Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-23T11:57:56.598Z Has data issue: false hasContentIssue false

2 - Organization of the central pain pathways

Published online by Cambridge University Press:  05 October 2010

Frederick A. Lenz
Affiliation:
The Johns Hopkins Hospital
Kenneth L. Casey
Affiliation:
University of Michigan, Ann Arbor
Edward G. Jones
Affiliation:
University of California, Davis
William D. Willis
Affiliation:
University of Texas Medical Branch, Galveston
Get access

Summary

Inputs from nociceptors

The nature of nociceptors

Nociceptors are sensory receptors that respond to stimuli that are damaging or potentially damaging to tissues (Sherrington,1906). The thresholds for activation of many nociceptors can be reached when stimuli of only moderate or non-damaging intensities are applied, but responses continue to increase as stimulus intensity is progressively increased to a level that produces overt damage. By contrast, other nociceptors respond only to intense stimuli and some may not respond at all, even to the strongest mechanical stimuli, unless they are first sensitized (Lynn and Carpenter, 1982; Meyer et al., 1991; Kress et al., 1992; Davis et al., 1993; Treede et al., 1998). The last mentioned have been called “silent nociceptors” (Schaible and Schmidt, 1985, 1988a, 1988b; Schmidt et al., 1995, 2000). Overall, if we include receptors responding to innocuous warming and cooling of the skin, there may be as many as six receptor classes specific for cooling, warming, noxious heat or cold, destructive mechanical or mixed noxious stimuli in humans and other animals.

Types of nociceptors

Nociceptors can be subdivided according to the tissue in which they are found, the size or conduction velocity of the afferent fiber supplying them and the type of stimulus that activates them. Most experimental studies of nociceptors have been performed on common laboratory animals, especially rodents and cats. Some of the most informative, however, have been made during recordings from peripheral nerves of monkeys or human subjects (reviewed in Willis and Coggeshall, 2004).

Type
Chapter
Information
The Human Pain System
Experimental and Clinical Perspectives
, pp. 64 - 195
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adriaensen, H., Gybels, J., Handwerker, H. O., Hees, J. (1980) Latencies of chemically evoked discharges in human cutaneous nociceptors and of the concurrent subjective sensations. Neurosci Lett 20: 55–59.CrossRefGoogle ScholarPubMed
Adriaensen, H., Gybels, J., Handwerker, H. O., Hees, J. (1983) Response properties of thin myelinated (A-δ) fibers in human skin nerves. J Neurophysiol 49: 111–122.CrossRefGoogle ScholarPubMed
Al-Chaer, E. D., Lawand, N. B., Westlund, K. N., Willis, W. D. (1996a) Pelvic visceral input into the nucleus gracilis is largely mediated by the postsynaptic dorsal column pathway. J Neurophysiol 76: 2675–2690.CrossRefGoogle ScholarPubMed
Al-Chaer, E. D., Lawand, N. B., Westlund, K. N., Willis, W. D. (1996b) Visceral nociceptive input into the ventral posterolateral nucleus of the thalamus: a new function for the dorsal column pathway. J Neurophysiol 76: 2661–2674.CrossRefGoogle ScholarPubMed
Al-Chaer, E. D., Westlund, K. N., Willis, W. D. (1997a) Sensitization of postsynaptic dorsal column neuronal responses by colon inflammation. Neuroreport 8: 3267–3273.CrossRefGoogle ScholarPubMed
Al-Chaer, E. D., Westlund, K. N., Willis, W. D. (1997b) Nucleus gracilis: an integrator for visceral and somatic information. J Neurophysiol 78: 521–527.CrossRefGoogle ScholarPubMed
Al-Chaer, E. D., Feng, Y., Willis, W. D. (1998) A role for the dorsal column in nociceptive visceral input into the thalamus of primates. J Neurophysiol 79: 3143–3150.CrossRefGoogle ScholarPubMed
Al-Chaer, E. D., Feng, Y., Willis, W. D. (1999) Comparative study of viscerosomatic input onto postsynaptic dorsal column and spinothalamic tract neurons in the primate. J Neurophysiol 82: 1876–1882.CrossRefGoogle ScholarPubMed
Alexander, G. E., DeLong, M. R., Strick, P. L. (1986) Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu Rev Neurosci 9: 357–381.CrossRefGoogle ScholarPubMed
Alvarez, F. J., Priestley, J. V. (1990) Ultrastructure of somatostatin-immunoreactive nerve terminals in laminae I and II of the rat trigeminal subnucleus caudalis. Neuroscience 38: 359–371.CrossRefGoogle ScholarPubMed
Alvarez, F. J., Kavookjian, A. M., Light, A. R. (1992) Synaptic interactions between GABA-immunoreactive profiles and the terminals of functionally defined myelinated nociceptors in the monkey and cat spinal cord. J Neurosci 12: 2901–2917.CrossRefGoogle ScholarPubMed
Alvarez, F. J., Villalba, R. M., Zerda, R., Schneider, S. P. (2004) Vesicular glutamate transporters in the spinal cord, with special reference to sensory primary afferent synapses. J Comp Neurol 472: 257–280.CrossRefGoogle ScholarPubMed
Andersen, P., Andersson, S. A., Landgren, S. (1966) Some properties of the thalamic relay cells in the spino-cervico-lemniscal path. Acta Physiol Scand 68: 72–83.CrossRefGoogle Scholar
Andrew, D., Craig, A. D. (2001) Spinothalamic lamina I neurones selectively responsive to cutaneous warming in cats. J Physiol 537: 489–495.CrossRefGoogle ScholarPubMed
Angaut-Petit, D. (1975a) The dorsal column system: I. Existence of long ascending postsynaptic fibres in the cat's fasciculus gracilis. Exp Brain Res 22: 457–470.Google ScholarPubMed
Angaut-Petit, D. (1975b) The dorsal column system: II. Functional properties and bulbar relay of the postsynaptic fibres of the cat's fasciculus gracilis. Exp Brain Res 22: 471–493.Google ScholarPubMed
Apkarian, A. V., Hodge, C. J. (1989a) Primate spinothalamic pathways: I. A quantitative study of the cells of origin of the spinothalamic pathway. J Comp Neurol 288: 447–473.CrossRefGoogle ScholarPubMed
Apkarian, A. V., Hodge, C. J. (1989b) Primate spinothalamic pathways: II. The cells of origin of the dorsolateral and ventral spinothalamic pathways. J Comp Neurol 288: 474–492.CrossRefGoogle ScholarPubMed
Apkarian, A. V., Hodge, C. J. (1989c) Primate spinothalamic pathways: III. Thalamic terminations of the dorsolateral and ventral spinothalamic pathways. J Comp Neurol 288: 493–511.CrossRefGoogle ScholarPubMed
Apkarian, A. V., Hodge, C. J. (1989d) A dorsolateral spinothalamic tract in macaque monkey. Pain 37: 323–333.CrossRefGoogle ScholarPubMed
Apkarian, A. V., Shi, T. (1994) Squirrel monkey lateral thalamus. I. Somatic nociresponsive neurons and their relation to spinothalamic terminals. J Neurosci 14: 6779–6795.CrossRefGoogle ScholarPubMed
Apkarian, A. V., Shi, T., Brüggemann, J., Airapetian, L. R. (2000) Segregation of nociceptive and non-nociceptive networks in the squirrel monkey somatosensory thalamus. J Neurophysiol 84: 484–494.CrossRefGoogle ScholarPubMed
Applebaum, A. E., Beall, J. E., Foreman, R. D., Willis, W. D. (1975) Organization and receptive fields of primate spinothalamic tract neurons. J Neurophysiol 38: 572–586.CrossRefGoogle ScholarPubMed
Applebaum, A. E., Leonard, R. B., Kenshalo, D. R., Martin, R. F., Willis, W. D. (1979) Nuclei in which functionally identified spinothalamic tract neurons terminate. J Comp Neurol 188: 575–585.CrossRefGoogle ScholarPubMed
Aronin, N., Chase, K., Folsom, R., Christakos, S., DiFiglia, M. (1991) Immunoreactive calcium-binding protein (calbindin-D28k) in interneurons and trigeminothalamic neurons of the rat nucleus caudalis localized with peroxidase and immunogold methods. Synapse 7: 106–113.CrossRefGoogle ScholarPubMed
Asanuma, C., Thach, W. T., Jones, E. G. (1983a) Cytoarchitectonic delineation of the ventral lateral thalamic region in the monkey. Brain Res 286: 219–235.CrossRefGoogle ScholarPubMed
Asanuma, C., Thach, W. R., Jones, E. G. (1983b) Anatomical evidence for segregated focal groupings of efferent cells and their terminal ramifications in the cerebellothalamic pathway of the monkey. Brain Res 286: 267–297.CrossRefGoogle ScholarPubMed
Asanuma, C., Thach, W. T., Jones, E. G. (1983c) Distribution of cerebellar terminations and their relation to other afferent terminations in the ventral lateral thalamic region of the monkey. Brain Res 286: 237–265.CrossRefGoogle ScholarPubMed
Asanuma, C., Andersen, R. A., Cowan, W. M. (1985) The thalamic relations of the caudal inferior parietal lobule and the lateral prefrontal cortex in monkeys: divergent cortical projections from cell clusters in the medial pulvinar nucleus. J Comp Neurol 241: 357–381.CrossRefGoogle ScholarPubMed
Bae, Y. C., Ihn, H. J., Park, M. J.et al. (2000) Identification of signal substances in synapses made between primary afferents and their associated axon terminals in the rat trigeminal sensory nuclei. J Comp Neurol 418: 299–309.3.0.CO;2-I>CrossRefGoogle ScholarPubMed
Bahns, E., Ernsberger, U., Jänig, W., Nelke, A. (1986) Functional characteristics of lumbar visceral afferent fibres from the urinary bladder and the urethra in the cat. Pflügers Arch 407: 510–518.CrossRefGoogle ScholarPubMed
Bahns, E., Halsband, U., Jänig, W. (1987) Responses of sacral visceral afferents from the lower urinary tract, colon and anus to mechanical stimulation. Pflügers Arch 410: 296–303.CrossRefGoogle ScholarPubMed
Baker, D. G., Coleridge, H. M., Coleridge, L. C. G., Nerdrum, T. (1980) Search for a cardiac nociceptor: stimulation by bradykinin of sympathetic nerve endings in the heart of the cat. J Physiol 306: 519–536.CrossRefGoogle ScholarPubMed
Baker, M. L., Giesler, G. J. (1984) Anatomical studies of the spinocervical tract of the rat. Somatosens Res 2: 1–18.Google ScholarPubMed
Banzett, R. B., Mulnier, H. E., Murphy, K.et al. (2000) Breathlessness in humans activates insular cortex. Neuroreport 11: 2117–2120.CrossRefGoogle ScholarPubMed
Barber, R. P., Vaughn, J. E., Saito, K., McLaughlin, B. J., Roberts, E. (1978) GABAergic terminals are presynaptic to primary afferent terminals in the substantia gelatinosa of the rat spinal cord. Brain Res 141: 35–55.CrossRefGoogle ScholarPubMed
Barber, R. P., Vaughn, J. E., Slemmon, J. R.et al. (1979) The origin, distribution and synaptic relationships of substance P axons in rat spinal cord. J Comp Neurol 184: 331–351.CrossRefGoogle ScholarPubMed
Barber, R. P., Vaughn, J. E., Roberts, E. (1982) The cytoarchitecture of GABAergic neurons in the rat spinal cord. Brain Res 238: 305–328.CrossRefGoogle ScholarPubMed
Basbaum, A. I., Fields, H. L. (1978) Endogenous pain control mechanisms: review and hypothesis. Ann Neurol 4: 451–462.CrossRefGoogle ScholarPubMed
Basbaum, A. I., Glazer, E. J., Oertel, W. (1986) Immunoreactive glutamic acid decarboxylase in the trigeminal nucleus caudalis of the cat: a light- and electron-microscopic analysis. Somatosens Res 4: 77–94.CrossRefGoogle ScholarPubMed
Basbaum, A. I., Zahs, K., Lord, B., Lakos, S. (1988) The fiber caliber of 5-HT immunoreactive axons in the dorsolateral funiculus of the spinal cord of the rat and cat. Somatosens Res 5: 177–185.CrossRefGoogle Scholar
Battaglia, G., Rustioni, A. (1988) Coexistence of glutamate and substance P in dorsal root ganglion neurons of the rat and monkey. J Comp Neurol 277: 302–312.CrossRefGoogle ScholarPubMed
Baylis, L. L., Rolls, E. T., Baylis, G. C. (1995) Afferent connections of the caudolateral orbitofrontal cortex taste area of the primate. Neuroscience 64: 801–812.CrossRefGoogle ScholarPubMed
Beal, J. A. (1983) Identification of presumptive long axon neurons in the substantia gelatinosa of the rat lumbosacral spinal cord: a Golgi study. Neurosci Lett 41: 9–14.CrossRefGoogle ScholarPubMed
Beal, J. A., Cooper, M. H. (1978) The neurons in the gelatinosal complex (laminae II and III) of the monkey (Macaca mulatta): a Golgi study. J Comp Neurol 179: 89–121.CrossRefGoogle ScholarPubMed
Beal, J. A., Fox, C. A. (1976) Afferent fibers in the substantia gelatinosa of the adult monkey (Macaca mulatta): a Golgi study. J Comp Neurol 168: 113–143.CrossRefGoogle ScholarPubMed
Beckstead, R. M. (1978) Afferent connections of the entorhinal area in the rat as demonstrated by retrograde cell-labeling with horseradish peroxidase. Brain Res 152: 249–264.CrossRefGoogle ScholarPubMed
Beckstead, R. M. (1984) The thalamostriatal projection in the cat. J Comp Neurol 223: 313–346.CrossRefGoogle ScholarPubMed
Beckstead, R. M., Morse, J. R., Norgren, R. (1980) The nucleus of the solitary tract in the monkey: projections to the thalamus and brain stem nuclei. J Comp Neurol 190: 259–282.CrossRefGoogle ScholarPubMed
Benjamin, R. M., Akert, K. (1959) Cortical and thalamic areas involved in taste discrimination in the albino rat. J Comp Neurol 111: 231–259.CrossRefGoogle ScholarPubMed
Benjamin, R. M., Burton, H. (1968) Projection of taste nerve afferents to anterior opercular-insular cortex in squirrel monkey (Saimiri sciureus). Brain Res 7: 221–231.CrossRefGoogle Scholar
Benjamin, R. M., Pfaffmann, C. (1955) Cortical localization of taste in albino rat. J Neurophysiol 18: 56–64.CrossRefGoogle ScholarPubMed
Bennett, D. L., Michael, G. J., Ramachandran, N.et al. (1998) A distinct subgroup of small DRG cells express GDNF receptor components and GDNF is protective for these neurons after nerve injury. J Neurosci 18: 3059–3072.CrossRefGoogle ScholarPubMed
Bennett, G. J., Abdelmoumene, M., Hayashi, H., Dubner, R. (1980) Physiology and morphology of substantia gelatinosa neurons intracellularly stained with horseradish peroxidase. J Comp Neurol 194: 809–827.CrossRefGoogle ScholarPubMed
Bennett, G. J., Seltzer, Z., Lu, G. W., Nishikawa, N., Dubner, R. (1983) The cells of origin of the dorsal column postsynaptic projection in the lumbosacral enlargements of cats and monkeys. Somatosens Res 1: 131–149.CrossRefGoogle ScholarPubMed
Bennett, G. J., Nishikawa, N., Lu, G. W., Hoffert, M. J., Dubner, R. (1984) The morphology of dorsal column postsynaptic spinomedullary neurons in the cat. J Comp Neurol 224: 568–578.CrossRefGoogle ScholarPubMed
Bennett, G. W., Nathan, P. A., Wong, K. K., Marsden, C. A. (1986) Regional distribution of immunoreactive-thyrotrophin-releasing hormone and substance P, and indoleamines in human spinal cord. J Neurochem 46: 1718–1724.CrossRefGoogle ScholarPubMed
Bennett-Clarke, C. A., Chiaia, N. L., Jacquin, M. F., Rhoades, R. W. (1992) Parvalbumin and calbindin immunocytochemistry reveal functionally distinct cell groups and vibrissa-related patterns in the trigeminal brainstem complex of the adult rat. J Comp Neurol 320: 323–338.CrossRefGoogle ScholarPubMed
