5515.CrossRefGoogle ScholarPubMed
Sano, K. (1979) Stereotaxic thalamolaminotomy and posteromedial hypothalamotomy for the relief of intractable pain. In Advances in Pain Research and TherapyVol. 2 (Bonica, J. J., Ventrafridda, V., eds), pp. 475–485. New York: Raven Press.Google Scholar
Schaltenbrand, G., Bailey, P. (1959) Introduction to Stereotaxis with an Atlas of the Human Brain. Stuttgart: Thieme.Google Scholar
Schell, G. R., Strick, P. L. (1984) The origin of thalamic inputs to the arcuate premotor and supplementary motor areas. J Neurosci 4: 539–560.CrossRefGoogle ScholarPubMed
Schlereth, T., Baumgartner, U., Magerl, W., Stoeter, P., Treede, R. D. (2003) Left-hemisphere dominance in early nociceptive processing in the human parasylvian cortex. Neuroimage 20: 441–454.CrossRefGoogle ScholarPubMed
Schmahmann, J. D., Leifer, D. (1992) Parietal pseudothalamic pain syndrome. Clinical features and anatomic correlates. Arch Neurol 49: 1032–1037.CrossRefGoogle ScholarPubMed
Sevostianov, A., Fromm, S., Nechaev, V., Horwitz, B., Braun, A. (2002) Effect of attention on central auditory processing: an fMRI study. Int J Neurosci 112: 587–606.CrossRefGoogle Scholar
Sherman, S. M., Guillery, R. W. (2001) Exploring the Thalamus and its Role in Cortical Function. New York: Oxford University Press.Google Scholar
Siedenberg, R., Treede, R. D. (1996) Laser-evoked potentials: exogenous and endogenous components. Electroencephalogr Clin Neurophysiol 100: 240–249.CrossRefGoogle ScholarPubMed
Sikes, R. W., Vogt, B. A. (1992) Nociceptive neurons in area 24 of rabbit cingulate cortex. J Neurophysiol 68: 1720–1732.CrossRefGoogle ScholarPubMed
Sillery, E., Bittar, R. G., Robson, M. D.et al. (2005) Connectivity of the human periventricular-periaqueductal gray region. J Neurosurg 103: 1030–1034.CrossRefGoogle ScholarPubMed
Singer, W. (1993) Synchronization of cortical activity and its putative role in information processing and learning. Annu Rev Physiol 55: 349–374.CrossRefGoogle Scholar
Singer, W. (1999) Neuronal synchrony: a versatile code for the definition of relations?Neuron 24: 49–25.CrossRefGoogle ScholarPubMed
Singer, W., Gray, C. M. (1995) Visual feature integration and the temporal correlation hypothesis. Annu Rev Neurosci 18: 555–586.CrossRefGoogle ScholarPubMed
Smith, M. E., Halgren, E., Sokolik, M. (1990) The intracranial topography of the P3 event-related potential elicited during auditory oddball. EEG Clin Neurophysiol 76: 235–248.CrossRefGoogle ScholarPubMed
Smith, Y., Parent, A. (1986) Differential connections of the caudate nucleus and putamen in the squirrel monkey (Saimiri sciureus). Neuroscience 18: 347–371.CrossRefGoogle Scholar
Spiegel, E. A., Wycis, H. T. (1953) Mesencephalotomy in treatment of “intractable” facial pain. AMA Arch Neurol Psychiatry 69: 1–12.CrossRefGoogle ScholarPubMed
Steriade, M., Deschenes, M. (1984) The thalamus as a neuronal oscillator. Brain Res Rev 8: 1–63.CrossRefGoogle Scholar
Steriade, M., Llinas, R. R. (1988) The functional states of the thalamus and the associated neuronal interplay. Physiol Rev 68: 649–742.CrossRefGoogle ScholarPubMed
Steriade, M., Jones, E. G., Llinas, R. R. (1990) Thalamic Oscillations and Signaling. New York: John Wiley & Sons.Google Scholar
Steriade, M., Jones, E. G., McCormick, D. A. (1997) Thalamus Organisation and Function. Amsterdam: Elsevier.Google Scholar
Strick, P. L. (1975) Multiple sources of thalamic input to the primate motor cortex. J Neurophysiol 88: 372–377.Google ScholarPubMed
Strigo, I. A., Duncan, G. H., Boivin, M., Bushnell, M. C. (2003) Differentiation of visceral and cutaneous pain in the human brain. J Neurophysiol 89: 3294–3303.CrossRefGoogle ScholarPubMed
Sugita, K., Doi, T. (1967) The effects of electrical stimulation on the motor and sensory system during stereotaxic operations. Confin Neurol 29: 224–229.CrossRefGoogle ScholarPubMed
