Skip to main content Accessibility help
×
Home
  • Print publication year: 2010
  • Online publication date: October 2010

6 - Pain modulatory systems

Summary

Introduction

It is well known that much of the sensory input to the central nervous system can be modulated by centrifugally organized control systems that originate in the central nervous system (Head and Holmes, 1911; Hagbarth, 1960). The control mechanisms can be excitatory or inhibitory processes that may occur in the periphery or within the central nervous system. Inhibition can be at pre- and/or postsynaptic sites (Fig. 6.1(I)). Presynaptic inhibition at the first central synapse of a sensory pathway has the potential advantage of being able to reduce sensory input prior to wide dissemination of that sensory input within the central nervous system through the activation of interneuronal networks and multiple ascending pathways, for example, in the spinal cord (Schmidt, 1973; see Chapter 3).

Pre- and postsynaptic inhibition can have somewhat different effects on the stimulus-response curves of second-order sensory neurons, as shown in Fig. 6.1(II). Postsynaptic inhibition involves inhibitory postsynaptic potentials that sum with excitatory postsynaptic potentials (Fig. 6.1(IIA)). If there is a linear summation, the stimulus-response curve will be shifted to the right in a parallel fashion (Carstens et al., 1980). However, if the IPSP is generated in a membrane area near that in which the EPSP is generated, the excitatory current may be shunted and the slope of the stimulus-response curve reduced, causing a reduction in the gain of synaptic transmission (Fig. 6.1(IIB)). A similar reduction in gain can be produced by presynaptic inhibition.

Related content

Powered by UNSILO
References
Akaike, A., Shibata, T., Satoh, M., Takagi, H. (1978) Analgesia induced by microinjection of morphine into and electrical stimulation of the nucleus reticularis paragigantocellularis of the rat medulla oblongata. Neuropharmacology 17: 775–778.
Akil, H., Liebeskind, J. C. (1975) Monoaminergic mechanisms of stimulation-produced analgesia. Brain Res 84: 279–296.
Ammons, W. S., Blair, R. W., Foreman, R. D. (1984) Raphe magnus inhibition of primate T1–T4 spinothalamic cells with cardiopulmonary visceral input. Pain 20: 247–260.
Basbaum, A. I., Fields, H. L. (1978) Endogenous pain control mechanisms: review and hypothesis. Ann Neurol 4: 451–462.
Basbaum, A. I., Fields, H. L. (1979) The origin of descending pathways in the dorsolateral funiculus of the cord of the cat and rat: further studies on the anatomy of pain modulation. J Comp Neurol 187: 513–532.
Basbaum, A. I., Fields, H. L. (1984) Endogenous pain control systems: brainstem spinal pathways and endorphin circuitry. Ann Rev Neurosci 7: 309–338.
Basbaum, A. I., Clanton, C. H., Fields, H. L. (1978) Three bulbospinal pathways from the rostral medulla of the cat: an autoradiographic study of pain modulating systems. J Comp Neurol 178: 209–224.
Beall, J. E., Martin, R. F., Applebaum, A. E., Willis, W. D. (1976) Inhibition of primate spinothalamic tract neurons by stimulation in the region of the nucleus raphe magnus. Brain Res 114: 328–333.
Beall, J. E., Applebaum, A. E., Foreman, R. D., Willis, W. D. (1977) Spinal cord potentials evoked by cutaneous afferents in the monkey. J Neurophysiol 40: 199–211.
Beecher, H. K. (1959) Measurement of Subjective Responses. New York: Oxford University Press.
Behbehani, M. M., Fields, H. L. (1979) Evidence that an excitatory connection between the periaqueductal grey and nucleus raphe magnus mediates stimulation-produced analgesia. Brain Res 170: 85–93.
Beitz, A. J. (1982) The organization of afferent projections to the midbrain periaqueductal grey of the rat. Neuroscience 7: 133–159.
Besson, J. M., Oliveras, J. L., Chaouch, A., Rivot, J. P. (1981) Role of the raphe nuclei in stimulation producing analgesia. Adv Exp Med Biol 133: 153–176.
Bodnar, R. J., Kelly, D. D., Spiaggia, A., Ehrenberg, C., Glusman, M. (1978) Dose-dependent reductions by naloxone of analgesia induced by cold-water stress. Pharmacol Biochem Behav 8: 667–672.