Berendse, H. W., Groenewegen, H. J. (1991) Restricted cortical termination fields of the midline and intralaminar thalamic nuclei in the rat. Neuroscience 42: 73–102.CrossRefGoogle ScholarPubMed
Berkley, K. J. (1980) Spatial relationships between the terminations of somatic sensory and motor pathways in the rostral brainstem of cats and monkeys. I. Ascending somatic sensory inputs to lateral diencephalon. J Comp Neurol 193: 283–317.CrossRefGoogle ScholarPubMed
Berkley, K. J., Robbins, A., Sato, Y. (1988) Afferent fibers supplying the uterus of the rat. J Neurophysiol 59: 142–163.CrossRefGoogle ScholarPubMed
Berkley, K. J., Hotta, H., Robbins, S. A., Sato, Y. (1990) Functional properties of afferent fibers supplying reproductive and other pelvic organs in pelvic nerve of female rat. J Neurophysiol 63: 256–272.CrossRefGoogle ScholarPubMed
Berman, A. L., Jones, E. G. (1982) The Thalamus and Basal Telencephalon of the Cat: A Cytoarchitectonic Atlas with Stereotaxic Coordinates. Madison: University of Wisconsin Press.Google Scholar
Bernard, J. F., Dallel, R., Raboisson, P., Villanueva, L., Le, B. D. (1995) Organization of the efferent projections from the spinal cervical enlargement to the parabrachial area and periaqueductal gray: a PHA-L study in the rat. J Comp Neurol 353: 480–505.CrossRefGoogle ScholarPubMed
Bernardi, P. S., Valtschanoff, J. G., Weinberg, R. J., Schmidt, H. H., Rustioni, A. (1995) Synaptic interactions between primary afferent terminals and GABA and nitric oxide-synthesizing neurons in superficial laminae of the rat spinal cord. J Neurosci 15: 1363–1371.CrossRefGoogle ScholarPubMed
Besse, D., Lombard, M. C., Besson, J. M. (1992) Time-related decreases in mu and delta opioid receptors in the superficial dorsal horn of the rat spinal cord following a large unilateral dorsal rhizotomy. Brain Res 578: 115–127.CrossRefGoogle ScholarPubMed
Bessou, P., Laporte, Y. (1961) Étude des recepteurs musculaires innerves par les fibres afferents du groupe III (fibres myelinisées fines), chez le chat. Arch Ital Biol 99: 293–321.Google Scholar
Bester, H., Menendez, L., Besson, J. M., Bernard, J. F. (1995) Spino (trigemino) parabrachiohypothalamic pathway: electrophysiological evidence for an involvement in pain processes. J Neurophysiol 73: 568–585.CrossRefGoogle ScholarPubMed
Bester, H., Bourgeais, L., Villanueva, L., Besson, J. M., Bernard, J. F. (1999) Differential projections to the intralaminar and gustatory thalamus from the parabrachial area: a PHA-L study in the rat. J Comp Neurol 405: 421–449.3.0.CO;2-2>CrossRefGoogle ScholarPubMed
Biemond, A. (1956) The conduction of pain above the level of the thalamus opticus. AMA Arch Neurol Psychiatry 75: 231–244.CrossRefGoogle ScholarPubMed
Block, C. H., Schwartzbaum, J. S. (1983) Ascending efferent projections of the gustatory parabrachial nuclei in the rabbit. Brain Res 259: 1–9.CrossRefGoogle ScholarPubMed
Blomqvist, A., Berkley, K. J. (1992) A re-examination of the spino-reticulo-diencephalic pathway in the cat. Brain Res 579: 17–31.CrossRefGoogle ScholarPubMed
Blomqvist, A., Flink, R., Westman, J., Wiberg, M. (1985) Synaptic terminals in the ventroposterolateral nucleus of the thalamus from neurons in the dorsal column and lateral cervical nuclei: an electron microscopic study in the cat. J Neurocytol 14: 869–886.CrossRefGoogle ScholarPubMed
Blomqvist, A., Ericson, A. C., Broman, J., Craig, A. D. (1992) Electron microscopic identification of lamina I axon terminations in the nucleus submedius of the cat thalamus. Brain Res 585: 425–430.CrossRefGoogle ScholarPubMed
Blomqvist, A., Zhang, E. T., Craig, A. D. (2000) Cytoarchitectonic and immunohistochemical characterization of a specific pain and temperature relay, the posterior portion of the ventral medial nucleus, in the human thalamus. Brain 123: 601–619.CrossRefGoogle ScholarPubMed
Bohlhalter, S., Weinmann, O., Möhler, H., Fritschy, J. M. (1996) Laminar compartmentalization of GABAA-receptor subtypes in the spinal cord: an immunohistochemical study. J Neurosci 16: 283–297.CrossRefGoogle ScholarPubMed
Boivie, J. (1971) The termination of the spinothalamic tract in the cat. An experimental study with silver impregnation methods. Exp Brain Res 112: 331–353.Google Scholar
Boivie, J. (1979) An anatomical reinvestigation of the termination of the spinothalamic tract in the monkey. J Comp Neurol 186: 343–369.CrossRefGoogle ScholarPubMed
Boivie, J. (1980) Thalamic projections from lateral cervical nucleus in monkey. A degeneration study. Brain Res 198: 13–26.CrossRefGoogle ScholarPubMed
Bowker, R. M., Abbott, L. C. (1990) Quantitative re-evaluation of descending serotonergic and non-serotonergic projections from the medulla of the rodent: evidence for extensive co-existence of serotonin and peptides in the same spinally projecting neurons, but not from the nucleus raphe magnus. Brain Res 512: 15–25.CrossRefGoogle Scholar
Bowker, R. M., Westlund, K. N., Sullivan, M. C., Coulter, J. D. (1982a) Organization of descending serotonergic projections to the spinal cord. Prog Brain Res 57: 239–265.CrossRefGoogle ScholarPubMed
Bowker, R. M., Westlund, K. N., Coulter, J. D. (1982b) Origins of serotonergic projections to the lumbar spinal cord in the monkey using a combined retrograde transport and immunocytochemical technique. Brain Res Bull 9: 271–278.CrossRefGoogle ScholarPubMed
Brodal, A. (1957) The Reticular Formation of the Brain Stem. Anatomical Aspects and Functional Correlations. Edinburgh: Oliver and Boyd.Google Scholar
Broman, J., Ottersen, O. P. (1992) Cervicothalamic tract terminals are enriched in glutamate-like immunoreactivity: an electron microscopic double-labeling study in the cat. J Neurosci 12: 204–221.CrossRefGoogle ScholarPubMed
Broman, J., Westman, J., Ottersen, O. P. (1990) Ascending afferents to the lateral cervical nucleus are enriched in glutamate-like immunoreactivity: a combined anterograde transport-immunogold study in the cat. Brain Res 520: 178–191.CrossRefGoogle ScholarPubMed
Bromm, B., Jahnke, M. T., Treede, R. D. (1984) Responses of human cutaneous afferents to CO2 laser stimuli causing pain. Exp Brain Res 55: 158–166.CrossRefGoogle ScholarPubMed
Brown, A. G. (1981a) Organization in the Spinal Cord: The Anatomy and Physiology of Identified Neurones. Berlin: Springer.CrossRefGoogle Scholar
Brown, A. G. (1981b) The spinocervical tract. Prog Neurobiol 17: 59–96.CrossRefGoogle ScholarPubMed
Brown, A. G., Franz, D. N. (1969) Responses of spinocervical tract neurones to natural stimulation of identified cutaneous receptors. Exp Brain Res 7: 231–249.CrossRefGoogle ScholarPubMed
Brown, A. G., Franz, D. N. (1970) Patterns of response in spinocervical tract neurones to different stimuli of long duration. Brain Res 17: 156–160.CrossRefGoogle ScholarPubMed
Brown, A. G., Fyffe, R. E. (1981) Form and function of dorsal horn neurones with axons ascending the dorsal columns in cat. J Physiol 321: 31–47.CrossRefGoogle ScholarPubMed
Brown, A. G., Noble, R. (1982) Connexions between hair follicle afferent fibres and spinocervical tract neurones in the cat: the synthesis of receptive fields. J Physiol 323: 77–91.CrossRefGoogle ScholarPubMed
Brown, A. G., Rose, P. K., Snow, P. J. (1977) The morphology of spinocervical tract neurones revealed by intracellular injection of horseradish peroxidase. J Physiol 270: 747–764.CrossRefGoogle ScholarPubMed
Brown, A. G., Fyffe, R. E., Noble, R., Rose, P. K., Snow, P. J. (1980a) The density, distribution and topographical organization of spinocervical tract neurones in the cat. J Physiol 300: 409–428.CrossRefGoogle ScholarPubMed
Brown, A. G., Rose, P. K., Snow, P. J. (1980b) Dendritic trees and cutaneous receptive fields of adjacent spinocervical tract neurones in the cat. J Physiol 300: 429–440.CrossRefGoogle ScholarPubMed
Brown, A. G., Brown, P. B., Fyffe, R. E., Pubols, L. M. (1983) Receptive field organization and response properties of spinal neurones with axons ascending the dorsal columns in the cat. J Physiol 337: 575–588.CrossRefGoogle ScholarPubMed
Brown, A. G., Noble, R., Rowe, M. J. (1986a) Receptive field profiles and integrative properties of spinocervical tract cells in the cat. J Physiol 374: 335–348.CrossRefGoogle ScholarPubMed
Brown, A. G., Noble, R., Riddell, J. S. (1986b) Relations between spinocervical and post-synaptic dorsal column neurones in the cat. J Physiol 381: 333–349.CrossRefGoogle ScholarPubMed
Brown, A. G., Koerber, H. R., Noble, R. (1987) An intracellular study of spinocervical tract cell responses to natural stimuli and single hair afferent fibres in cats. J Physiol 382: 331–354.CrossRefGoogle ScholarPubMed
Brown, A. M. (1967) Excitation of afferent cardiac sympathetic fibres during myocardial ischaemia. J Physiol 190: 35–53.CrossRefGoogle Scholar
Bryan, R. N., Trevino, D. L., Coulter, J. D., Willis, W. D. (1973) Location and somatotopic organization of the cells of origin of the spino-cervical tract. Exp Brain Res 17: 177–189.CrossRefGoogle ScholarPubMed
Bryan, R. N., Coulter, J. D., Willis, W. D. (1974) Cells of origin of the spinocervical tract in the monkey. Exp Neurol 42: 574–586.CrossRefGoogle ScholarPubMed
Burgess, P. R., Clark, F. J. (1969) Characteristics of knee joint receptors in the cat. J Physiol 203: 317–335.CrossRefGoogle ScholarPubMed
Burgess, P. R., Perl, E. R. (1967) Myelinated afferent fibres responding specifically to noxious stimulation of the skin. J Physiol 190: 541–562.CrossRefGoogle Scholar
Brysch, W., Brysch, I., Creutzfeldt, O. D., Schlingensiepen, R., Schlingensiepen, K. H. (1990) The topology of the thalamo-cortical projections in the marmoset monkey (Callithrix jacchus). Exp Brain Res 81: 1–17.CrossRefGoogle Scholar
Burstein, R., Cliffer, K. D., Giesler, G. J. (1990) Cells of origin of the spinohypothalamic tract in the rat. J Comp Neurol 291: 329–344.CrossRefGoogle ScholarPubMed
Burton, H. (1984) Corticothalamic connections from the second somatosensory area and neighboring regions in the lateral sulcus of macaque monkeys. Brain Res 309: 368–372.CrossRefGoogle ScholarPubMed
Burton, H., Craig, A. D. (1979) Distribution of trigeminothalamic projection cells in cat and monkey. Brain Res 161: 515–521.CrossRefGoogle ScholarPubMed
Burton, H., Craig, A. D. (1983) Spinothalamic projections in cat, raccoon and monkey: a study based on anterograde transport of horseradish peroxidase. In Somatosensory Integration in the Thalamus. A Re-evaluation Based on the New Methodological Approaches (Macchi, G., Rustioni, A., Spreafico, R. eds), pp. 17–42. Amsterdam: Elsevier.Google Scholar
Burton, H., Jones, E. G. (1976) The posterior thalamic region and its cortical projection in New World and Old World monkeys. J Comp Neurol 168: 249–301.CrossRefGoogle ScholarPubMed
Burton, H., Fabri, M., Alloway, K. (1995) Cortical areas within the lateral sulcus connected to cutaneous representations in areas 3b and 1: a revised interpretation of the second somatosensory area in macaque monkeys. J Comp Neurol 355: 539–562.CrossRefGoogle ScholarPubMed
Cajal, S.Ramón y, (1899) Textura del sistema nervioso del hombre y de los vertebrados. Vol. 1, pp. 223–349. Madrid: N. Moya.Google Scholar
Cajal, S. Ramón y (1909) Histologie du Système Nerveux de l'Homme et des Vértébres. Vol. 1. [Translated by Azoulay, L.]. Paris: Maloine.Google Scholar
Carlton, S. M., Hayes, E. S. (1990) Light microscopic and ultrastructural analysis of GABA-immunoreactive profiles in the monkey spinal cord. J Comp Neurol 300: 162–182.CrossRefGoogle ScholarPubMed
Carlton, S. M., McNeill, D. L., Chung, K., Coggeshall, R. E. (1988) Organization of calcitonin gene-related peptide-immunoreactive terminals in the primate dorsal horn. J Comp Neurol 276: 527–536.CrossRefGoogle ScholarPubMed
Carlton, S. M., Westlund, K. N., Zhang, D., Willis, W. D. (1992) GABA-immunoreactive terminals synapse on primate spinothalamic tract cells. J Comp Neurol 322: 528–537.CrossRefGoogle ScholarPubMed
Carlton, S. M., Hargett, G. L., Coggeshall, R. E. (2001) Localization of metabotropic glutamate receptors 2/3 on primary afferent axons in the rat. Neuroscience 105: 957–969.CrossRefGoogle ScholarPubMed
Carmichael, S. T., Price, J. L. (1994) Architectonic subdivision of the orbital and medial prefrontal cortex in the macaque monkey. J Comp Neurol 346: 366–402.CrossRefGoogle ScholarPubMed
Carr, P. A., Yamamoto, T., Nagy, J. I. (1990) Calcitonin gene-related peptide in primary afferent neurons of rat: co-existence with fluoride-resistant acid phosphatase and depletion by neonatal capsaicin. Neuroscience 36: 751–760.CrossRefGoogle ScholarPubMed
Carstens, E., Trevino, D. L. (1978) Laminar origins of spinothalamic projections in the cat as determined by the retrograde transport of horseradish peroxidase. J Comp Neurol 182: 161–165.CrossRefGoogle ScholarPubMed
Casey, K. L., Minoshima, S., Morrow, T. J., Koeppe, R. A. (1996) Comparison of human cerebral activation pattern during cutaneous warmth, heat pain, and deep cold pain. J Neurophysiol 76: 571–581.CrossRefGoogle ScholarPubMed
Caterina, M. J., Julius, D. (2001) The vanilloid receptor: a molecular gateway to the pain pathway. Annu Rev Neurosci 24: 487–517.CrossRefGoogle ScholarPubMed
Caterina, M. J., Rosen, T. A., Tominaga, M., Brake, A. J., Julius, D. (1999) A capsaicin-receptor homologue with a high threshold for noxious heat. Nature 398: 436–441.CrossRefGoogle ScholarPubMed
Cechetto, D. F., Saper, C. B. (1987) Evidence for a viscerotopic sensory representation in the cortex and thalamus in the rat. J Comp Neurol 262: 27–45.CrossRefGoogle ScholarPubMed
Celio, M. R., Heizmann, C. W. (1981) Calcium-binding protein parvalbumin as a neuronal marker. Nature 293: 300–302.CrossRefGoogle ScholarPubMed
Cervero, F. (1982) Afferent activity evoked by natural stimulation of the biliary system in the ferret. Pain 13: 137–151.CrossRefGoogle ScholarPubMed
Cervero, F. (1994) Sensory innervation of the viscera: peripheral basis of visceral pain. Physiol Rev 74: 95–138.CrossRefGoogle ScholarPubMed
Cervero, F., Iggo, A. (1980) The substantia gelatinosa of the spinal cord: a critical review. Brain 103: 717–772.CrossRefGoogle ScholarPubMed
Cervero, F., Sann, H. (1989) Mechanically evoked responses of afferent fibres innervating the guinea-pig's ureter: an in vitro study. J Physiol 412: 245–266.CrossRefGoogle Scholar
Cervero, F., Sharkey, K. A. (1988) An electrophysiological and anatomical study of intestinal afferent fibres in the rat. J Physiol 401: 381–397.CrossRefGoogle ScholarPubMed