Surmeier, D. J., Honda, C. N., Willis, W. D. (1988) Natural groupings of primate spinothalamic neurons based on cutaneous stimulation. Physiological and anatomical features. J Neurophysiol 59: 833–860.CrossRefGoogle ScholarPubMed
Taguchi, H., Masuda, T., Yokota, T. (1987) Cardiac sympathetic afferent input onto neurons in nucleus ventralis posterolateralis in cat thalamus. Brain Res 436: 240–252.CrossRefGoogle ScholarPubMed
Talbot, J. D., Marrett, S., Evans, A. C.et al. (1991) Multiple representations of pain in human cerebral cortex. Science 251: 1355–1358.CrossRefGoogle ScholarPubMed
Talbot, J. D., Villemure, J. G., Bushnell, M. C., Duncan, G. H. (1995) Evaluation of pain perception after anterior capsulotomy: a case report. Somatosens Mot Res 12: 115–126.CrossRefGoogle ScholarPubMed
Tallon-Baudry, C., Bertrand, O., Fischer, C. (2001) Oscillatory synchrony between human extrastriate areas during visual short-term memory maintenance. J Neurosci 21: RC177.CrossRefGoogle ScholarPubMed
Tanji, J. (1994) The supplementary motor area in the cerebral cortex. Neurosci Res 19: 251–268.CrossRefGoogle ScholarPubMed
Tarkka, I. M., Stokic, D. S. (1998) Source localization of P300 from oddball, single stimulus, and omitted-stimulus paradigms. Brain Topogr 11: 141–151.CrossRefGoogle ScholarPubMed
Tarkka, I. M., Treede, R. D. (1993) Equivalent electrical source analysis of pain-related somatosensory evoked potentials elicited by a CO2 laser. J Clin Neurophysiol 10: 513–519.CrossRefGoogle ScholarPubMed
Tarkka, I. M., Stokic, D. S., Basile, L. F., Papanicolaou, A. C. (1995) Electric source localization of the auditory P300 agrees with magnetic source localization. Electroencephalogr Clin Neurophysiol 96: 538–545.CrossRefGoogle ScholarPubMed
Tarkka, I. M., Micheloyannis, S., Stokic, D. S. (1996) Generators for human P300 elicited by somatosensory stimuli using multiple dipole source analysis. Neuroscience 75: 275–287.CrossRefGoogle ScholarPubMed
Tasker, R. R. (1976) The human spinothalamic tract. Stimulation mapping in spinal cord and brainstem. In Advances in Pain Research and Therapy (Bonica, J. J., Albe-Fessard, D., eds), pp. 251–257. New York: Raven Press.Google Scholar
Tasker, R. R. (1977) Open cordotomy. Prog Neurol Surg 8: 1–14.Google Scholar
Tasker, R. R. (1992) Mesencephalotomy for cancer pain. J Neurosurg 76: 1052–1053.Google ScholarPubMed
Tasker, R. R., Organ, L. W., Hawrylyshyn, P. (1982) The Thalamus and Midbrain in Man: A Physiologic Atlas using Electrical Stimulation. Springfield: Thomas.Google Scholar
Telford, C. (1931) Refractory phase of voluntary and associative responses. J Exp Psychol 14: 1–35.CrossRefGoogle Scholar
Timmermann, L., Ploner, M., Haucke, K.et al. (2001) Differential coding of pain intensity in the human primary and secondary somatosensory cortex. J Neurophysiol 86: 1499–1503.CrossRefGoogle ScholarPubMed
Tobias, T. J. (1975) Afferents to prefrontal cortex from the thalamic mediodorsal nucleus in the rhesus monkey. Brain Res 83: 191–212.CrossRefGoogle ScholarPubMed
Tomberg, C., Desmedt, J. E., Ozaki, I., Nguyen, T. H., Chalklin, V. (1989) Mapping somatosensory evoked potentials to finger stimulation at intervals of 450 to 4000 msec and the issue of habituation when assessing early cognitive components. Electroencephalogr Clin Neurophysiol 74: 347–358.CrossRefGoogle ScholarPubMed
Tommerdahl, M., Delemos, K. A., Vierck, C. J., Favorov, O. V., Whitsel, B. L. (1996) Anterior parietal cortical response to tactile and skin-heating stimuli applied to the same skin site. J Neurophysiol 75: 2662–2670.CrossRefGoogle ScholarPubMed