Bodnar, R. J., Kelly, D. D., Brutus, M., Glusman, M. (1980) Stress-induced analgesia: neural and hormonal determinants. Neurosci Biobehav Rev 4: 87–100.
Bowker, R. M., Westlund, K. N., Coulter, J. D. (1981) Origins of serotonergic projections to the spinal cord in rat: an immunocytochemical-retrograde transport study. Brain Res 226: 181–199.
Brennan, T. J., Oh, U. T., Girardot, M. N., Ammons, W. S., Foreman, R. D. (1987) Inhibition of cardiopulmonary input to thoracic spinothalamic tract cells by stimulation of the subcoeruleus-parabrachial region in the primate. J Auton Nerv Syst 18: 61–72.
Brown, A. G. (1970) Descending control of the spinocervical tract in decerebrate cats. Brain Res 17: 152–155.
Brown, A. G. (1971) Effects of descending impulses on transmission through the spinocervical tract. J Physiol 219: 103–125.
Brown, A. G., Short, A. D. (1974) Effects from the somatic sensory cortex on transmission through the spinocervical tract. Brain Res 74: 338–341.
Brown, A. G., Hamann, W. C., Martin, H. F. (1973a) Descending influences on spinocervical tract cell discharges evoked by non-myelinated cutaneous afferent nerve fibres. Brain Res 53: 222–226.
Brown, A. G., Kirk, E. J., Martin, H. F. (1973b) Descending and segmental inhibition of transmission through the spinocervical tract. J Physiol 230: 689–705.
Brown, A. G., Coulter, J. D., Rose, P. K., Short, A. D., Snow, P. J. (1977) Inhibition of spinocervical tract discharges from localized areas of the sensorimotor cortex in the cat. J Physiol 264: 1–16.
Carlton, S. M., Honda, C. N., Willcockson, W. S.et al. (1991) Descending adrenergic input to the primate spinal cord and its possible role in modulation of spinothalamic cells. Brain Res 543: 77–90.
Carstens, E. (1988) Inhibition of rat spinothalamic tract neuronal responses to noxious skin heating by stimulation in midbrain periaqueductal gray or lateral reticular formation. Pain 33: 215–224.
Carstens, E., Klumpp, D., Zimmermann, M. (1980) Differential inhibitory effects of medial and lateral midbrain stimulation on neuronal discharges to noxious skin heating in the cat. J Neurophysiol 43: 332–342.
Cervero, F., Wolstencroft, J. H. (1984) A positive feedback loop between spinal cord nociceptive pathways and antinociceptive areas of the cat's brain stem. Pain 20: 125–138.
Cervero, F., Iggo, S. A., Molony, V. (1977) Responses of spinocervical tract neurones to noxious stimulation of the skin. J Physiol 267: 537–558.
Chandler, M. J., Garrison, D. W., Brennan, T. J., Foreman, R. D. (1989) Effects of chemical and electrical stimulation of the midbrain on feline T2–T6 spinoreticular and spinal cell actvitiy evoked by cardiopulmonary afferent input. Brain Res 496: 148–164.
Coulter, J. D., Maunz, R. A., Willis, W. D. (1974) Effects of stimulation of sensorimotor cortex on primate spinothalamic neurons. Brain Res 65: 351–356.
Creed, R. S., Denny-Brown, D., Eccles, J. C., Liddell, E. G. T., Sherrington, C. S. (1932) Reflex Activity of the Spinal Cord. Oxford: Oxford University Press.
Cui, M., McAdoo, D. J., Willis, W. D. (1999) Periaqueductal gray stimulation-induced inhibition of nociceptive dorsal horn neurons in rats is associated with the release of norepinephrine, serotonin and amino acids. JPET 289: 868–876.
D'Amour, F. E., Smith, D. L. (1941) A method for determining loss of pain sensation. JPET 72: 74–79.
Dostrovsky, J. O. (1984) Brainstem influences on transmission of somatosensory information in the spinocervicothalamic pathway. Brain Res 292: 229–238.
Dubuisson, D., Dennis, S. G. (1977) The formalin test: a quantitative study of the analgesic effects of morphine, mepyridine and brain stem stimulation in rats and cats. Pain 4: 161–174.
Eccles, R. M., Lundberg, A. (1959a) Synaptic actions in motoneurones by afferents which may evoke the flexion reflex. Arch Ital Biol 97: 199–221.