Cervero, F., Iggo, A., Molony, V. (1977) Responses of spinocervical tract neurones to noxious stimulation of the skin. J Physiol 267: 537–558.CrossRefGoogle Scholar
Cheema, S. S., Rustioni, A., Whitsel, B. L. (1984) Light and electron microscopic evidence for a direct corticospinal projection to superficial laminae of the dorsal horn in cats and monkeys. J Comp Neurol 225: 276–290.CrossRefGoogle ScholarPubMed
Chen, A. C., Niddam, D. M., Crawford, H. J., Oostenveld, R., Arendt-Nielsen, L. (2002) Spatial summation of pain processing in the human brain as assessed by cerebral event related potentials. Neurosci Lett 328: 190–194.CrossRefGoogle ScholarPubMed
Cheng, P. Y., Moriwaki, A., Wang, J. B., Uhl, G. R., Pickel, V. M. (1996) Ultrastructural localization of mu-opioid receptors in the superficial layers of the rat cervical spinal cord: extrasynaptic localization and proximity to Leu5-enkephalin. Brain Res 731: 141–154.CrossRefGoogle ScholarPubMed
Cheng, P. Y., Liu-Chen, L.-Y., Pickel, V. M. (1997) Dual ultrastructural immunocytochemical labeling of mu and delta opioid receptors in the superficial layers of the rat cervical spinal cord. Brain Res 778: 367–380.CrossRefGoogle ScholarPubMed
Chudler, E. H., Dong, W. K., Kawakami, Y. (1986) Cortical nociceptive responses and behavioral correlates in the monkey. Brain Res 397: 47–60.CrossRefGoogle ScholarPubMed
Chudler, E. H., Anton, F., Dubner, R., Kenshalo, D. R. (1990) Responses of nociceptive SI neurons in monkeys and pain sensation in humans elicited by noxious thermal stimulation: effect of interstimulus interval. J Neurophysiol 63: 559–569.CrossRefGoogle ScholarPubMed
Chung, K., Coggeshall, R. E. (1982) Quantitation of propriospinal fibers in the tract of Lissauer of the rat. J Comp Neurol 211: 418–426.CrossRefGoogle ScholarPubMed
Chung, K., Lee, W. T., Carlton, S. M. (1988) The effects of dorsal rhizotomy and spinal cord isolation on calcitonin gene-related peptide-labeled terminals in the rat lumbar dorsal horn. Neurosci Lett 90: 27–32.CrossRefGoogle ScholarPubMed
Clark, F. J. (1975) Information signaled by sensory fibers in medial articular nerve. J Neurophysiol 38: 1464–1472.CrossRefGoogle ScholarPubMed
Clark, W. E., Gros, (1932) The structure and connections of the thalamus. Brain 55: 406–470.CrossRefGoogle Scholar
Cliffer, K. D., Willis, W. D. (1994) Distribution of the postsynaptic dorsal column projection in the cuneate nucleus of monkeys. J Comp Neurol 345: 84–93.CrossRefGoogle ScholarPubMed
Cliffer, K. D., Hasegawa, T., Willis, W. D. (1992) Responses of neurons in the gracile nucleus of cats to innocuous and noxious stimuli: basic characterization and antidromic activation from the thalamus. J Neurophysiol 68: 818–832.CrossRefGoogle ScholarPubMed
Coffield, J. A., Bowen, K. K., Miletic, V. (1992) Retrograde tracing of projections between the nucleus submedius, the ventrolateral orbital cortex, and the midbrain in the rat. J Comp Neurol 321: 488–499.CrossRefGoogle ScholarPubMed
Coggeshall, R. E., Chung, K., Chung, J. M., Langford, L. A. (1981) Primary afferent axons in the tract of Lissauer in the monkey. J Comp Neurol 196: 431–442.CrossRefGoogle ScholarPubMed
Coghill, R. C., Talbot, J. D., Evans, A. C.et al. (1994) Distributed processing of pain and vibration by the human brain. J Neurosci 14: 4095–4108.CrossRefGoogle ScholarPubMed
Coimbra, A., Lima, D. (1982) Projections and neurochemical specificity of the different morphological types of marginal cells. In Processing of Sensory Information in the Superficial Dorsal Horn of the Spinal Cord (Cervero, F., Bennett, G. J., Headley, P. M. eds), pp. 199–213. New York: Plenum.Google Scholar
Coimbra, A., Magalhaes, M. M. (1989) Projections and neurochemical specificity of the different morphological types of marginal cells. In Processing of Sensory Information in the Superficial Dorsal Horn (Cervero, F., Bennett, G. J., Headley, P. M., eds), pp. 199–213. New York: Plenum.CrossRefGoogle Scholar
Coq, J. O., Qi, H., Collins, C. E., Kaas, J. H. (2004) Anatomical and functional organization of somatosensory areas of the lateral fissure of the New World titi monkey (Callicebus moloch). J Comp Neurol 476: 363–387.CrossRefGoogle Scholar
Coulter, J. D., Jones, E. G. (1977) Differential distribution of corticospinal projections from individual cytoarchitectonic fields in the monkey. Brain Res 129: 335–340.CrossRefGoogle ScholarPubMed
Craig, A. D. (1978) Spinal and medullary input to the lateral cervical nucleus. J Comp Neurol 181: 729–743.CrossRefGoogle ScholarPubMed
Craig, A. D., Burton, H. (1981) Spinal and medullary lamina I projection to nucleus submedius in medial thalamus: a possible pain center. J Neurophysiol 45: 443–466.CrossRefGoogle ScholarPubMed
Craig, A. D. (2003) Distribution of trigeminothalamic and spinothalamic lamina I terminations in the cat. Somatosens Mot Res 20: 209–222.CrossRefGoogle ScholarPubMed
Craig, A. D. (2006) Retrograde analyses of spinothalamic projections in the macaque monkey: input to ventral posterior nuclei. J Comp Neurol 499: 965–978.CrossRefGoogle ScholarPubMed
Craig, A. D., Burton, H. (1985) The distribution and topographical organization in the thalamus of anterogradely-transported horseradish peroxidase after spinal injections in cat and raccoon. Exp Brain Res 58: 227–254.CrossRefGoogle ScholarPubMed
Craig, A. D., Dostrovsky, J. O. (1991) Thermoreceptive lamina I trigeminothalamic neurons project to the nucleus submedius in the cat. Exp Brain Res 85: 470–474.CrossRefGoogle ScholarPubMed
Craig, A. D., Dostrovsky, J. O. (2001) Differential projections of thermoreceptive and nociceptive lamina I trigeminothalamic and spinothalamic neurons in the cat. J Neurophysiol 86: 856–870.CrossRefGoogle ScholarPubMed
Craig, A. D., Kniffki, K. D. (1985) Spinothalamic lumbosacral lamina I cells responsive to skin and muscle stimulation in the cat. J Physiol 365: 197–221.CrossRefGoogle ScholarPubMed
Craig, A. D., Mense, S. (1983) The distribution of afferent fibers from the gastrocnemius-soleus muscle in the dorsal horn of the cat, as revealed by the transport of horseradish peroxidase. Neurosci Lett 41: 233–238.CrossRefGoogle ScholarPubMed
Craig, A. D., Zhang, E. T. (2006) Retrograde analyses of spinothalamic projections in the macaque monkey: input to posterolateral thalamus. J Comp Neurol 499: 953–964.CrossRefGoogle ScholarPubMed
Craig, A. D., Wiegand, S. J., Price, J. L. (1982) The thalamo-cortical projection of the nucleus submedius in the cat. J Comp Neurol 206: 28–48.CrossRefGoogle ScholarPubMed
Craig, A. D., Sailer, S., Kniffki, K. D. (1987) Organization of anterogradely labeled spinocervical tract terminations in the lateral cervical nucleus of the cat. J Comp Neurol 263: 214–222.CrossRefGoogle ScholarPubMed
Craig, A. D., Heppelmann, B., Schaible, H. G. (1988) The projection of the medial and posterior articular nerves of the cat's knee to the spinal cord. J Comp Neurol 276: 279–288.CrossRefGoogle ScholarPubMed
Craig, A. D., Linington, A. J., Kniffki, K. D. (1989) Cells of origin of spinothalamic tract projections to the medial and lateral thalamus in the cat. J Comp Neurol 289: 568–585.CrossRefGoogle ScholarPubMed
Craig, A. D., Broman, J., Blomqvist, A. (1992) Lamina I spinocervical tract terminations in the medial part of the lateral cervical nucleus in the cat. J Comp Neurol 322: 99–110.CrossRefGoogle ScholarPubMed
Craig, A. D., Bushnell, M. C., Zhang, E. T., Blomqvist, A. (1994) A thalamic nucleus specific for pain and temperature sensation. Nature 372: 770–773.CrossRefGoogle ScholarPubMed
Craig, A. D., Reiman, E. M., Evans, A., Bushnell, M. C. (1996) Functional imaging of an illusion of pain. Nature 384: 258–260.CrossRefGoogle ScholarPubMed
Craig, A. D., Chen, K., Bandy, D., Reiman, E. M. (2000) Thermosensory activation of insular cortex. Nature Neurosci 3: 184–190.CrossRefGoogle ScholarPubMed
Craig, A. D., Krout, K., Andrew, D. (2001) Quantitative response characteristics of thermoreceptive and nociceptive lamina I spinothalamic neurons in the cat. J Neurophysiol 86: 1459–1480.CrossRefGoogle ScholarPubMed
Craig, A. D., Zhang, E. T., Blomqvist, A. (2002) Association of spinothalamic lamina I neurons and their ascending axons with calbindin-immunoreactivity in monkey and human. Pain 97: 105–115.CrossRefGoogle ScholarPubMed
Cuello, A. C. (1983) Central distribution of opioid peptides. Br Med Bull 39: 11–16.CrossRefGoogle ScholarPubMed
Cuello, A. C., Kanazawa, I. (1978) The distribution of substance P immunoreactive fibers in the rat central nervous system. J Comp Neurol 178: 129–156.CrossRefGoogle ScholarPubMed
Cunningham, E. T., LeVay, S. (1986) Laminar and synaptic organization of the projection from the thalamic nucleus centralis to primary visual cortex in the cat. J Comp Neurol 254: 66–77.CrossRefGoogle ScholarPubMed
Cusick, C. G., Gould, H. J., III (1990) Connections between area 3b of the somatosensory cortex and subdivisions of the ventroposterior nuclear complex and the anterior pulvinar nucleus in squirrel monkeys. J Comp Neurol 292: 83–102.CrossRefGoogle ScholarPubMed
Cusick, C. G., Wall, J. T., Felleman, D. J., Kaas, J. H. (1989) Somatotopic organization of the lateral sulcus of owl monkeys: area 3b, S-II, and a ventral somatosensory area. J Comp Neurol 282: 169–190.CrossRefGoogle Scholar
Dado, R. J., Giesler, G. J. (1990) Afferent input to nucleus submedius in rats: retrograde labeling of neurons in the spinal cord and caudal medulla. J Neurosci 10: 2672–2686.CrossRefGoogle ScholarPubMed
Davis, K. D., Meyer, R. A., Campbell, J. N. (1993) Chemosensitivity and sensitization of nociceptive afferents that innervate the hairy skin of monkey. J Neurophysiol 69: 1071–1081.CrossRefGoogle ScholarPubMed
Davis, K. D., Kiss, Z. H., Tasker, R. R., Dostrovsky, J. O. (1996) Thalamic stimulation-evoked sensations in chronic pain patients and in nonpain (movement disorder) patients. J Neurophysiol 75: 1026–1037.CrossRefGoogle ScholarPubMed
Davis, K. D., Lozano, R. M., Manduch, M., Tasker, R. R., Kiss, Z. H., Dostrovsky, J. O. (1999) Thalamic relay site for cold perception in humans. J Neurophysiol 81: 1970–1973.CrossRefGoogle ScholarPubMed
DeLanerolle, N. C., LaMotte, C. C. (1982) The human spinal cord: substance P and methionine-enkephalin immunoreactivity. J Neurosci 2: 1369–1386.CrossRefGoogle Scholar
DeLanerolle, N. C., LaMotte, C. C. (1983) Ultrastructure of chemically defined neuron systems in the dorsal horn of the monkey. I. Substance P immunoreactivity. Brain Res 274: 31–49.CrossRefGoogle Scholar
deGroot, J. F., Coggeshall, R. E., Carlton, S. M. (1997) The reorganization of μ opioid receptors in the rat dorsal horn following rhizotomy. Neurosci Lett 233: 113–116.CrossRefGoogle Scholar
las Heras, S., Mengual, E., Velayos, J. L., Gimenez-Amaya, J. M. (1998) Re-examination of topographic distribution of thalamic neurons projecting to the caudate nucleus. A retrograde labeling study in the cat. Neurosci Res 31: 283–293.CrossRefGoogle Scholar
Biasi, S., Rustioni, A. (1988) Glutamate and substance P coexist in primary afferent terminals in the superficial laminae of spinal cord. Proc Natl Acad Sci USA 85: 7820–7824.CrossRefGoogle ScholarPubMed
Biasi, S., Rustioni, A. (1990) Ultrastructural immunocytochemical localization of excitatory amino acids in the somatosensory system. J Histochem Cytochem 38: 1745–1754.CrossRefGoogle ScholarPubMed
Lacalle, S., Saper, C. B. (2000) Calcitonin gene-related peptide-like immunoreactivity marks putative visceral sensory pathways in human brain. Neuroscience 100: 115–130.CrossRefGoogle ScholarPubMed
Del Fiacco, M., Cuello, A. C. (1980) Substance P- and enkephalin-containing neurones in the rat trigeminal system. Neuroscience 5: 803–815.CrossRefGoogle ScholarPubMed
Dell, P. (1952) Corrélations entre le système végétatif et le système de la vie de relation: mésencéphale, diencéphale et cortex cérébral. J Physiol Paris 44: 471–557.Google Scholar
Dell, P., Olson, R. (1951) Projections thalamiques, corticales et cerebelleuses des afferences viscerales vagales. C R Soc Biol Paris 145: 1084–1088.Google Scholar
Derbyshire, S. W., Jones, A. K. (1998) Cerebral responses to a continual tonic pain stimulus measured using positron emission tomography. Pain 76: 127–135.CrossRefGoogle ScholarPubMed
DeVito, J. L., Anderson, M. E. (1982) An autoradiographic study of efferent connections of the globus pallidus in Macaca mulatta. Exp Brain Res 46: 107–117.CrossRefGoogle ScholarPubMed
Diamond, I. T., Fitzpatrick, D., Schmechel, D. (1993) Calcium binding proteins distinguish large and small cells of the ventral posterior and lateral geniculate nuclei of the prosimian galago and the tree shrew (Tupaia belangeri). Proc Natl Acad Sci USA 90: 1425–1429.CrossRefGoogle Scholar
Ding, Y. Q., Takada, M., Shigemoto, R., Mizuno, N. (1995a) Trigeminoparabrachial projection neurons showing substance P receptor-like immunoreactivity in the rat. Neurosci Res 23: 415–418.CrossRefGoogle ScholarPubMed
Ding, Y. Q., Takada, M., Shigemoto, R., Mizuno, N. (1995b) Spinoparabrachial tract neurons showing substance P receptor-like immunoreactivity in the lumbar spinal cord of the rat. Brain Res 674: 336–340.CrossRefGoogle ScholarPubMed
Disbrow, E., Roberts, T., Krubitzer, L. (2000) Somatotopic organization of cortical fields in the lateral sulcus of Homo sapiens: evidence for SII and PV. J Comp Neurol 418: 1–21.3.0.CO;2-P>CrossRefGoogle ScholarPubMed
Disbrow, E., Litinas, E., Recanzone, G. H., Slutsky, D. A., Krubitzer, L. (2002) Thalamocortical projections of the parietal ventral area (PV) and the second somatosensory area (S2) in macaque monkeys. Thalamus Relat Systems 1: 289–302.Google Scholar
Disbrow, E., Litinas, E., Recanzone, G. H., Padberg, J., Krubitzer, L. (2003) Cortical connections of the second somatosensory area and the parietal ventral area in macaque monkeys. J Comp Neurol 462: 382–399.CrossRefGoogle ScholarPubMed
Dong, W. K., Salonen, L. D., Kawakami, Y.et al. (1989) Nociceptive responses of trigeminal neurons in SII-7b cortex of awake monkeys. Brain Res 484: 314–324.CrossRefGoogle ScholarPubMed
Dostrovsky, J. O., Craig, A. D. (1996) Cooling-specific spinothalamic neurons in the monkey. J Neurophysiol 76: 3656–3665.CrossRefGoogle ScholarPubMed
Dostrovsky, J. O., Guilbaud, G. (1988) Noxious stimuli excite neurons in nucleus submedius of the normal and arthritic rat. Brain Res 460: 269–280.CrossRefGoogle ScholarPubMed
Douglas, N. W., Ritchie, J. M. (1962) Mammalian nonmyelinated nerve fibers. Physiol Rev 42: 297.CrossRefGoogle ScholarPubMed