Tommerdahl, M., Delemos, K. A., Favorov, O. V.et al. (1998) Response of anterior parietal cortex to different modes of same-site skin stimulation. J Neurophysiol 80: 3272–3283.CrossRefGoogle ScholarPubMed
Tommerdahl, M., Favorov, O., Whitsel, B. L. (2002) Optical imaging of intrinsic signals in somatosensory cortex. Behav Brain Res 135: 83–91.CrossRefGoogle ScholarPubMed
Torebjörk, H. E., Schady, W., Ochoa, J. (1984) Sensory correlates of somatic afferent fibre activation. Hum Neurobiol 3: 15–20.Google ScholarPubMed
Torquati, K., Pizzella, V., Della, P. S.et al. (2002) Comparison between SI and SII responses as a function of stimulus intensity. Neuroreport 13: 813–819.CrossRefGoogle ScholarPubMed
Towell, A. D., Boyd, S. G. (1993) Sensory and cognitive components of the CO2 laser evoked cerebral potential. EEG Clin Neurophysiol 88: 237–239.Google ScholarPubMed
Tsubokawa, T., Moriyasu, N. (1975) Follow-up results of centre median thalamotomy for relief of intractable pain. A method of evaluating the effectiveness during operation. Confin Neurol 37: 280–284.CrossRefGoogle ScholarPubMed
Vallbo, A. B. (1981) Sensations evoked from the glabrous skin of the human hand by electrical stimulation of unitary mechanosensitive afferents. Brain Res 215: 359–363.CrossRefGoogle ScholarPubMed
Vallbo, A. B., Olsson, K. A., Westberg, K. G., Clark, F. J. (1984) Microstimulation of single tactile afferents from the human hand. Sensory attributes related to unit type and properties of receptive fields. Brain 107: 727–749.CrossRefGoogle ScholarPubMed
Buren, J. M., Borke, R. C. (1972) Variations and Connections of the Human Thalamus. Berlin: Springer Verlag.CrossRefGoogle Scholar
Werf, Y. D., Witter, M. P., Groenewegen, H. J. (2002) The intralaminar and midline nuclei of the thalamus. Anatomical and functional evidence for participation in processes of arousal and awareness. Brain Res Brain Res Rev 39: 107–140.CrossRefGoogle ScholarPubMed
Vestergaard, K., Nielsen, J., Andersen, G.et al. (1995) Sensory abnormalities in consecutive unselected patients with central post-stroke pain. Pain 61: 177–186.CrossRefGoogle ScholarPubMed
Vierck, C. J. (1998) Impaired detection of repetitive stimulation following interruption of the dorsal spinal column in primates. Somatosens Mot Res 15: 157–163.Google ScholarPubMed
Villanueva, L., Cliffer, K. D., Sorkin, L. S., Bars, D., Willis, W. D. (1990) Convergence of heterotopic nociceptive information onto neurons of caudal medullary reticular formation in monkey (Macaca fascicularis). J Neurophysiol 63: 1118–1127.CrossRefGoogle Scholar
Vogel, H., Port, J. D., Lenz, F. A.et al. (2003) Dipole source analysis of laser-evoked subdural potentials recorded from parasylvian cortex in humans. J Neurophysiol 89: 3051–3060.CrossRefGoogle ScholarPubMed
Vogt, B. A., Derbyshire, S., Jones, A. K. (1996) Pain processing in four regions of human cingulate cortex localized with co-registered PET and MR imaging. Eur J Neurosci 8: 1461–1473.CrossRefGoogle ScholarPubMed
Waberski, T. D., Kreitschmann-Andermahr, I., Kawohl, W.et al. (2001) Spatio-temporal source imaging reveals subcomponents of the human auditory mismatch negativity in the cingulum and right inferior temporal gyrus. Neurosci Lett 308: 107–110.CrossRefGoogle ScholarPubMed
Wade, J. B., Dougherty, L. M., Archer, C. R., Price, D. D. (1996) Assessing the stages of pain processing: a multivariate analytical approach. Pain 68: 157–167.CrossRefGoogle ScholarPubMed
Wagner, K. J., Willoch, F., Kochs, E. F.et al. (2001) Dose-dependent regional cerebral blood flow changes during remifentanil infusion in humans: a positron emission tomography study. Anesthesiology 94: 732–739.CrossRefGoogle ScholarPubMed
Walker, A. E. (1943) Central representation of pain. Res Publ Assoc Res Nerv Ment Dis 23: 63–85.Google Scholar