Eccles, R. M., Lundberg, A. (1959b) Supraspinal control of interneurones mediating spinal reflexes. J Physiol 147: 565–584.
Engberg, I., Lundberg, A., Ryall, R. W. (1968) Reticulospinal inhibition of transmission in reflex pathways. J Physiol 194: 201–223.
Fleetwood-Walker, S. M., Hope, P. J., Mitchell, R. (1988) Antinociceptive actions of descending dopaminergic tracts on cat and rat dorsal horn somatosensory neurons. J Physiol 399: 335–348.
Fetz, E. E. (1968) Pyramidal tract effects on interneurons in the cat lumbar dorsal horn. J Neurophysiol 31: 69–80.
Fields, H. L., Basbaum, A. I. (1978) Brainstem control of spinal pain transmission neurons. Annu Rev Physiol 40: 217–248.
Fields, H. L., Basbaum, A. I., Clanton, C. H., Anderson, S. D. (1977) Nucleus raphe magnus inhibition of spinal cord dorsal horn neurons. Brain Res 126: 441–453.
Gerhart, K. D., Wilcox, T. K., Chung, J. M., Willis, W. D. (1981a) Inhibition of nociceptive and nonnociceptive responses of primate spinothalamic cells by stimulation in medial brain stem. J Neurophysiol 45: 121–136.
Gerhart, K. D., Yezierski, R. P., Wilcox, T. K., Grossman, A. E., Willis, W. D. (1981b) Inhibition of primate spinothalamic tract neurons by stimulation in ipsilateral or contralateral ventral posterior lateral (VPLc) thalamic nucleus. Brain Res 229: 514–519.
Gerhart, K. D., Yezierski, R. P., Fang, Z. R., Willis, W. D. (1983) Inhibition of primate spinothalamic tract neurons by stimulation in ventral posterior lateral (VPLc) thalamic nucleus: possible mechanisms. J Neurophysiol 49: 406–423.
Gerhart, K. D., Yezierski, R. P., Wilcox, T. K., Willis, W. D. (1984) Inhibition of primate spinothalamic tract neurons by stimulation in periaqueductal gray or adjacent midbrain reticular formation. J Neurophysiol 51: 450–466.
Giesler, G. J., Gerhart, K. D., Yezierski, R. P., Wilcox, T. K., Willis, W. D. (1981) Postsynaptic inhibition of primate spinothalamic neurons by stimulation in nucleus raphe magnus. Brain Res 204: 184–188.
Girardot, M. N., Brennan, T. J., Ammons, W. S., Foreman, R. D. (1987) Effects of stimulating the subcoeruleus-parabrachial region on the non-noxious and noxious responses of T2–T4 spinothalamic tract neurons in the primate. Brain Res 409: 19–30.
Gray, B. G., Dostrovsky, J. O. (1983) Descending inhibitory influences from periaqueductal gray, nucleus raphe magnus, and adjacent reticular formation. I. Effects on lumbar spinal cord nociceptive and nonnociceptive neurons. J Neurophysiol 49: 932–947.
Gybels, J. M., Sweet, W. H. (1989) Neurosurgical Treatment of Persistent Pain. Pain and Headache (Gildenberg, P. L., Series ed.). Basel: Karger.
Haber, L. H., Martin, R. F., Chatt, A. B., Willis, W. D. (1978) Effects of stimulation in nucleus reticularis gigantocellularis on the activity of spinothalamic tract neurons in the monkey. Brain Res 153: 163–168.
Haber, L. H., Martin, R. F., Chung, J. M., Willis, W. D. (1980) Inhibition and excitation of primate spinothalamic tract neurons by stimulation in region of nucleus reticularis gigantocellularis. J Neurophysiol 43: 1578–1593.
Haber, L. H., Moore, B. D., Willis, W. D. (1982) Electrophysiological response properties of spinoreticular neurons in the monkey. J Comp Neurol 207: 75–84.
Hagbarth, K. E. (1960) Centrifugal mechanisms of sensory control. Erg Biol 22: 47–66.
Hammond, D. L., Yaksh, T. L. (1984) Antagonism of stimulation-produced antinociception by intrathecal administration of methysergide or phentolamine. Brain Res 298: 329–337.