Downie, J. W., Ferrington, D. G., Sorkin, L. S., Willis, W. D. (1988) The primate spinocervicothalamic pathway: responses of cells of the lateral cervical nucleus and spinocervical tract to innocuous and noxious stimuli. J Neurophysiol 59: 861–885.CrossRefGoogle ScholarPubMed
Doyle, C. A., Maxwell, D. J. (1993) Direct catecholaminergic innervation of spinal dorsal horn neurons with axons ascending the dorsal columns in cat. J Comp Neurol 331: 434–444.CrossRefGoogle ScholarPubMed
Dubner, R., Bennett, G. J. (1983) Spinal and trigeminal mechanisms of nociception. Annu Rev Neurosci 6: 381–418.CrossRefGoogle ScholarPubMed
Emmers, R. (1966) Separate relays of tactile, pressure, thermal, and gustatory modalities in the cat thalamus. Proc Soc Exp Biol Med 121: 527–531.CrossRefGoogle ScholarPubMed
Emmers, R., Akert, K. (1963) A Stereotaxic Atlas of the Brain of the Squirrel Monkey (Samiri sciureus). Madison: University of Wisconsin Press.Google Scholar
England, S., Bevan, S., Docherty, R. J. (1996) PGE2 modulates the tetrodotoxin-resistant sodium current in neonatal rat dorsal root ganglion neurones via the cyclic AMP-protein kinase A cascade. J Physiol 495: 429–440.CrossRefGoogle ScholarPubMed
Ericson, A. C., Blomqvist, A., Krout, K., Craig, A. D. (1996) Fine structural organization of spinothalamic and trigeminothalamic lamina I terminations in the nucleus submedius of the cat. J Comp Neurol 371: 497–512.3.0.CO;2-#>CrossRefGoogle ScholarPubMed
Erro, M. E., Lanciego, J. L., Giménez-Amaya, J. M. (2002) Re-examination of the thalamostriatal projections in the rat with retrograde tracers. Neurosci Res 42: 45–55.CrossRefGoogle Scholar
Fenelon, G., François, C., Percheron, G., Yelnik, J. (1991) Topographic distribution of the neurons of the central complex (centre médian-parafascicular complex) and of other thalamic neurons projecting to the striatum in macaques. Neuroscience 45: 495–510.CrossRefGoogle ScholarPubMed
Ferrington, D. G., Downie, J. W., Willis, W. D. (1988) Primate nucleus gracilis neurons: responses to innocuous and noxious stimuli. J Neurophysiol 59: 886–907.CrossRefGoogle ScholarPubMed
Fitzgerald, M., Wall, P. D., Goerdert, M., Emson, P. C. (1985) Nerve growth factor counteracts the neurophysiological and neurochemical effects of chronic sciatic nerve section. Brain Res 332: 131–141.CrossRefGoogle ScholarPubMed
Fitzgerald, E. M., Okuse, K., Wood, J. N., Dolphin, A. C., Moss, S. J. (1999) cAMP-dependent phosphorylation of the tetrodotoxin-resistant voltage-dependent sodium channel SNS. J Physiol 516: 433–446.CrossRefGoogle ScholarPubMed
Fleming, A. A., Todd, A. J. (1994) Thyrotropin-releasing hormone- and GABA-like immunoreactivity coexist in neurons in the dorsal horn of the rat spinal cord. Brain Res 638: 347–351.CrossRefGoogle ScholarPubMed
Friedman, D. P., Jones, E. G. (1981) Thalamic input to areas 3a and 2 in monkeys. J Neurophysiol 45: 59–85.CrossRefGoogle ScholarPubMed
Friedman, D. P., Murray, E. A. (1986) Thalamic connectivity of the second somatosensory area and neighboring somatosensory fields of the lateral sulcus of the macaque. J Comp Neurol 252: 348–373.CrossRefGoogle ScholarPubMed
Fritschy, J. M., Grzanna, R. (1990) Demonstration of two separate descending noradrenergic pathways to the rat spinal cord: evidence for an intragriseal trajectory of locus coeruleus axons in the superficial layers of the dorsal horn. J Comp Neurol 291: 553–582.CrossRefGoogle ScholarPubMed
Fulwiler, C. E., Saper, C. B. (1984) Subnuclear organization of the efferent connections of the parabrachial nucleus in the rat. Brain Res 319: 229–259.CrossRefGoogle ScholarPubMed
Galhardo, V., Lima, D. (1999) Structural characterization of marginal (lamina I) spinal cord neurons in the cat: a Golgi study. J Comp Neurol 414: 315–333.3.0.CO;2-Z>CrossRefGoogle ScholarPubMed
Gamboa-Esteves, F. O., Kaye, J. C., McWilliam, P. N., Lima, D., Batten, T. F. (2001) Immunohistochemical profiles of spinal lamina I neurones retrogradely labelled from the nucleus tractus solitarii in rat suggest excitatory projections. Neuroscience 104: 523–538.CrossRefGoogle ScholarPubMed
Ganchrow, D., Erickson, R. P. (1972) Thalamocortical relations in gustation. Brain Res 36: 298–305.CrossRefGoogle ScholarPubMed
García-Añoveros, J., Samad, T. A., Žuvela-Jelaska, L., Woolf, C. J., Corey, D. P. (2001) Transport and localization of the DEG/EnaC ion channel BNaClα to peripheral mechanosensory terminals of dorsal root ganglia neurons. J Neurosci 21: 2678–2686.CrossRefGoogle ScholarPubMed
Gardner, E., Morin, F. (1955) Sensory pathways in the spinal cord of cat and monkey. Trans Am Neurol Assoc 1955: 192–193.Google Scholar
Georgopoulos, A. P. (1976) Functional properties of primary afferent units probably related to pain mechanisms in primate glabrous skin. J Neurophysiol 39: 71–83.CrossRefGoogle ScholarPubMed
Gelnar, P. A., Krauss, B. R., Sheehe, P. R., Szeverenyi, N. M., Apkarian, A. V. (1999) A comparative fMRI study of cortical representations for thermal painful, vibrotactile, and motor performance tasks. Neuroimage 10: 460–482.CrossRefGoogle ScholarPubMed
Giamberardino, M. A., Valente, R., Bigontina, P., Veccet, L. (1995) Artificial ureteral calculosis in rats: behavioural characterization of visceral pain episodes and their relationship with referred lumbar muscle hyperalgesia. Pain 61: 459–469.CrossRefGoogle ScholarPubMed
Giesler, G. J., Cannon, J. T., Urca, G., Liebeskind, J. C. (1978) Long ascending projections from substantia gelatinosa Rolandi and the subjacent dorsal horn in the rat. Science 202: 984–986.CrossRefGoogle ScholarPubMed
Giesler, G. J., Yezierski, R. P., Gerhart, K. D., Willis, W. D. (1981) Spinothalamic tract neurons that project to medial and/or lateral thalamic nuclei: evidence for a physiologically novel population of spinal cord neurons. J Neurophysiol 46: 1285–1308.CrossRefGoogle ScholarPubMed
Gildenberg, P. L., Hirschberg, R. M. (1984) Limited myelotomy for the treatment of intractable cancer pain. J Neurol Neurosurg Psychiatry 47: 94–96.CrossRefGoogle ScholarPubMed
Gingold, S. I., Greenspan, J. D., Apkarian, A. V. (1991) Anatomic evidence of nociceptive inputs to primary somatosensory cortex: relationship between spinothalamic terminals and thalamocortical cells in squirrel monkeys. J Comp Neurol 308: 467–490.CrossRefGoogle ScholarPubMed
Glazer, E. J., Basbaum, A. I. (1984) Axons which take up [3H]serotonin are presynaptic to enkephalin immunoreactive neurons in cat dorsal horn. Brain Res 298: 386–391.CrossRefGoogle ScholarPubMed
Gloor, P., Olivier, A., Quesney, L. F., Andermann, F., Horowitz, S. (1982) The role of the limbic system in experiential phenomena of temporal lobe epilepsy. Ann Neurol 12: 129–144.CrossRefGoogle ScholarPubMed
Gobel, S. (1975) Golgi studies in the substantia gelatinosa neurons in the spinal trigeminal nucleus. J Comp Neurol 162: 397–415.CrossRefGoogle ScholarPubMed
Gobel, S. (1978a) Golgi studies of the neurons in layer I of the dorsal horn of the medulla (trigeminal nucleus caudalis). J Comp Neurol 180: 375–393.CrossRefGoogle Scholar
Gobel, S. (1978b) Golgi studies of the neurons in layer II of the dorsal horn of the medulla (trigeminal nucleus caudalis). J Comp Neurol 180: 395–413.CrossRefGoogle Scholar
Gobel, S., Falls, W. M., Bennett, G. J., Abdelmoumene, M., Hayashi, H., Humphrey, E. (1980) An EM analysis of the synaptic connections of horseradish peroxidase-filled stalked cells and islet cells in the substantia gelatinosa of adult cat spinal cord. J Comp Neurol 194: 781–807.CrossRefGoogle Scholar
Gobel, S., Falls, W. M., Humphrey, E. (1981) Morphology and synaptic connections of ultrafine primary axons in lamina I of the spinal dorsal horn: candidates for the terminal axonal arbors of primary neurons with unmyelinated (C) axons. J Neurosci 1: 1163–1179.CrossRefGoogle ScholarPubMed
Gold, M. S., Reichling, D. B., Schuster, M. J., Levine, J. D. (1996) Hyperalgesic agents increase a tetrodotoxin-resistant Na+ current in nociceptors. Proc Natl Acad Sci USA 93: 1108–1112.CrossRefGoogle ScholarPubMed
Goldman-Rakic, P. S., Ilinsky, I. A., Jouandet, M. L. (1985) Organization of the nigrothalamocortical system in the rhesus monkey. J Comp Neurol 236: 315–330.Google Scholar
Gong, L. W., Ding, Y. Q., Wang, D.et al. (1997) GABAergic synapses on mu-opioid receptor-expressing neurons in the superficial dorsal horn: an electron microscope study in the cat spinal cord. Neurosci Lett 227: 33–36.CrossRefGoogle ScholarPubMed
Graziano, A., Jones, E. G. (2004) Widespread thalamic terminations of fibers arising in the superficial medullary dorsal horn of monkeys and their relation to calbindin immunoreactivity. J Neurosci 24: 248–256.CrossRefGoogle ScholarPubMed
Graziano, A., Liu, X. B., Murray, K. D., Jones, E. G. (2008) Vesicular glutamate transporters define two sets of glutamatergic afferents to the somatosensory thalamus and two thalamocortical projections in the mouse. J Comp Neurol 507: 1258–1276.CrossRefGoogle ScholarPubMed
Green, B. G. (2004) Temperature perception and nociception. J Neurobiol 61: 13–29.CrossRefGoogle ScholarPubMed
Green, B. G., Akirav, C. (2007) Individual differences in temperature perception: evidence of common processing of sensation intensity of warmth and cold. Somatosens Mot Res 24: 71–84.CrossRefGoogle Scholar
Green, B. G., Cruz, A. (1998) “Warmth-insensitive fields”: evidence of sparse and irregular innervation of human skin by the warmth sense. Somatosens Mot Res 15: 269–275.CrossRefGoogle ScholarPubMed
Green, B. G., Pope, J. V. (2003) Innocuous cooling can produce nociceptive sensations that are inhibited during dynamic mechanical contact. Exp Brain Res 148: 290–299.CrossRefGoogle ScholarPubMed
Green, B. G., Roman, C., Schoen, K., Collins, H. (2008) Nociceptive sensations evoked from “spots” in the skin by mild cooling and heating. Pain 135: 196–208.CrossRefGoogle ScholarPubMed
Greenspan, J. D., Thomadaki, M., McGillis, S. L. B. (1997) Spatial summation of perceived pressure, sharpness and mechanically evoked cutaneous pain. Somatosens Mot Res 14: 107–112.Google ScholarPubMed
Greenspan, J. D., Lee, R. R., Lenz, F. A. (1999) Pain sensitivity alterations as a function of lesion location in the parasylvian cortex. Pain 81: 273–282.CrossRefGoogle ScholarPubMed
Grigg, P., Schaible, H. G., Schmidt, R. F. (1986) Mechanical sensitivity of group III and IV afferents from posterior articular nerve in normal and inflamed cat knee. J Neurophysiol 55: 635–643.CrossRefGoogle ScholarPubMed
Groenewegen, H. J. (1988) Organization of the afferent connections of the mediodorsal thalamic nucleus in the rat, related to the mediodorsal-prefrontal topography. Neuroscience 24: 379–431.CrossRefGoogle ScholarPubMed
Groenewegen, H. J., Galis-de, G. Y., Smeets, W. J. (1999) Integration and segregation of limbic cortico-striatal loops at the thalamic level: an experimental tracing study in rats. J Chem Neuroanat 16: 167–185.CrossRefGoogle ScholarPubMed
Guenther, S., Reeh, P. W., Kress, M. (1999) Rises in [Ca2+]i mediate capsaicin- and proton-induced heat sensitization of rat primary nociceptor neurons. Eur J Neurosci 11: 3143–3150.CrossRefGoogle Scholar
Ha, H. (1971) Cervicothalamic tract in the rhesus monkey. Exp Neurol 33: 205–212.CrossRefGoogle ScholarPubMed
Ha, H., Liu, C. N. (1966) Organization of the spino-cervico-thalamic system. J Comp Neurol 127: 445–470.CrossRefGoogle ScholarPubMed
Ha, H., Morin, F. (1964) Comparative anatomical observations of the lateral cervical nucleus, N. cervicalis lateralis. Anat Rec 148: 374–375.Google Scholar
Haber, L. H., Martin, R. F., Chatt, A. B., Willis, W. D. (1978) Effects of stimulation in nucleus reticularis gigantocellularis on the activity of spinothalamic tract neurons in the monkey. Brain Res 153: 163–168.CrossRefGoogle ScholarPubMed
Haber, L. H., Moore, B. D., Willis, W. D. (1982) Electrophysiological response properties of spinoreticular neurons in the monkey. J Comp Neurol 207: 75–84.CrossRefGoogle ScholarPubMed
Häbler, H. J., Jänig, W., Koltzenburg, M. (1988) A novel type of unmyelinated chemosensitive nociceptor in the acutely inflamed urinary bladder. Agents Actions 25: 219–221.CrossRefGoogle ScholarPubMed
Häbler, H. J., Jänig, W., Koltzenburg, M. (1990) Activation of unmyelinated afferent fibres by mechanical stimuli and inflammation of the urinary bladder in the cat. J Physiol 425: 545–562.CrossRefGoogle ScholarPubMed
Häbler, H. J., Jänig, W., Koltzenburg, M. (1993) Receptive properties of myelinated primary afferents innervating the inflamed urinary bladder of the cat. J Neurophysiol 69: 395–405.CrossRefGoogle ScholarPubMed
Haines, D. E. (2008) Neuroanatomy. An Atlas of Structures, Sections and Systems. Seventh Edition. Philadelphia: Wolters Kluwer/Lippincott Williams and Wilkins.Google Scholar
Halsell, C. B. (1992) Organization of parabrachial nucleus efferents to the thalamus and amygdala in the golden hamster. J Comp Neurol 317: 57–78.CrossRefGoogle ScholarPubMed
Han, Z. S., Zhang, E. T., Craig, A. D. (1998) Nociceptive and thermoreceptive lamina I neurons are anatomically distinct. Nat Neurosci 1: 218–225.CrossRefGoogle ScholarPubMed
Harper, R. M., Bandler, R., Spriggs, D., Alger, J. R. (2000) Lateralized and widespread brain activation during transient blood pressure elevation revealed by magnetic resonance imaging. J Comp Neurol 417: 195–204.3.0.CO;2-V>CrossRefGoogle ScholarPubMed
Hashikawa, T., Rausell, E., Molinari, M., Jones, E. G. (1991) Parvalbumin- and calbindin-containing neurons in the monkey medial geniculate complex: differential distribution and cortical layer specific projections. Brain Res 544: 335–341.CrossRefGoogle ScholarPubMed
Hashikawa, T., Molinari, M., Rausell, E., Jones, E. G. (1995) Patchy and laminar terminations of medial geniculate axons in monkey auditory cortex. J Comp Neurol 362: 195–208.CrossRefGoogle ScholarPubMed
Hassler, R. (1959) Anatomy of the thalamus. In Introduction to Stereotaxis with an Atlas of the Human Brain (Schaltenbrand, G., Bailey, P., eds), pp. 230–290. New York: Thieme.Google Scholar
Hassler, R. (1960) Die zentraler Systeme des Schmerzes. Acta Neurochir 8: 353–423.CrossRefGoogle Scholar
Hassler, R. (1970) Dichotomy of facial pain conduction in the diencephalon. In Trigeminal Neuralgia. Pathogenesis and Pathophysiology (Hassler, R., Walker, A. E., eds), pp. 123–138. Stuttgart: Thieme.Google Scholar