Wall, P. D. (1970) The sensory and motor role of impulses travelling in the dorsal columns towards cerebral cortex. Brain 93: 505–524.CrossRefGoogle ScholarPubMed
Wall, P. D., McMahon, S. B. (1985) Microneuronography and its relation to perceived sensation. A critical review. Pain 21: 209–229.CrossRefGoogle ScholarPubMed
Wall, P. D., Noordenbos, W. (1977) Sensory functions which remain in man after complete transection of dorsal columns. Brain 100: 641–653.CrossRefGoogle ScholarPubMed
Westlund, K. N., Craig, A. D. (1996) Association of spinal lamina I projections with brainstem catecholamine neurons in the monkey. Exp Brain Res 110: 151–162.CrossRefGoogle ScholarPubMed
White, J. C., Sweet, W. H. (1969) Pain and the Neurosurgeon; A Forty-Year Experience. Springfield: Charles C Thomas.Google Scholar
Wiberg, M., Westman, J., Blomqvist, A. (1987) Somatosensory projection to the mesencephalon: an anatomical study in the monkey. J Comp Neurol 264: 92–117.CrossRefGoogle ScholarPubMed
Willis, W. D. (1985) The Pain System. Basel: Karger.Google ScholarPubMed
Willis, W. D., Coggeshall, R. E. (1991) Sensory Mechanisms of the Spinal Cord. New York: Plenum Press.CrossRefGoogle Scholar
Willis, W. D., Trevino, D. L., Coulter, J. D., Maunz, R. A. (1974) Responses of primate spinothalamic tract neurons to natural stimulation of hindlimb. J Neurophysiol 37: 358–372.CrossRefGoogle ScholarPubMed
Willis, W. D., Al Chaer, E. D., Quast, M. J., Westlund, K. N. (1999) A visceral pain pathway in the dorsal column of the spinal cord. Proc Natl Acad Sci USA 96: 7675–7679.CrossRefGoogle ScholarPubMed
Willis, W. D., Zhang, X., Honda, C. N., Giesler, G. J. (2001) Projections from the marginal zone and deep dorsal horn to the ventrobasal nuclei of the primate thalamus. Pain 92: 267–276.CrossRefGoogle ScholarPubMed
Woods, D. L., Courchesne, E. (1986) The recovery functions of auditory event-related potentials during split-second discriminations. Electroencephalogr Clin Neurophysiol 65: 304–315.CrossRefGoogle ScholarPubMed
Yarnitsky, D., Sprecher, E. (1994) Thermal testing: normative data and repeatability for various test algorithms. J Neurol Sci 125: 39–45.CrossRefGoogle ScholarPubMed
Yezierski, R. P. (1988) Spinomesencephalic tract: projections from the lumbosacral spinal cord of the rat, cat, and monkey. J Comp Neurol 267: 131–146.CrossRefGoogle ScholarPubMed
Yezierski, R. P., Schwartz, R. H. (1986) Response and receptive-field properties of spinomesencephalic tract cells in the cat. J Neurophysiol 55: 76–96.CrossRefGoogle ScholarPubMed
Yezierski, R. P., Sorkin, L. S., Willis, W. D. (1987) Response properties of spinal neurons projecting to midbrain or midbrain-thalamus in the monkey. Brain Res 437: 165–170.CrossRefGoogle ScholarPubMed
Young, R. F. (1989) Brain and spinal stimulation: how and to whom!Clin Neurosurg 35: 429–447.Google ScholarPubMed
Young, R. F., Chambi, V. I. (1987) Pain relief by electrical stimulation of the periaqueductal and periventricular gray matter. Evidence for a non-opioid mechanism. J Neurosurg 66: 364–371.CrossRefGoogle ScholarPubMed
Young, R. F., Kroening, R., Fulton, W., Feldman, R. A., Chambi, I. (1985) Electrical stimulation of the brain in treatment of chronic pain. Experience over 5 years. J Neurosurg 62: 389–396.CrossRefGoogle ScholarPubMed
Zaslansky, R., Sprecher, E., Tenke, C. E., Hemli, J. A., Yarnitsky, D. (1995) The P300 in pain evoked potentials. Pain 66: 39–49.CrossRefGoogle Scholar
Zaslansky, R., Sprecher, E., Katz, Y.et al. (1996) Pain-evoked potentials: what do they really measure?EEG Clin Neurophysiol 100: 384–392.Google ScholarPubMed
Zhang, X., Wenk, H. N., Honda, C. N., Giesler, G. J. (2000) Locations of spinothalamic tract axons in cervical and thoracic spinal cord white matter in monkeys. J Neurophysiol 83: 2869–2880.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×