Hammond, D. L., Tyce, G. M., Yaksh, T. L. (1985) Efflux of 5-hydroxytryptamine and noradrenaline into spinal cord perfusates during stimulation of the rat medulla. J Physiol 359: 151–162.
Hargreaves, K., Dubner, R., Brown, F., Flores, C., Joris, J. (1988) A new and sensitive method for measuring thermal nociception in cutaneous hyperalgesia. Pain 32: 77–88.
Harrison, P. J., Jankowska, E. (1984) An intracellular study of descending and non-cutaneous afferent input to spinocervical tract neurons in the cat. J Physiol 356: 245–261.
Hayes, R. L., Price, D. D., Ruda, M. A., Dubner, R. (1979) Suppression of nociceptive responses in the primate by electrical stimulation of the brain or morphine administration: behavioral and electrophysiological comparisons. Brain Res 167: 417–421.
Head, H., Holmes, G. (1911) Sensory disturbances from cerebral lesions. Brain 34: 102–254.
Holmqvist, B., Lundberg, A. (1959) On the organization of the supraspinal inhibitory control of interneurones of various spinal reflex arcs. Arch Ital Biol 97: 340–356.
Holmqvist, B., Lundberg, A. (1961) Differential supraspinal control of synaptic actions evoked by volleys in the flexion reflex afferents in alpha motoneurones. Acta Physiol Scand (Suppl 186) 54: 1–51.
Holmqvist, B., Lundberg, A., Oscarsson, O. (1960) Supraspinal inhibitory control of transmission to three ascending spinal pathways influenced by flexion reflex afferents. Arch Ital Biol 98: 60–80.
Hong, S. K., Kniffki, K. D., Mense, S., Schmidt, R. F., Wendisch, M. (1979) Descending influences on the responses of spinocervical tract neurones to chemical stimulation of fine muscle afferents. J Physiol 290: 129–140.
Hori, Y., Lee, K. H., Chung, J. M., Endo, K., Willis, W. D. (1984) The effects of small doses of barbiturate on the activity of primate nociceptive tract cells. Brain Res 307: 9–15.
Hosobuchi, Y., Adams, J. E., Linchitz, R. (1977) Pain relief by electrical stimulation of the central gray matter in humans and its reversal by naloxone. Science 197: 183–186.
Hosobuchi, Y., Rossier, J., Bloom, F. E., Guillemin, R. (1979) Stimulation of human periaqueductal gray for pain relief increases immunoreactive β-endorphin in ventricular fluid. Science 203: 279–281.
Jones, S. L. (1992) Descending control of nociception. In The Initial Processing of Pain and Its Descending Control: Spinal and Trigeminal Systems (Light, A. R., ed.), Pain and Headache, Vol. 12, pp. 203–295. Basel: Karger.
Jordan, L. M., Kenshalo, D. R., Martin, R. F., Haber, L. H., Willis, W. D. (1979) Two populations of spinothalamic tract neurons with opposite responses to 5-hydroxytryptamine. Brain Res 164: 342–346.
Kajander, K. C., Ebner, T. J., Bloedel, J. R. (1984) Effects of periaqueductal gray and raphe magnus stimulation on the responses of spinocervical and other ascending projection neurons to non-noxious inputs. Brain Res 291: 29–37.
Lin, Q., Peng, Y., Willis, W. D. (1994) Glycine and GABAa antagonists reduce the inhibition of primate spinothalamic tract neurons produced by stimulation in periaqueductal gray. Brain Res 654: 286–302.
Lin, Q., Peng, Y., Willis, W. D. (1996a) Role of GABA receptor subtypes in inhibition of primate spinothalamic tract neurons: difference between spinal and periaqueductal gray inhibition. J Neurophysiol 75: 109–123.
Lin, Q., Peng, Y., Willis, W. D. (1996b) Antinociception and inhibition from the periaqueductal gray are mediated in part by spinal 5HT1A receptors. JPET 276: 958–967.
Lundberg, A., Oscarsson, O. (1961) Three ascending spinal pathways in the dorsal part of the lateral funiculus. Acta Physiol Scand 51: 1–16.
Martin, R. F., Haber, L. H., Willis, W. D. (1979) Primary afferent depolarization of identified cutaneous fibers following stimulation in medial brain stem. J Neurophysiol 42: 779–790.