Haupt, P., Jänig, W., Kohler, W. (1983) Response pattern of visceral afferent fibres, supplying the colon, upon chemical and mechanical stimuli. Pflügers Arch 398: 41–47.CrossRefGoogle ScholarPubMed
Hayama, T., Ogawa, H. (1987) Electrophysiological evidence of collateral projections of parabrachio-thalamic relay neurons. Neurosci Lett 83: 95–100.CrossRefGoogle ScholarPubMed
Hayes, N. L., Rustioni, A. (1980) Spinothalamic and spinomedullary neurons in macaques: a single and double retrograde tracer study. Neuroscience 5: 861–874.CrossRefGoogle ScholarPubMed
Hirai, T., Jones, E. G. (1988) Segregation of lemniscal inputs and motor cortex outputs in cat ventral thalamic nuclei: application of a novel technique. Exp Brain Res 71: 329–344.CrossRefGoogle ScholarPubMed
Hirai, T., Jones, E. G. (1989a) A new parcellation of the human thalamus on the basis of histochemical staining. Brain Res Rev 14: 1–34.CrossRefGoogle ScholarPubMed
Hirai, T., Jones, E. G. (1989b) Distribution of tachykinin- and enkephalin-immunoreactive fibers in the human thalamus. Brain Res Rev 14: 35–52.CrossRefGoogle ScholarPubMed
Hirschberg, R. M., Al-Chaer, E. D., Lawand, N. B., Westlund, K. N., Willis, W. D. (1996) Is there a pathway in the posterior funiculus that signals visceral pain?Pain 67: 291–305.CrossRefGoogle Scholar
Hník, P., Hudlická, O., Kucera, J., Payne, R. (1969) Activation of muscle afferents by nonproprioceptive stimuli. Am J Physiol 217: 1451–1458.Google Scholar
Hobbs, S. F., Oh, U. T., Brennan, T. J.et al. (1990) Urinary bladder and hindlimb stimuli inhibit T1-T6 spinal and spinoreticular cells. Am J Physiol 258: R10–R20.Google ScholarPubMed
Hodge, C. J., Apkarian, A. V. (1990) The spinothalamic tract. Crit Rev Neurobiol 5: 363–397.Google ScholarPubMed
Hökfelt, T., Kellerth, J. O., Nilsson, G., Pernow, B. (1975) Substance P: localization in the central nervous system and in some primary sensory neurons. Science 190: 889–890.CrossRefGoogle ScholarPubMed
Hökfelt, T., Ljüngdahl, A., Terenius, L., Elde, R., Nilsson, G. (1977) Immunohistochemical analysis of peptide pathways possibly related to pain and analgesia: enkephalin and substance P. Proc Natl Acad Sci USA 74: 3081–3085.CrossRefGoogle ScholarPubMed
Hökfelt, T., Morino, P., Verge, V.et al. (1994) CCK in cerebral cortex and the spinal level. Ann NY Acad Sci 1994: 157–163.CrossRefGoogle Scholar
Honda, C. N., Arvidsson, U. (1995) Immunohistochemical localization of delta- and mu-opioid receptors in primate spinal cord. Neuroreport 6: 1025–1028.CrossRefGoogle ScholarPubMed
Honore, P., Menning, P. M., Rogers, S. D.et al. (1999) Spinal substance P receptor expression and internalization in acute, short-term and long-term inflammatory pain states. J Neurosci 19: 7670–7678.CrossRefGoogle Scholar
Houser, C. R., Crawford, G. D., Barber, R. P., Salvaterra, P. M., Vaughn, J. E. (1983) Organization and morphological characteristics of cholinergic neurons: an immunocytochemical study with a monoclonal antibody to choline acetyltransferase. Brain Res 266: 97–119.CrossRefGoogle ScholarPubMed
Hunt, S. P., Rossi, J. (1985) Peptide- and non-peptide-containing unmyelinated primary afferents: the parallel processing of nociceptive information. Phil Trans R Soc Lond B 308: 283–289.CrossRefGoogle ScholarPubMed
Hunt, S. P., Kelly, J. S., Emson, P. C.et al. (1981) An immunohistochemical study of neuronal populations containing neuropeptides or gamma-aminobutyrate within the superficial layers of the rat dorsal horn. Neuroscience 6: 1883–1898.CrossRefGoogle ScholarPubMed
Hylden, J. L., Hayashi, H., Ruda, M. A., Dubner, R. (1986) Serotonin innervation of physiologically identified lamina I projection neurons. Brain Res 370: 401–404.CrossRefGoogle ScholarPubMed
Iliakis, B., Anderson, N. L., Irish, P. S., Henry, M. A., Westrum, L. E. (1996) Electron microscopy of immunoreactivity patterns for glutamate and gamma-aminobutyric acid in synaptic glomeruli of the feline spinal trigeminal nucleus (subnucleus caudalis). J Comp Neurol 366: 465–477.3.0.CO;2-2>CrossRefGoogle Scholar
Ilinsky, I. A., Kultas-Ilinsky, K. (1987) Sagittal cytoarchitectonic maps of the Macaca mulatta thalamus with a revised nomenclature of the motor-related nuclei validated by observations on their connectivity. J Comp Neurol 262: 331–364.CrossRefGoogle ScholarPubMed
Immke, D. C., McCleskey, E. W. (2001) Lactate enhances the acid-sensing Na+ channel on ischemia sensing neurons. Nature Neurosci 4: 869–870.CrossRefGoogle ScholarPubMed
Ito, S., Ogawa, H. (1991) Cytochrome oxidase staining facilitates unequivocal visualization of the primary gustatory area in the fronto-operculo-insular cortex of macaque monkeys. Neurosci Lett 130: 61–64.CrossRefGoogle ScholarPubMed
Ito, S., Ohgushi, M., Ifuku, H., Ogawa, H. (2001) Neuronal activity in the monkey fronto-opercular and adjacent insular/prefrontal cortices during a taste discrimination GO/NOGO task: response to cues. Neurosci Res 41: 257–266.CrossRefGoogle ScholarPubMed
Iwamura, Y., Tanaka, M., Sakamoto, M., Hikosaka, O. (1983a) Functional subdivisions representing different finger regions in area 3 of the first somatosensory cortex of the conscious monkey. Exp Brain Res 51: 315–326.Google Scholar
Iwamura, Y., Tanaka, M., Sakamoto, M., Hikosaka, O. (1983b) Converging patterns of finger representation and complex response properties of neurons in area 1 of the first somatosensory cortex in the conscious monkey. Exp Brain Res 51: 327–337.Google Scholar
Iwata, K., Kenshalo, D. R., Dubner, R., Nahin, R. L. (1992) Diencephalic projections from the superficial and deep laminae of the medullary dorsal horn in the rat. J Comp Neurol 321: 404–420.CrossRefGoogle ScholarPubMed
Jänig, W. (1996) Neurobiology of visceral afferent neurons: neuroanatomy, functions, organ regulations and sensations. Biol Psychol 42: 29–51.CrossRefGoogle ScholarPubMed
Jänig, W., Koltzenburg, M. (1991) Receptive properties of sacral primary afferent neurons supplying the colon. J Neurophysiol 65: 1067–1077.CrossRefGoogle ScholarPubMed
Jessell, T., Tsunoo, A., Kanazawa, I., Otsuka, M. (1979) Substance P: depletion in the dorsal horn of rat spinal cord after section of the peripheral processes of primary sensory neurons. Brain Res 168: 247–259.CrossRefGoogle ScholarPubMed
Jones, E. G. (1975) Possible determinants of the degree of retrograde neuronal labeling with horseradish peroxidase. Brain Res 85: 249–253.CrossRefGoogle ScholarPubMed
Jones, E. G. (1983) Lack of collateral thalamocortical projections to fields of the first somatic sensory cortex in monkeys. Exp Brain Res 52: 375–384.CrossRefGoogle ScholarPubMed
Jones, E. G. (1985) The Thalamus. New York: Plenum.CrossRefGoogle Scholar
Jones, E. G. (1987) Ascending inputs to, and internal organization of, cortical motor areas. Ciba Found Symp 132: 21–39.Google ScholarPubMed
Jones, E. G. (1989) Defining the thalamic intralaminar nuclei in primates. In Neurologia e Scienze di Base: Scritti in Onore de Giorgio Macchi (Gainotti, G., Bentivoglio, M., Bergonzi, F. M., eds), pp. 161–193. Milano: Università Cattolica del Sacro Cuore.Google Scholar
Jones, E. G. (1998a) A new view of specific and nonspecific thalamocortical connections. Adv Neurol 77: 49–71.Google ScholarPubMed
Jones, E. G. (1998b) Viewpoint: the core and matrix of thalamic organization. Neuroscience 85: 331–345.CrossRefGoogle ScholarPubMed
Jones, E. G. (1998c) The thalamus of primates. In Handbook of Chemical Neuroanatomy, the Primate Nervous System, Part II (Bloom, F. E., Björklund, A., Hökfelt, T., eds), pp. 1–298. Amsterdam: Elsevier.Google Scholar
Jones, E. G. (2001) The thalamic matrix and thalamocortical synchrony. Trends Neurosci 24: 595–601.CrossRefGoogle ScholarPubMed
Jones, E. G. (2002) A pain in the thalamus. J Pain 3: 102–104.CrossRefGoogle ScholarPubMed
Jones, E. G. (2003) Chemically defined parallel pathways in the monkey auditory system. Ann NY Acad Sci 999: 218–233.CrossRefGoogle ScholarPubMed
Jones, E. G. (2007) The Thalamus. Second Edition. Cambridge: Cambridge University Press.Google Scholar
Jones, E. G., Burton, H. (1976) Areal differences in the laminar distribution of thalamic afferents in cortical fields of the insular, parietal and temporal regions of primates. J Comp Neurol 168: 197–247.CrossRefGoogle ScholarPubMed
Jones, E. G., Friedman, D. P. (1982) Projection pattern of functional components of thalamic ventrobasal complex on monkey somatosensory cortex. J Neurophysiol 48: 521–544.CrossRefGoogle ScholarPubMed
Jones, E. G., Leavitt, R. Y. (1974) Retrograde axonal transport and the demonstration of non-specific projections to the cerebral cortex and striatum from thalamic intralaminar nuclei in the rat, cat and monkey. J Comp Neurol 154: 349–377.CrossRefGoogle ScholarPubMed
Jones, E. G., Pons, T. P. (1998) Thalamic and brainstem contributions to large-scale plasticity of primate somatosensory cortex. Science 282: 1121–1125.CrossRefGoogle ScholarPubMed
Jones, E. G., Powell, T. P. S. (1970) Connexions of the somatic sensory cortex of the rhesus monkey. 3. Thalamic connexions. Brain 93: 37–56.CrossRefGoogle ScholarPubMed
Jones, E. G., Wise, S. P., Coulter, J. D. (1979) Differential thalamic relationships of sensory-motor and parietal cortical fields in monkeys. J Comp Neurol 183: 833–881.CrossRefGoogle ScholarPubMed
Jones, E. G., Friedman, D. P., Hendry, S. H. C. (1982) Thalamic basis of place- and modality-specific columns in monkey somatosensory cortex: a correlative anatomical and physiological study. J Neurophysiol 48: 545–568.CrossRefGoogle ScholarPubMed
Jones, E. G., Hendry, S. H. C., Brandon, C. (1986a) Cytochrome oxidase staining reveals functional organization of monkey somatosensory thalamus. Exp Brain Res 62: 438–442.CrossRefGoogle ScholarPubMed
Jones, E. G., Schwark, H. D., Callahan, P. A. (1986b) Extent of the ipsilateral representation in the ventral posterior medial nucleus of the monkey thalamus. Exp Brain Res 63: 310–320.CrossRefGoogle ScholarPubMed
Jones, E. G., Dell'Anna, M. E., Molinari, M., Rausell, E., Hashikawa, T. (1995) Subdivisions of macaque monkey auditory cortex revealed by calcium-binding protein immunoreactivity. J Comp Neurol 362: 153–170.CrossRefGoogle ScholarPubMed
Jones, E. G., Lensky, K. M., Chan, V. H. (2001) Delineation of thalamic nuclei immunoreactive for calcium-binding proteins in and around the posterior pole of the ventral posterior complex. Thalamus Related Systems 1: 213–224.Google Scholar
Jones, S. L. (1991) Descending noradrenergic influences on pain. Prog Brain Res 88: 381–394.CrossRefGoogle ScholarPubMed
Jones, S. L., Light, A. R. (1990) Termination patterns of serotoninergic medullary raphespinal fibers in the rat lumbar spinal cord: an anterograde immunohistochemical study. J Comp Neurol 297: 267–282.CrossRefGoogle ScholarPubMed
Ju, G., Hökfelt, T., Brodin, E.et al. (1987) Primary sensory neurons of the rat showing calcitonin gene-related peptide immunoreactivity and their relation to substance P-, somatostatin-, galanin-, vasoactive intestinal polypeptide- and cholecystokinin-immunoreactive ganglion cells. Cell Tissue Res 247: 417–431.CrossRefGoogle ScholarPubMed
Kaas, J. H., Nelson, R. J., Sur, M., Lin, C. S., Merzenich, M. M. (1979) Multiple representations of the body within the primary somatosensory cortex of primates. Science 204: 521–523.CrossRefGoogle ScholarPubMed
Kaas, J. H., Nelson, R. J., Sur, M., Dykes, R. W., Merzenich, M. M. (1984) The somatotopic organization of the ventroposterior thalamus of the squirrel monkey, Saimiri sciureus. J Comp Neurol 226: 111–140.CrossRefGoogle ScholarPubMed
Kamogawa, H., Bennett, G. J. (1986) Dorsal column postsynaptic neurons in the cat are excited by myelinated nociceptors. Brain Res 364: 386–390.CrossRefGoogle ScholarPubMed
Kanagasuntheram, R., Wong, W. C. (1968a) Nuclei of the diencephalon of Hylobatidae. J Comp Neurol 134: 265–286.CrossRefGoogle ScholarPubMed
Kanagasuntheram, R., Wong, W. C., Krishnamurti, A. (1968b) Nuclear configuration of the diencephalon in some lorisoids. J Comp Neurol 133: 241–268.CrossRefGoogle ScholarPubMed
Karimnamazi, H., Travers, J. B. (1998) Differential projections from gustatory responsive regions of the parabrachial nucleus to the medulla and forebrain. Brain Res 813: 283–302.CrossRefGoogle ScholarPubMed
Katoh, S., Hisano, S., Daikoku, S. (1988a) Ultrastructural localization of immunolabeled substance P and methionine-enkephalin-octapeptide in the surface layer of the dorsal horn of rat spinal cord. Cell Tissue Res 253: 55–60.CrossRefGoogle ScholarPubMed
Katoh, S., Hisano, S., Kawano, H., Kagotani, Y., Daikoku, S. (1988b) Light- and electron-microscopic evidence of costoring of immunoreactive enkephalins and substance P in dorsal horn neurons of rat. Cell Tissue Res 253: 297–303.CrossRefGoogle ScholarPubMed
Katter, J. T., Burstein, R., Giesler, G. J. (1991) The cells of origin of the spinohypothalamic tract in cats. J Comp Neurol 303: 101–112.CrossRefGoogle ScholarPubMed
Kaufman, E. F., Rosenquist, A. C. (1985) Efferent projections of the thalamic intralaminar nuclei in the cat. Brain Res 335: 257–279.CrossRefGoogle ScholarPubMed
Kawakita, K., Dostrovsky, J. O., Tang, J. S., Chiang, C. Y. (1993) Responses of neurons in the rat thalamic nucleus submedius to cutaneous, muscle and visceral nociceptive stimuli. Pain 55: 327–338.CrossRefGoogle ScholarPubMed
Kechagias, S., Broman, J. (1994) Compartmentation of glutamate and glutamine in the lateral cervical nucleus: further evidence for glutamate as a spinocervical tract neurotransmitter. J Comp Neurol 340: 531–540.CrossRefGoogle ScholarPubMed
Kemp, T., Spike, R. C., Watt, C., Todd, A. J. (1996) The mu-opioid receptor (MOR1) is mainly restricted to neurons that do not contain GABA or glycine in the superficial dorsal horn of the rat spinal cord. Neuroscience 75: 1231–1238.CrossRefGoogle ScholarPubMed
Kenshalo, D. R., Isensee, O. (1983) Responses of primate SI cortical neurons to noxious stimuli. J Neurophysiol 50: 1479–1496.CrossRefGoogle ScholarPubMed
Kenshalo, D. R., Willis, W. D. (1991) The role of the cerebral cortex in pain sensation. In Cerebral Cortex, Vol. 9. Normal and Altered States of Function (Peters, A., Jones, E. G., eds), pp. 153–212. New York: Plenum.CrossRefGoogle Scholar
Kenshalo, D. R., Giesler, G. J., Leonard, R. B., Willis, W. D. (1980) Responses of neurons in primate ventral posterior lateral nucleus to noxious stimuli. J Neurophysiol 43: 1594–1614.CrossRefGoogle ScholarPubMed
Kerr, F. W. L. (1970a) The organization of primary afferents in the subnucleus caudalis of the trigeminal: a light and electron microscopic study of degeneration. Brain Res 23: 147–165.CrossRefGoogle ScholarPubMed
Kerr, F. W. (1970b) The fine structure of the subnucleus caudalis of the trigeminal nerve. Brain Res 23: 129–145.CrossRefGoogle ScholarPubMed
Kerr, F. W. L. (1975a) Neuroanatomical substrates of nociception in the spinal cord. Pain 1: 325–356.CrossRefGoogle ScholarPubMed
Kerr, F. W. L. (1975b) The ventral spinothalamic tract and other ascending systems of the ventral funiculus of the spinal cord. J Comp Neurol 159: 335–356.CrossRefGoogle ScholarPubMed
Kevetter, G. A., Willis, W. D. (1984) Collateralization in the spinothalamic tract: new methodology to support or deny phylogenetic theories. Brain Res 319: 1–14.CrossRefGoogle ScholarPubMed
Kevetter, G. A., Haber, L. H., Yezierski, R. P.et al. (1982) Cells of origin of the spinoreticular tract in the monkey. J Comp Neurol 207: 61–74.CrossRefGoogle ScholarPubMed
King, A. B., Menon, R. S., Hachinski, V., Cechetto, D. F. (1999) Human forebrain activation by visceral stimuli. J Comp Neurol 413: 572–582.3.0.CO;2-S>CrossRefGoogle ScholarPubMed
Kircher, C., Ha, H. (1968) The nucleus cervicalis lateralis in primates, including the human. Anat Rec 160: 376.Google Scholar
Kniffki, K. D., Mense, S., Schmidt, R. F. (1977) The spinocervical tract as a possible pathway for muscular nociception. J Physiol (Paris) 73: 359–366.Google ScholarPubMed
Kniffki, K. D., Mense, S., Schmidt, R. F. (1978) Responses of group IV afferent units from skeletal muscle to stretch, contraction and chemical stimulation. Exp Brain Res 31: 511–522.CrossRefGoogle ScholarPubMed
Knyihar-Csillik, E., Csillik, B., Rakic, P. (1982a) Periterminal synaptology of dorsal root glomerular terminals in the substantia gelatinosa of the spinal cord in the rhesus monkey. J Comp Neurol 210: 376–399.CrossRefGoogle ScholarPubMed
Knyihar-Csillik, E., Csillik, B., Rakic, P. (1982b) Ultrastructure of normal and degenerating glomerular terminals of dorsal root axons in the substantia gelatinosa of the rhesus monkey. J Comp Neurol 210: 357–375.CrossRefGoogle ScholarPubMed
Knyihar-Csillik, E., Rakic, P., Csillik, B. (1999) Development of glomerular synaptic complexes and immunohistochemical differentiation in the superficial dorsal horn of the embryonic primate spinal cord. Anat Embryol 199: 125–148.CrossRefGoogle ScholarPubMed
Konietzny, F., Perl, E. R., Trevino, D., Light, A., Hensel, H. (1981) Sensory experiences in man evoked by intraneural electrical stimulation of intact cutaneous afferent fibers. Exp Brain Res 42: 219–222.CrossRefGoogle ScholarPubMed
Kosaki, H., Hashikawa, T., He, J., Jones, E. G. (1997) Tonotopic organization of auditory cortical fields delineated by parvalbumin immunoreactivity in macaque monkeys. J Comp Neurol 386: 304–316.3.0.CO;2-K>CrossRefGoogle ScholarPubMed
Kress, M., Guenther, S. (1999) Role of [Ca2+]i in the ATP-induced heat sensitization process of rat nociceptive neurons. J Neurophysiol 81: 2612–2619.CrossRefGoogle Scholar
Kress, M., Koltzenburg, M., Reeh, P. W., Handwerker, H. O. (1992) Responsiveness and functional attributes of electrically localized terminals of cutaneous C-fibers in vivo and in vitro. J Neurophysiol 68: 581–595.CrossRefGoogle ScholarPubMed
Krettek, J. E., Price, J. L. (1977) The cortical projections of the mediodorsal nucleus and adjacent thalamic nuclei in the rat. J Comp Neurol 171: 157–191.CrossRefGoogle ScholarPubMed
Krout, K. E., Loewy, A. D. (2000) Parabrachial nucleus projections to midline and intralaminar thalamic nuclei of the rat. J Comp Neurol 428: 475–494.3.0.CO;2-9>CrossRefGoogle ScholarPubMed
Krout, K. E., Belzer, R. E., Loewy, A. D. (2002) Brainstem projections to midline and intralaminar thalamic nuclei of the rat. J Comp Neurol 448: 53–101.CrossRefGoogle ScholarPubMed
Krubitzer, L. A., Kaas, J. H. (1990) The organization and connections of somatosensory cortex in marmosets. J Neurosci 10: 952–974.CrossRefGoogle ScholarPubMed
Krubitzer, L. A., Kaas, J. H. (1992) The somatosensory thalamus of monkeys: cortical connections and a redefinition of nuclei in marmosets. J Comp Neurol 319: 123–140.CrossRefGoogle Scholar
Krubitzer, L., Clarey, J., Tweedale, R., Elston, G., Calford, M. (1995) A redefinition of somatosensory areas in the lateral sulcus of macaque monkeys. J Neurosci 15: 3821–3839.CrossRefGoogle ScholarPubMed
Kruger, L., Mantyh, P. W., Sternini, C., Brecha, N. C., Mantyh, C. R. (1988a) Calcitonin gene-related peptide (CGRP) in the rat central nervous system: patterns of immunoreactivity and receptor binding sites. Brain Res 463: 223–244.CrossRefGoogle ScholarPubMed
Kruger, L., Sternini, C., Brecha, N., Mantyh, P. W. (1988b) Distribution of calcitonin gene-related peptide immunoreactivity in relation to the rat central somatosensory projection. J Comp Neurol 273: 149–162.CrossRefGoogle ScholarPubMed
Kumazawa, T., Mizumura, K. (1976) The polymodal C-fiber receptor in the muscle of the dog. Brain Res 101: 589–593.CrossRefGoogle ScholarPubMed
Kumazawa, T., Mizumura, K. (1977) The polymodal receptors in the testis of dog. Brain Res 136: 553–558.CrossRefGoogle ScholarPubMed
Kumazawa, T., Mizumura, K. (1980a) Chemical responses of polymodal receptors of the scrotal contents in dogs. J Physiol 299: 219–231.CrossRefGoogle ScholarPubMed
Kumazawa, T., Mizumura, K. (1980b) Mechanical and thermal responses of polymodal receptors recorded from the superior spermatic nerve of dogs. J Physiol 299: 233–245.CrossRefGoogle ScholarPubMed
Kumazawa, T., Perl, E. R. (1977a) Primate cutaneous sensory units with unmyelinated (C) afferent fibers. J Neurophysiol 40: 1325–1338.CrossRefGoogle ScholarPubMed
Kumazawa, T., Perl, E. R. (1977b) Primate cutaneous receptors with unmyelinated (C) fibres and their projection to the substantia gelatinosa. J Physiol (Paris) 73: 287–304.Google ScholarPubMed
Kumazawa, T., Perl, E. R. (1978) Excitation of marginal and substantia gelatinosa neurons in the primate spinal cord: indications of their place in dorsal horn functional organization. J Comp Neurol 177: 417–434.CrossRefGoogle ScholarPubMed
Kumazawa, T., Perl, E. R., Burgess, P. R., Whitehorn, D. (1975) Ascending projections from marginal zone (lamina I) neurons of the spinal dorsal horn. J Comp Neurol 162: 1–12.CrossRefGoogle Scholar
Kwiat, G. C., Basbaum, A. I. (1992) The origin of brainstem noradrenergic and serotonergic projections to the spinal cord dorsal horn in the rat. Somatosens Mot Res 9: 157–173.CrossRefGoogle ScholarPubMed
LaMotte, C. (1977) Distribution of the tract of Lissauer and the dorsal root fibers in the primate spinal cord. J Comp Neurol 172: 529–561.CrossRefGoogle ScholarPubMed
LaMotte, C. C., DeLanerolle, N. C. (1981) Human spinal neurons: innervation by both substance P and enkephalin. Neuroscience 6: 713–723.CrossRefGoogle ScholarPubMed
LaMotte, R. H., Thalhammer, J. G., Robinson, C. J. (1983) Peripheral neural correlates of magnitude of cutaneous pain and hyperalgesia: a comparison of neural events in monkey with sensory judgments in human. J Neurophysiol 50: 1–26.CrossRefGoogle ScholarPubMed
Landgren, S., Nordwall, A., Wengström, C. (1965) The location of the thalamic relay in the spino-cervico-lemniscal path. Acta Physiol Scand 65: 164–175.CrossRefGoogle Scholar
Landry, M., Bouali-Benazzouz, R., El Mestakawi, S., Ravassard, P., Nagy, F. (2004) Expression of vesicular glutamate transporters in rat lumbar spinal cord, with a note on dorsal root ganglia. J Comp Neurol 468: 380–394.CrossRefGoogle ScholarPubMed
Lekan, H. A., Carlton, S. M. (1995) Glutamatergic and GABAergic input to rat spinothalamic tract cells in the superficial dorsal horn. J Comp Neurol 361: 417–428.CrossRefGoogle ScholarPubMed
Lende, R. A., Kirsch, W. M., Druckman, R. (1971) Relief of facial pain after combined removal of precentral and postcentral cortex. J Neurosurg 34: 537–543.CrossRefGoogle ScholarPubMed
Lenz, F. A., Dostrovsky, J. O., Tasker, R. R.et al. (1988) Single-unit analysis of the human ventral thalamic nuclear group: somatosensory responses. J Neurophysiol 59: 299–316.CrossRefGoogle ScholarPubMed
Lenz, F. A., Seike, M., Lin, Y. C.et al. (1993a) Neurons in the area of human thalamic nucleus ventralis caudalis respond to painful heat stimuli. Brain Res 623: 235–240.CrossRefGoogle ScholarPubMed
Lenz, F. A., Seike, M., Richardson, R. T.et al. (1993b) Thermal and pain sensations evoked by microstimulation in the area of human ventrocaudal nucleus. J Neurophysiol 70: 200–212.CrossRefGoogle ScholarPubMed
Lenz, F. A., Gracely, R. H., Rowland, L. H., Dougherty, P. M. (1994a) A population of cells in the human thalamic principal sensory nucleus respond to painful mechanical stimuli. Neurosci Lett 180: 46–50.CrossRefGoogle ScholarPubMed
Lenz, F. A., Gracely, R. H., Hope, E. J.et al. (1994b) The sensation of angina can be evoked by stimulation of the human thalamus. Pain 59: 119–125.CrossRefGoogle ScholarPubMed
Lenz, F. A., Gracely, R. H., Romanoski, A. J.et al. (1995) Stimulation in the human somatosensory thalamus can reproduce both the affective and sensory dimensions of previously experienced pain. Nature Med 1: 910–913.CrossRefGoogle ScholarPubMed
Lenz, F. A., Dougherty, P. M., Traill, T. A. (1996) Thalamic mechanisms of chest pain in the absence of cardiac pathology. Heart 75: 429–430.CrossRefGoogle ScholarPubMed
Lenz, F. A., Gracely, R. H., Zirh, T. A.et al. (1997) Human thalamic nucleus mediating taste and multiple other sensations related to ingestive behavior. J Neurophysiol 77: 3406–3409.CrossRefGoogle ScholarPubMed
Lenz, F. A., Rios, M., Chau, D., Krauss, G. L., Zirh, T. A., Lesser, R. P. (1998a) Painful stimuli evoke potentials recorded from the parasylvian cortex in humans. J Neurophysiol 80: 2077–2088.CrossRefGoogle ScholarPubMed
Lenz, F. A., Garonzik, I. M., Zirh, T. A., Dougherty, P. M. (1998b) Neuronal activity in the region of the thalamic principal sensory nucleus (ventralis caudalis) in patients with pain following amputations. Neuroscience 86: 1065–1081.CrossRefGoogle ScholarPubMed
Lenz, F. A., Rios, M., Zirh, A., Chau, D., Krauss, G., Lesser, R. P. (1998c) Painful stimuli evoke potentials recorded over the human anterior cingulate gyrus. J Neurophysiol 79: 2231–2234.CrossRefGoogle ScholarPubMed
Lewis, T. (1942) Pain. London: Macmillan.Google Scholar
Li, Y., Li, H., Kaneko, T., Mizuno, N. (1999a) Local circuit neurons showing calbindin D28k-immunoreactivity in the substantia gelatinosa of the medullary dorsal horn of the rat. An immunohistochemical study combined with intracellular staining in slice preparation. Brain Res 840: 179–183.CrossRefGoogle ScholarPubMed
Li, Y. Q., Li, H., Kaneko, T., Mizuno, N. (1999b) Substantia gelatinosa neurons in the medullary dorsal horn: an intracellular labeling study in the rat. J Comp Neurol 411: 399–412.3.0.CO;2-6>CrossRefGoogle ScholarPubMed
Li, J. L., Li, Y. Q., Kaneko, T., Mizuno, N. (1999c) Preprodynorphin-like immunoreactivity in medullary dorsal horn neurons projecting to the thalamic regions in the rat. Neurosci Lett 264: 13–16.CrossRefGoogle ScholarPubMed
Li, J. L., Li, Y. Q., Li, J. S., Kaneko, T., Mizuno, N. (1999d) Calcium-binding protein-immunoreactive projection neurons in the caudal subnucleus of the spinal trigeminal nucleus of the rat. Neurosci Res 35: 225–240.CrossRefGoogle ScholarPubMed
Li, J. L., Wang, D., Kaneko, T.et al. (2000) The relationship between neurokinin-1 receptor and substance P in the medullary dorsal horn: a light and electron-microscopic immunohistochemical study in the rat. Neurosci Res 36: 327–334.CrossRefGoogle ScholarPubMed
Li, J. L., Xiong, K. H., Dong, Y. L., Fujiyama, F., Kaneko, T., Mizuno, N. (2003) Vesicular glutamate transporters, VGluT1 and VGluT2, in the trigeminal ganglion neurons of the rat, with special reference to coexpression. J Comp Neurol 463: 212–220.CrossRefGoogle ScholarPubMed
Liang, Y. F., Haake, B., Reeh, P. W. (2001) Sustained sensitization and recruitment of rat cutaneous nociceptors by bradykinin and a novel theory of its excitatory action. J Physiol 532: 229–239.CrossRefGoogle Scholar
Light, A. R., Kavookjian, A. M. (1988) Morphology and ultrastructure of physiologically identified substantia gelatinosa (lamina II) neurons with axons that terminate in deeper dorsal horn laminae (III–V). J Comp Neurol 267: 172–189.CrossRefGoogle Scholar
Light, A. R., Perl, E. R. (1979a) Reexamination of the dorsal root projection to the spinal dorsal horn including observations on the differential termination of coarse and fine fibers. J Comp Neurol 186: 117–131.CrossRefGoogle ScholarPubMed
Light, A. R., Perl, E. R. (1979b) Spinal termination of functionally identified primary afferent neurons with slowly conducting myelinated fibers. J Comp Neurol 186: 133–150.CrossRefGoogle ScholarPubMed
Light, A. R., Trevino, D. L., Perl, E. R. (1979) Morphological features of functionally defined neurons in the marginal zone and substantia gelatinosa of the spinal dorsal horn. J Comp Neurol 186: 151–171.CrossRefGoogle ScholarPubMed
Lim, R. K. S., Liu, C. N., Guzman, F., Braun, C. (1962) Visceral receptors concerned in visceral pain and the pseudoaffective response to intra-arterial injection of bradykinin and other algesic agents. J Comp Neurol 118: 269–294.CrossRefGoogle Scholar
Lima, D., Coimbra, A. (1986) A Golgi study of the neuronal population of the marginal zone (lamina I) of the rat spinal cord. J Comp Neurol 244: 53–71.CrossRefGoogle ScholarPubMed
Lima, D., Coimbra, A. (1988) The spinothalamic system of the rat: structural types of retrogradely labelled neurons in the marginal zone (lamina I). Neuroscience 27: 215–230.CrossRefGoogle Scholar
Lima, D., Coimbra, A. (1989) Morphological types of spinomesencephalic neurons in the marginal zone (lamina I) of the rat spinal cord, as shown after retrograde labelling with cholera toxin subunit B. J Comp Neurol 279: 327–339.CrossRefGoogle ScholarPubMed
Lin, C. S., Merzenich, M. M., Sur, M., Kaas, J. H. (1979) Connections of areas 3b and 1 of the parietal somatosensory strip with the ventroposterior nucleus in the owl monkey (Aotus trivirgatus). J Comp Neurol 185: 355–371.CrossRefGoogle Scholar
Lin, Y. C., Lenz, F. A. (1994) Distribution and response evoked by microstimulation of thalamus nuclei in patients with dystonia and tremor. Chin Med J 107: 265–270.Google ScholarPubMed
Lippman, H. H., Kerr, F. W. L. (1972) Light and electron microscopic study of crossed ascending pathways in the anterolateral funiculus in monkey. Brain Res 40: 496–499.CrossRefGoogle ScholarPubMed