Mayer, D. J., Liebeskind, J. C. (1974) Pain reduction by focal electrical stimulation of the brain: an anatomical and behavioral analysis. Brain Res 68: 73–93.
Mayer, D. J., Price, D. D. (1976) Central nervous system mechanisms of analgesia. Pain 2: 379–404.
Mayer, D. J., Wilfle, T. L., Akil, H., Carder, B., Liebeskind, J. C. (1971) Analgesia from electrical stimulation in the brainstem of the rat. Science 174: 1351–1354.
McCreery, D. B., Bloedel, J. R. (1975) Reduction of the response of cat spinothalamic neurons to graded mechanical stimuli by electrical stimulation of the lower brain stem. Brain Res 97: 151–156.
McCreery, D. B., Bloedel, J. R., Hames, E. G. (1979) Effects of stimulation in raphe nucleus and in reticular formation on response of spinothalamic neurons to mechanical stimuli. J Neurophysiol 42: 166–182.
Menétrey, D., Chaouch, A., Besson, J. M. (1980) Location and properties of dorsal horn neurons at origin of spinoreticular tract in lumbar enlargement of the rat. J Neurophysiol 44: 862–877.
Mitchell, C. L. (1964) A comparison of drug effects upon the jaw jerk to electrical stimulation of the tooth pulp in dogs and cats. JPET 146: 1–6.
Mokha, S. S., McMillan, J. A., Iggo, A. (1985) Descending control of spinal nociceptive transmission. Actions produced on spinal multireceptive neurons from the nuclei locus coeruleus (LC) and raphe magnus (NRM). Exp Brain Res 58: 213–226.
Noble, R., Riddell, J. S. (1989) Descending influences on the cutaneous receptive fields of postsynaptic dorsal column neurons in the cat. J Physiol 408: 167–183.
Oliveras, J. L., Besson, J. M., Guilbaud, G., Liebeskind, J. C. (1974a) Behavioral and electrophysiological evidence of pain inhibition from midbrain stimulation in the cat. Exp Brain Res 20: 32–44.
Oliveras, J. L., Woda, A., Guilbaud, G., Besson, J. M. (1974b) Inhibition of the jaw opening reflex by electrical stimulation of the periaqueductal gray matter in the awake, unrestrained cat. Brain Res 72: 328–331.
Oliveras, J. L., Redjemi, F., Guilbaud, G., Besson, J. M. (1975) Analgesia induced by electrical stimulation of the inferior centralis nucleus of the raphe in the cat. Pain 1: 139–145.
Oliveras, J. L., Hosobuchi, Y., Redjemi, F., Guilbaud, G., Besson, J. M. (1977) Opiate antagonist, naloxone, strongly reduces analgesia induced by stimulation of a raphe nucleus (centralis inferior). Brain Res 120: 221–229.
Oliveras, J. L., Guilbaud, G., Besson, J. M. (1979) A map of serotoninergic structures involved in stimulation producing analgesia in unrestrained freely moving cats. Brain Res 164: 317–322.
Peng, Y. B., Lin, Q., Willis, W. D. (1996a) The role of 5-HT3 receptors in periaqueductal gray-induced inhibition of nociceptive dorsal horn neurons in rats. JPET 276: 116–124.
Peng, Y. B., Lin, Q., Willis, W. D. (1996b) Involvement of α2- adrenoreceptors in the periaqueductal gray-induced inhibition of dorsal horn cell activity in rats. JPET 278: 125–135.
Peng, Y. B., Lin, Q., Willis, W. D. (1996c) Effects of GABA and glycine receptor antagonists on the activity and PAG-induced inhibition of rat dorsal horn neurons. Brain Res 736: 189–201.
Peng, Y. B., Wu, J., Willis, W. D., Kenshalo, D. R. (2001) GABAa and 5HT3 receptors are involved in dorsal root reflexes: possible role in periaqueductal gray descending inhibition. J Neurophysiol 86: 49–58.
Reynolds, D. V. (1969) Surgery in the rat during electrical analgesia induced by focal brain stimulation. Science 164: 444–445.
Schmidt, R. F. (1973) Control of the access of afferent activity to somatosensory pathways. In Somatosensory System. Handbook of Sensory Physiology, Vol. 2 (Iggo, A., ed.), pp. 151–206. Berlin: Springer-Verlag.