Lombard, M. C., Besse, D., Besson, J. M. (1995) Opioid receptors in the superficial layers of the rat spinal cord: functional implications in pain processing. Prog Brain Res 104: 77–92.CrossRefGoogle ScholarPubMed
Lopshire, J. C., Nicol, G. D. (1998) The cAMP transduction cascade mediates the prostaglandin E2 enhancement of the capsaicin-elicited current in rat sensory neurons: whole cell and single-channel studies. J Neurosci 18: 6081–6092.CrossRefGoogle ScholarPubMed
Lynn, B., Carpenter, S. E. (1982) Primary afferent units from the hairy skin of the rat hind limb. Brain Res 238: 29–43.CrossRefGoogle ScholarPubMed
Lu, G. W., Willis, W. D. (1999) Branching and/or collateral projections of spinal dorsal horn neurons. Brain Res Rev 29: 50–82.CrossRefGoogle ScholarPubMed
Ma, T. P., Hu, X. J., Anavi, Y., Rafols, J. A. (1992) Organization of the zona incerta in the macaque: a Nissl and Golgi study. J Comp Neurol 320: 273–290.CrossRefGoogle ScholarPubMed
Ma, W., Ribeiro-da-Silva, A., Konink, Y.et al. (1997) Substance P and enkephalin immunoreactivities in axonal boutons presynaptic to physiologically identified dorsal horn neurons: an ultrastructural multiple-labelling study in the cat. Neuroscience 77: 793–811.CrossRefGoogle ScholarPubMed
Ma, W., Peschanski, M., Ohara, P. T. (1988) Fine structure of the dorsal part of the nucleus submedius of the rat thalamus: an anatomical study with reference to possible pain pathways. Neuroscience 26: 147–159.CrossRefGoogle ScholarPubMed
Macchi, G., Bentivoglio, M. (1986) The thalamic intralaminar nuclei and the cerebral cortex. In Cerebral Cortex Vol. 5. Sensory-Motor Areas and Aspects of Cortical Connectivity (Jones, E. G., Peters, A., eds), pp. 355–401. New York: Plenum.Google Scholar
Macchi, G., Jones, E. G. (1997) Towards an agreement on terminology of nuclear and subnuclear divisions of the motor thalamus. J Neurosurg 86: 670–685.CrossRefGoogle Scholar
Macchi, G., Quattrini, A., Chinzari, P., Marchesi, G., Capocchi, G. (1975) Quantitative data on cell loss and cellular atrophy of intralaminar nuclei following cortical and subcortical lesions. Brain Res 89: 43–59.CrossRefGoogle ScholarPubMed
Macchi, G., Bentivoglio, M., D'Atena, C., Rossini, P., Tempesta, E. (1977) The cortical projection of the thalamic intralaminar nuclei restudied by means of the HRP retrograde axonal transport. Neurosci Lett 4: 121–126.CrossRefGoogle Scholar
Macchi, G., Bentivoglio, M., Molinari, M., Minciacchi, D. (1984) The thalamo-caudate versus thalamo-cortical projections as studied in the cat with fluorescent retrograde double labeling. Exp Brain Res 54: 225–239.CrossRefGoogle ScholarPubMed
Manger, P. R., Woods, T. M., Jones, E. G. (1995) Representation of the face and intraoral structures in area 3b of the squirrel monkey (Saimiri sciureus) somatosensory cortex, with special reference to the ipsilateral representation. J Comp Neurol 362: 597–607.CrossRefGoogle ScholarPubMed
Manger, P. R., Woods, T. M., Jones, E. G. (1996) Representation of face and intra-oral structures in area 3b of macaque monkey somatosensory cortex. J Comp Neurol 371: 513–521.3.0.CO;2-7>CrossRefGoogle ScholarPubMed
Mantyh, P. W. (1982) The ascending input to the midbrain periaqueductal gray of the primate. J Comp Neurol 211: 50–64.CrossRefGoogle ScholarPubMed
Mantyh, P. W. (1983) The spinothalamic tract in the primate: a re-examination using wheatgerm agglutinin conjugated to horseradish peroxidase. Neuroscience 9: 847–862.CrossRefGoogle ScholarPubMed
Mantyh, P. W., Hunt, S. P. (1984) Neuropeptides are present in projection neurones at all levels in visceral and taste pathways: from periphery to sensory cortex. Brain Res 299: 297–312.CrossRefGoogle ScholarPubMed
Mantyh, P. W., Gates, T., Mantyh, C. R., Maggio, J. E. (1989) Autoradiographic localization and characterization of tachykinin receptor binding sites in the rat brain and peripheral tissues. J Neurosci 9: 258–279.CrossRefGoogle ScholarPubMed
Marchetinni, P, Simone, D. A., Caputi, G., Ochoa, J. L. (1996) Pain from excitation of identified muscle nociceptors in humans. Brain Res 740: 109–116.CrossRefGoogle Scholar
Marini, G., Pianca, L., Tredici, G. (1996) Thalamocortical projection from the parafascicular nucleus to layer V pyramidal cells in frontal and cingulate areas of the rat. Neurosci Lett 203: 81–84.CrossRefGoogle Scholar
Marshall, G. E., Shehab, S. A., Spike, R. C., Todd, A. J. (1996) Neurokinin-1 receptors on lumbar spinothalamic neurons in the rat. Neuroscience 72: 255–263.CrossRefGoogle ScholarPubMed
Maxwell, D. J., Noble, R. (1987) Relationships between hair-follicle afferent terminations and glutamic acid decarboxylase-containing boutons in the cat's spinal cord. Brain Res 408: 308–312.CrossRefGoogle ScholarPubMed
Maxwell, D. J., Réthelyi, M. (1987) Ultrastructure and synaptic connections of cutaneous afferent fibres in the spinal cord. Trends Neurosci 10: 117–122.CrossRefGoogle Scholar
Maxwell, D. J., Fyffe, R. E., Réthelyi, M. (1983) Morphological properties of physiologically characterized lamina III neurones in the cat spinal cord. Neuroscience 10: 1–22.CrossRefGoogle ScholarPubMed
Maxwell, D. J., Christie, W. M., Short, A. D., Storm-Mathisen, J., Ottersen, O. P. (1990a) Central boutons of glomeruli in the spinal cord of the cat are enriched with L-glutamate-like immunoreactivity. Neuroscience 36: 83–104.CrossRefGoogle ScholarPubMed
Maxwell, D. J., Christie, W. M., Short, A. D., Brown, A. G. (1990b) Direct observations of synapses between GABA-immunoreactive boutons and muscle afferent terminals in lamina VI of the cat's spinal cord. Brain Res 530: 215–222.CrossRefGoogle ScholarPubMed
Maxwell, D. J., Christie, W. M., Short, A. D., Brown, A. G. (1991) Direct observations of synapses between GABA-immunoreactive boutons and identified spinocervical tract neurons in the cat's spinal cord. J Comp Neurol 307: 375–392.CrossRefGoogle ScholarPubMed
Maxwell, D. J., Christie, W. M., Brown, A. G., Ottersen, O. P., Storm-Mathisen, J. (1993) Identified hair follicle afferent boutons in the spinal cord of the cat are enriched with L-glutamate-like immunoreactivity. Brain Res 606: 156–161.CrossRefGoogle ScholarPubMed
Maxwell, D. J., Todd, A. J., Kerr, R. (1995) Colocalization of glycine and GABA in synapses on spinomedullary neurons. Brain Res 690: 127–132.CrossRefGoogle ScholarPubMed
Mayer, D. J., Price, D. D., Becker, D. P. (1975) Neurophysiological characterization of the anterolateral spinal cord neurons contributing to pain perception in man. Pain 1: 51–58.CrossRefGoogle ScholarPubMed
McLeod, A. L., Krause, J. E., Cuello, A. C., Ribeiro-da-Silva, A. (1998) Preferential synaptic relationships between substance P-immunoreactive boutons and neurokinin 1 receptor sites in the rat spinal cord. Proc Natl Acad Sci USA 95: 15775–15780.CrossRefGoogle ScholarPubMed
McMahon, S. B., Wall, P. D. (1983) A system of rat spinal cord lamina 1 cells projecting through the contralateral dorsolateral funiculus. J Comp Neurol 214: 217–223.CrossRefGoogle ScholarPubMed
Mehler, W. R. (1966a) Some observations on secondary ascending afferent systems in the central nervous system. In Pain (Knighton, R. S., Dumke, P. R., eds), pp. 11–32. Boston: Little, Brown.Google Scholar
Mehler, W. R. (1966b) The posterior thalamic region in man. Confin Neurol 27: 18–29.CrossRefGoogle ScholarPubMed
Mehler, W. R. (1969) Some neurological species differences – a posteriori. Ann NY Acad Sci 167: 424–468.CrossRefGoogle Scholar
Mehler, W. R., Feferman, M. E., Nauta, W. J. (1960) Ascending axon degeneration following anterolateral cordotomy. An experimental study in the monkey. Brain 83: 718–750.CrossRefGoogle ScholarPubMed
Menendez, L., Bester, H., Besson, J. M., Bernard, J. F. (1996) Parabrachial area: electrophysiological evidence for an involvement in cold nociception. J Neurophysiol 75: 2099–2116.CrossRefGoogle ScholarPubMed
Menétrey, D., Chaouch, A., Binder, D., Besson, J. M. (1982) The origin of the spinomesencephalic tract in the rat: an anatomical study using the retrograde transport of horseradish peroxidase. J Comp Neurol 206: 193–207.CrossRefGoogle ScholarPubMed
Menétrey, D., Pommery, J., Bainbridge, K. G., Thomasset, M. (1992) Calbindin-D29K (CaBP28k)-like immunoreactivity in ascending projections. Eur J Neurosci 4: 61–69.CrossRefGoogle Scholar
Mense, S., Meyer, H. (1985) Different types of slowly conducting afferent units in cat skeletal muscle and tendon. J Physiol 363: 403–417.CrossRefGoogle ScholarPubMed
Mense, S., Meyer, H. (1988) Bradykinin-induced modulation of the response behaviour of different types of feline group III and IV muscle receptors. J Physiol 398: 49–63.CrossRefGoogle ScholarPubMed
Mense, S., Schmidt, R. F. (1974) Activation of group IV afferent units from muscle by algesic agents. Brain Res 72: 305–310.CrossRefGoogle ScholarPubMed
Mense, S., Stahnke, M. (1983) Responses in muscle afferent fibres of slow conduction velocity to contractions and ischaemia in the cat. J Physiol 342: 383–397.CrossRefGoogle ScholarPubMed
Merighi, A., Cruz, F., Coimbra, A. (1992) Immunocytochemical staining of neuropeptides in terminal arborization of primary afferent fibers anterogradely labeled and identified at light and electron microscopic levels. J Neurosci Methods 42: 105–113.CrossRefGoogle ScholarPubMed
Merzenich, M. M., Kaas, J. H., Sur, M., Lin, C. S. (1978) Double representation of the body surface within cytoarchitectonic areas 3b and 1 in “SI” in the owl monkey (Aotus trivirgatus). J Comp Neurol 181: 41–73.CrossRefGoogle Scholar
Mesulam, M.-M., Mufson, E. J. (1985) The insula of Reil in man and monkey: architectonics, connectivity, and function. In Cerebral Cortex, Volume 4, Auditory and Association Cortices (Peters, A., Jones, E. G., eds), pp. 179–228. New York: Plenum.CrossRefGoogle Scholar
Meyer, R. A., Campbell, J. N. (1981) Myelinated nociceptive afferents account for the hyperalgesia that follows a burn to the hand. Science 213: 1527–1529.CrossRefGoogle Scholar
Meyer, R. A., Davis, K. D., Cohen, R. H., Treede, R. D., Campbell, J. N. (1991) Mechanically insensitive afferents (MIAs) in cutaneous nerves of monkey. Brain Res 561: 252–261.CrossRefGoogle ScholarPubMed
Miletic, V., Coffield, J. A. (1989) Responses of neurons in the rat nucleus submedius to noxious and innocuous mechanical cutaneous stimulation. Somatosens Mot Res 6: 567–587.CrossRefGoogle ScholarPubMed
Miller, K. E., Salvatierra, A. T. (1998) Apposition of enkephalin- and neurotensin-immunoreactive neurons by serotonin-immunoreactive varicosities in the rat spinal cord. Neuroscience 85: 837–846.CrossRefGoogle ScholarPubMed
Miller, K. E., Seybold, V. S. (1987) Comparison of met-enkephalin-, dynorphin A-, and neurotensin-immunoreactive neurons in the cat and rat spinal cords: I. Lumbar cord. J Comp Neurol 255: 293–304.CrossRefGoogle ScholarPubMed
Miller, K. E., Seybold, V. S. (1989) Comparison of met-enkephalin, dynorphin A, and neurotensin immunoreactive neurons in the cat and rat spinal cords: II. Segmental differences in the marginal zone. J Comp Neurol 279: 619–628.CrossRefGoogle ScholarPubMed
Mizukawa, K., Vincent, S. R., McGeer, P. L., McGeer, E. G. (1989) Distribution of reduced-nicotinamide-adenine-dinucleotide-phosphate diaphorase-positive cells and fibers in the cat central nervous system. J Comp Neurol 279: 281–311.CrossRefGoogle ScholarPubMed
Mizuno, N., Nakano, K., Imaizumi, M., Okamoto, M. (1967) The lateral cervical nucleus of the Japanese monkey (Macaca fuscata). J Comp Neurol 129: 375–384.CrossRefGoogle Scholar
Molander, C., Ygge, I., Dalsgaard, C. J. (1987) Substance P-, somatostatin-, and calcitonin gene-related peptide-like immunoreactivity and fluoride resistant acid phosphatase-activity in relation to retrogradely labeled cutaneous, muscular and visceral primary sensory neurons in the rat. Neurosci Lett 74: 37–42.CrossRefGoogle Scholar
Molinari, M., Leggio, M. G., Dell'Anna, M. E., Giannetti, S., Macchi, G. (1994) Chemical compartmentation and relationships between calcium-binding protein immunoreactivity and layer-specific cortical caudate-projecting cells in the anterior intralaminar nuclei of the cat. Eur J Neurosci 6: 299–312.CrossRefGoogle ScholarPubMed
Molinari, M., Dell'Anna, M. E., Rausell, E.et al. (1995) Auditory thalamocortical pathways defined in monkeys by calcium-binding protein immunoreactivity. J Comp Neurol 362: 171–194.CrossRefGoogle ScholarPubMed
Molony, V., Steedman, W. M., Cervero, F., Iggo, A. (1981) Intracellular marking of identified neurones in the superficial dorsal horn of the cat spinal cord. Q J Exp Physiol 66: 211–223.CrossRefGoogle ScholarPubMed
Monconduit, L., Bourgeais, L., Bernard, J. F., Villanueva, L. (2003) Convergence of cutaneous, muscular and visceral noxious inputs onto ventromedial thalamic neurons in the rat. Pain 103: 83–91.CrossRefGoogle ScholarPubMed
Morel, A., Kaas, J. H. (1992) Subdivisions and connections of auditory cortex in owl monkeys. J Comp Neurol 318: 27–63.CrossRefGoogle ScholarPubMed
Mufson, E. J., Mesulam, M.-M. (1984) Thalamic connections of the insula in the rhesus monkey and comments on the paralimbic connectivity of the medial pulvinar nucleus. J Comp Neurol 227: 109–120.CrossRefGoogle ScholarPubMed
Naito, S., Ueda, T. (1985) Characterization of glutamate uptake into synaptic vesicles. J Neurochem 44: 99–109.CrossRefGoogle ScholarPubMed
Nelson, R. J., Sur, M., Felleman, D. J., Kaas, J. H. (1980) Representations of the body surface in postcentral parietal cortex of Macaca fascicularis. J Comp Neurol 192: 611–643.CrossRefGoogle ScholarPubMed
Niimi, K., Katayama, K., Kanaseki, T., Morimoto, N. (1960) Studies on the derivation of the centre median nucleus of Luys. Tokushima J Exptl Med 7: 261–268.Google Scholar
Niimi, K., Miyata, Y., Matsuoka, H. (1989) Thalamic projections to the cortical gustatory area in the cat studied by retrograde axonal transport of horseradish peroxidase. J Hirnforsch 30: 583–593.Google ScholarPubMed
Nishikawa, N., Bennett, G. J., Ruda, M. A., Lu, G. W., Dubner, R. (1983) Immunocytochemical evidence for a serotoninergic innervation of dorsal column postsynaptic neurons in cat and monkey: light- and electron-microscopic observations. Neuroscience 10: 1333–1340.CrossRefGoogle ScholarPubMed
Noble, R., Riddell, J. S. (1988) Cutaneous excitatory and inhibitory input to neurones of the postsynaptic dorsal column system in the cat. J Physiol 396: 497–513.CrossRefGoogle ScholarPubMed