Sorkin, L. S., Steinman, J. L., Hughes, M. G., Willis, W. D., McAdoo, D. J. (1988) Microdialysis recovery of serotonin release in spinal cord dorsal horn. J Neurosci Meth 23: 131–138.
Sorkin, L. S., Hughes, M. G., Liu, D., Willis, W. D., McAdoo, D. J. (1991) Release and metabolism of 5-hydroxytryptamine in the cat spinal cord examined with microdialysis. J Pharm Exp Therap 257: 192–199.
Sorkin, L. S., McAdoo, D. J., Willis, W. D. (1992) Stimulation in the ventral posterior lateral nucleus of the primate thalamus leads to release of serotonin in the lumbar spinal cord. Brain Res 581: 307–310.
Sorkin, L. S., McAdoo, D. J., Willis, W. D. (1993) Raphe magnus stimulation-induced antinociception in the cat is associated with release of amino acids as well as serotonin in the lumbar dorsal horn. Brain Res 618: 95–108.
Tsou, K., Jang, C. S. (1962) Studies on the site of analgesia action of morphine by intracerebral microinjection. Scientia Sinica 13: 1099–1109.
Wall, P. D. (1958) Excitability changes in afferent fibre terminations and their relation to slow potentials. J Physiol 142: 1–21.
Westlund, K. N., Bowker, R. M., Ziegler, M. G., Coulter, J. D. (1981) Origins of spinal noradrenergic pathways demonstrated by retrograde transport of antibody to dopamine-β-hydroxylase. Neurosci Lett 25: 243–249.
Willcockson, W. S., Chung, J. M., Hori, Y., Lee, K. H., Willis, W. D. (1984a) Effects of iontophoretically released amino acids and amines on primate spinothalamic tract cells. J Neurosci 4: 732–740.
Willcockson, W. S., Chung, J. M., Hori, Y., Lee, K. H., Willis, W. D. (1984b) Effects of iontophoretrically released peptides on primate spinothalamic tract cells. J Neurosci 4: 741–750.
Willcockson, W. S., Kim, J., Shin, H. K., Chung, J. M., Willis, W. D. (1986) Actions of opioids on primate spinothalamic tract neurons. J Neurosci 6: 2509–2520.
Willis, W. D. (1982) Control of nociceptive transmission in the spinal cord. In Progress in Sensory Physiology3 (Ottoson, D., Editor-in-Chief). Berlin: Springer-Verlag.
Willis, W. D. (1999) Dorsal root potentials and dorsal root reflexes: a double-edged sword. Exp Brain Res 124: 395–421.
Willis, W. D., Haber, L. H., Martin, R. F. (1977) Inhibition of spinothalamic tract cells and interneurons by brain stem stimulation in the monkey. J Neurophysiol 40: 968–981.
Willis, W. D., Gerhart, K. D., Willcockson, W. S.et al. (1984) Primate raphe- and reticulospinal neurons: effects of stimulation in periaqueductal gray or VPLc thalamic nucleus. J Neurophysiol 51: 467–480.
Yaksh, T. L. (1979) Direct evidence that spinal serotonin and noradrenaline terminals mediate the spinal antinociceptive effects of morphine in the periaqueductal gray. Brain Res 160: 180–185.
Yaksh, T. L., Rudy, T. A. (1976) Analgesia mediated by a direct spinal action of narcotics. Science 192: 1357–1358.
Yaksh, T. L., Rudy, T. A. (1978) Narcotic analgesics: CNS sites and mechanisms of action as revealed by intracerebral injection techniques. Pain 4: 299–359.
Yezierski, R. P. (1990) The effects of midbrain and medullary stimulation on spinomesencephalic tract cells in the cat. J Neurophysiol 63: 240–255.
Yezierski, R. P., Schwartz, R. H. (1986) Response and receptive-field properties of spinomesencephalic tract cells in the cat. J Neurophysiol 55: 76–96.
Yezierski, R. P., Wilcox, T. K., Willis, W. D. (1982) The effects of serotonin antagonists on the inhibition of primate spinothalamic tract cells produced by stimulation in nucleus raphe magnus or periaqueductal gray. J Pharmacol Exp Ther 220: 266–277.
Yezierski, R. P., Gerhart, K. D., Schrock, B. J., Willis, W. D. (1983) A further examination of effects of cortical stimulation in primate spinothalamic tract cells. J Neurophysiol 49: 424–441.