Nomura, T., Ogawa, H. (1985) The taste and mechanical response properties of neurons in the parvicellular part of the thalamic posteromedial ventral nucleus of the rat. Neurosci Res 3: 91–105.CrossRefGoogle ScholarPubMed
Norgren, R. (1976) Taste pathways to hypothalamus and amygdala. J Comp Neurol 166: 17–30.CrossRefGoogle ScholarPubMed
Norgren, R. (1983) The gustatory system in mammals. Am J Otolaryngol 4: 234–237.CrossRefGoogle ScholarPubMed
Norgren, R. (1990) The gustatory system. In The Human Nervous System (Paxinos, G., ed.), pp. 845–861. San Diego: Academic Press.CrossRefGoogle Scholar
Norgren, R., Leonard, C. M. (1971) Taste pathways in rat brainstem. Science 173: 1136–1139.CrossRefGoogle ScholarPubMed
Norgren, R., Leonard, C. M. (1973) Ascending central gustatory pathways. J Comp Neurol 150: 217–237.CrossRefGoogle ScholarPubMed
Norgren, R., Wolf, G. (1975) Projections of thalamic gustatory and lingual areas in the rat. Brain Res 92: 123–129.CrossRefGoogle ScholarPubMed
Ochoa, J., Torebjörk, E. (1989) Sensations evoked by intraneural microstimulation of C nociceptor fibres in human skin nerves. J Physiol 415: 583–599.CrossRefGoogle ScholarPubMed
Ogawa, H., Ito, S., Nomura, T. (1985) Two distinct projection areas from tongue nerves in the frontal operculum of macaque monkeys as revealed with evoked potential mapping. Neurosci Res 2: 447–459.CrossRefGoogle ScholarPubMed
Ogawa, H., Hayama, T., Ito, S. (1987) Response properties of the parabrachio-thalamic taste and mechanoreceptive neurons in rats. Exp Brain Res 68: 449–457.CrossRefGoogle ScholarPubMed
Ohara, S., Lenz, F. A. (2003) Medial lateral extent of thermal and pain sensations evoked by microstimulation in somatic sensory nuclei of human thalamus. J Neurophysiol 90: 2367–2377.CrossRefGoogle ScholarPubMed
Ohara, S., Crone, N. E., Weiss, N., Treede, R. D., Lenz, F. A. (2004a) Amplitudes of laser evoked potential recorded from primary somatosensory, parasylvian and medial frontal cortex are graded with stimulus intensity. Pain 110: 318–328.CrossRefGoogle ScholarPubMed
Ohara, S., Crone, N. E., Weiss, N.et al. (2004b) Attention to pain is processed at multiple cortical sites in man. Exp Brain Res 156: 513–517.CrossRefGoogle ScholarPubMed
Ohara, S., Crone, N. E., Weiss, N., Treede, R. D., Lenz, F. A. (2004c) Cutaneous painful laser stimuli evoke responses recorded directly from primary somatosensory cortex in awake humans. J Neurophysiol 91: 2734–2746.CrossRefGoogle ScholarPubMed
Ohara, S., Weiss, N., Lenz, F. A. (2004d) Microstimulation in the region of the human thalamic principal somatic sensory nucleus evokes sensations like those of mechanical stimulation and movement. J Neurophysiol 91: 736–745.CrossRefGoogle ScholarPubMed
Olausson, H., Lamarre, Y., Backlund, H.et al. (2002) Unmyelinated tactile afferents signal touch and project to insular cortex. Nat Neurosci 5: 900–904.CrossRefGoogle ScholarPubMed
Olszewski, J. (1952) Thalamus of the Macaca mulatta: An Atlas for Use with the Stereotaxic Instrument. Basel: Karger.Google Scholar
Öngür, D., Ferry, A. T., Price, J. L. (2003) Architectonic subdivision of the human orbital and medial prefrontal cortex. J Comp Neurol 460: 425–449.CrossRefGoogle ScholarPubMed
Ostrowsky, K., Magnin, M., Ryvlin, P.et al. (2002) Representation of pain and somatic sensation in the human insula: a study of responses to direct electrical cortical stimulation. Cereb Cortex 12: 376–385.CrossRefGoogle ScholarPubMed
Otsuka, M., Yanagisawa, M. (1990) Pain and neurotransmitters. Cell Mol Neurobiol 10: 293–302.CrossRefGoogle ScholarPubMed
Paintal, A. S. (1960) Functional analysis of group III afferent fibres of mammalian muscles. J Physiol 152: 250–270.CrossRefGoogle ScholarPubMed
Parent, M., Parent, A. (2002) Axonal collateralization in primate basal ganglia and related thalamic nuclei. Thalamus Relat Systems 2: 71–86.Google Scholar
Patapoutian, A., Peier, A. M., Story, G. M., Viswanath, V. (2003) ThermoTRP channels and beyond: mechanisms of temperature sensation. Nature Rev Neurosci 4: 529–539.CrossRefGoogle ScholarPubMed
Paul, R. L., Merzenich, M. M., Goodman, H. (1972) Representation of slowly and rapidly adapting cutaneous mechanoreceptors of the hand in Brodmann's areas 3 and 1 of Macaca mulatta. Brain Res 36: 229–249.CrossRefGoogle ScholarPubMed
Pearson, R. C., Brodal, P., Powell, T. P. S. (1978) The projection of the thalamus upon the parietal lobe in the monkey. Brain Res 144: 143–148.CrossRefGoogle ScholarPubMed
Penfield, W., Perot, P. (1963) The brain's record of auditory and visual experience. A final summary and discussion. Brain 86: 595–696.CrossRefGoogle ScholarPubMed
Percheron, G. (1977) The thalamic territory of cerebellar afferents and the lateral region of the thalamus of the macaque in stereotaxic ventricular coordinates. J Hirnforsch 18: 375–400.Google Scholar
Percheron, G., François, C., Talbi, B.et al. (1993) The primate motor thalamus analysed with reference to subcortical afferent territories. Stereotact Funct Neurosurg 60: 32–41.CrossRefGoogle ScholarPubMed
Persson, S., Boulland, J. L., Aspling, M.et al. (2006) Distribution of vesicular glutamate transporters 1 and 2 in the rat spinal cord, with a note on the spinocervical tract. J Comp Neurol 497: 683–701.CrossRefGoogle ScholarPubMed
Peschanski, M. (1984) Trigeminal afferents to the diencephalon in the rat. Neuroscience 12: 465–487.CrossRefGoogle ScholarPubMed
Peterson, D. F., Brown, A. M. (1973) Functional afferent innervation of testis. J Neurophysiol 36: 425–433.CrossRefGoogle ScholarPubMed
Peyron, R., Garcia-Larrea, L., Gregoire, M. C.et al. (1999) Haemodynamic brain responses to acute pain in humans: sensory and attentional networks. Brain 122: 1765–1780.CrossRefGoogle ScholarPubMed
Phillips, C. G., Powell, T. P. S., Wiesendanger, M. (1971) Projection from low-threshold muscle afferents of hand and forearm to area 3a of baboon's cortex. J Physiol 217: 419–446.CrossRefGoogle ScholarPubMed
Ploner, M., Schmitz, F., Freund, H.-J., Schnitzler, A. (1999) Parallel activation of primary and secondary somatosensory cortices in human pain processing. J Neurophysiol 81: 3100–3104.CrossRefGoogle ScholarPubMed
Ploner, M., Holthusen, H., Noetges, P., Schnitzler, A. (2002) Cortical representation of venous nociception in humans. J Neurophysiol 88: 300–305.CrossRefGoogle ScholarPubMed
Polgar, E., Antal, M. (1995) The colocalization of parvalbumin and calbindin-D28k with GABA in the subnucleus caudalis of the rat spinal trigeminal nucleus. Exp Brain Res 103: 402–408.CrossRefGoogle ScholarPubMed
Pons, T. P., Kaas, J. H. (1985) Connections of area 2 of somatosensory cortex with the anterior pulvinar and subdivisions of the ventroposterior complex in macaque monkeys. J Comp Neurol 240: 16–36.CrossRefGoogle ScholarPubMed
Powell, T. P. S., Mountcastle, V. B. (1959) Some aspects of the functional organization of the cortex of the postcentral gyrus of the monkey: a correlation of findings obtained in a single unit analysis with cytoarchitecture. Bull Johns Hopkins Hosp 105: 133–162.Google Scholar
Price, D. D., Dubner, R., Hu, J. W. (1976) Trigeminothalamic neurons in nucleus caudalis responsive to tactile, thermal, and nociceptive stimulation of monkey's face. J Neurophysiol 39: 936–953.CrossRefGoogle ScholarPubMed
Price, D. D., Hayes, R. L., Ruda, M. A., Dubner, R. (1978) Spatial and temporal transformations of input to spinothalamic tract neurons and their relation to somatic sensations. J Neurophysiol 41: 933–947.CrossRefGoogle ScholarPubMed
Price, D. D., Hayashi, H., Dubner, R., Ruda, M. A. (1979) Functional relationships between neurons of marginal and substantia gelatinosa layers of primate dorsal horn. J Neurophysiol 42: 1590–1608.CrossRefGoogle ScholarPubMed
Price, J. L., Slotnick, B. M. (1983) Dual olfactory representation in the rat thalamus: an anatomical and electrophysiological study. J Comp Neurol 215: 63–77.CrossRefGoogle ScholarPubMed
Pritchard, T. C., Hamilton, R. B., Morse, J. R., Norgren, R. (1986) Projections of thalamic gustatory and lingual areas in the monkey, Macaca fascicularis. J Comp Neurol 244: 213–228.CrossRefGoogle ScholarPubMed
Pritchard, T. C., Hamilton, R. B., Norgren, R. (2000) Projections of the parabrachial nucleus in the Old World monkey. Exp Neurol 165: 101–117.CrossRefGoogle ScholarPubMed
Qi, H. X., Lyon, D. C., Kaas, J. H. (2002) Cortical and thalamic connections of the parietal ventral somatosensory area in marmoset monkeys (Callithrix jacchus). J Comp Neurol 443: 168–182.CrossRefGoogle Scholar
Ralston, D. D., Ralston, H. J., III. (1985) The terminations of corticospinal tract axons in the macaque monkey. J Comp Neurol 242: 325–337.CrossRefGoogle ScholarPubMed
Ralston, H. J., III. (1968a) Dorsal root projections to dorsal horn neurons in the cat spinal cord. J Comp Neurol 132: 303–330.CrossRefGoogle ScholarPubMed
Ralston, H. J., III. (1968b) The fine structure of neurons in the dorsal horn of the cat spinal cord. J Comp Neurol 132: 275–302.CrossRefGoogle ScholarPubMed
Ralston, H. J., III. (1979) The fine structure of laminae I, II and III of the macaque spinal cord. J Comp Neurol 184: 619–642.CrossRefGoogle ScholarPubMed
Ralston, H. J., III. (2003) Pain, the brain, and the (calbindin) stain. J Comp Neurol 459: 329–333.CrossRefGoogle ScholarPubMed
Ralston, H. J., III., Ralston, D. D. (1979) The distribution of dorsal root axons in laminae I, II and III of the macaque spinal cord: a quantitative electron microscope study. J Comp Neurol 184: 643–684.CrossRefGoogle ScholarPubMed
Ralston, H. J., III., Ralston, D. D. (1982) The distribution of dorsal root axons to laminae IV, V, and VI of the macaque spinal cord: a quantitative electron microscopic study. J Comp Neurol 212: 435–448.CrossRefGoogle ScholarPubMed
Ralston, H. J., III., Ralston, D. D. (1992) The primate dorsal spinothalamic tract: evidence for a specific termination in the posterior nuclei (Po/SG) of the thalamus. Pain 48: 107–118.CrossRefGoogle ScholarPubMed
Ralston, H. J.., Ralston, D. D. (1993) Local circuit processing in the primate thalamus: neurotransmitter mechanisms. In Thalamic Networks for Relay and Modulation (Minciacchi, D., Molinari, M., Macchi, G., Jones, E. G., eds), pp. 109–122. Oxford: Pergamon.CrossRefGoogle Scholar
Ralston, H. J., III., Ralston, D. D. (1994) Medial lemniscal and spinal projections to the macaque thalamus: an electron microscopic study of differing GABAergic circuitry serving thalamic somatosensory mechanisms. J Neurosci 14: 2485–2502.CrossRefGoogle ScholarPubMed
Ralston, H. J., III., Light, A. R., Ralston, D. D., Perl, E. R. (1984) Morphology and synaptic relationships of physiologically identified low-threshold dorsal root axons stained with intra-axonal horseradish peroxidase in the cat and monkey. J Neurophysiol 51: 777–792.CrossRefGoogle ScholarPubMed
Ranson, S. W. (1913) The course within the spinal cord of the non-medullated fibers of the dorsal roots: a study of Lissauer's tract in the cat. J Comp Neurol 23: 259–282.CrossRefGoogle Scholar
Rausell, E., Jones, E. G. (1991a) Histochemical and immunocytochemical compartments of the thalamic VPM nucleus in monkeys and their relationship to the representational map. J Neurosci 11: 210–225.CrossRefGoogle ScholarPubMed
Rausell, E., Jones, E. G. (1991b) Chemically distinct compartments of the thalamic VPM nucleus in monkeys relay principal and spinal trigeminal pathways to different layers of the somatosensory cortex. J Neurosci 11: 226–237.CrossRefGoogle ScholarPubMed
Rausell, E., Bae, C. S., Viñuela, A., Huntley, G. W., Jones, E. G. (1992a) Calbindin and parvalbumin cells in monkey VPL thalamic nucleus: distribution, laminar cortical projections, and relations to spinothalamic terminations. J Neurosci 12: 4088–4111.CrossRefGoogle ScholarPubMed
Rausell, E., Cusick, C. G., Taub, E., Jones, E. G. (1992b) Chronic deafferentation in monkeys differentially affects nociceptive and nonnociceptive pathways distinguished by specific calcium-binding proteins and down-regulates gamma-aminobutyric acid type A receptors at thalamic levels. Proc Natl Acad Sci USA 89: 2571–2575.CrossRefGoogle ScholarPubMed
Reep, R. L., Winans, S. S. (1982) Afferent connections of dorsal and ventral agranular insular cortex in the hamster Mesocricetus auratus. Neuroscience 7: 1265–1288.CrossRefGoogle ScholarPubMed
Reep, R. L., Corwin, J. V., King, V. (1996) Neuronal connections of orbital cortex in rats: topography of cortical and thalamic afferents. Exp Brain Res 111: 215–232.CrossRefGoogle ScholarPubMed
Ren, K, Ruda, M. A. (1994) A comparative study of the calcium-binding proteins calbindin-D28K, calretinin, calmodulin and parvalbumin in the rat spinal cord. Brain Res Rev 19: 163–179.CrossRefPubMed
Réthelyi, M. (1977) Preterminal and terminal axon arborizations in the substantia gelatinosa of cat's spinal cord. J Comp Neurol 172: 511–521.CrossRefGoogle ScholarPubMed
Réthelyi, M. (1984) Synaptic connectivity in the spinal dorsal horn. In Handbook of Spinal Cord (Davidoff, R. A., ed.), pp. 137–175. New York: Dekker.Google Scholar
Réthelyi, M., Capowski, J. J. (1977) The terminal arborization pattern of primary afferent fibers in the substantia gelatinosa of the spinal cord in the cat. J Physiol (Paris) 73: 269–277.Google ScholarPubMed
Réthelyi, M., Szentágothai, J. (1969) The large synaptic complexes of the substantia gelatinosa. Exp Brain Res 7: 258–274.CrossRefGoogle ScholarPubMed
Réthelyi, M., Szentágothai, J. (1973) Distribution and connections of afferent fibres in the spinal cord. In Handbook of Sensory Physiology, Vol. II. Somatosensory System (Iggo, I., ed.), pp. 207–252. Berlin: Springer.Google Scholar
Réthelyi, M., Light, A. R., Perl, E. R. (1982) Synaptic complexes formed by functionally defined primary afferent units with fine myelinated fibers. J Comp Neurol 207: 381–393.Google ScholarPubMed
Rexed, B. (1952) The cytoarchitectonic organization of the spinal cord in the cat. J Comp Neurol 96: 414–495.CrossRefGoogle ScholarPubMed
Rexed, B. (1954) A cytoarchitectonic atlas of the spinal cord in the cat. J Comp Neurol 100: 297–379.CrossRefGoogle ScholarPubMed
Ribeiro-da-Silva, A., Cuello, A. C. (1990) Choline acetyltransferase-immunoreactive profiles are presynaptic to primary sensory fibers in the rat superficial dorsal horn. J Comp Neurol 295: 370–384.CrossRefGoogle ScholarPubMed
Ribeiro-da-Silva, A., Hökfelt, T. (2000) Neuroanatomical localisation of substance P in the CNS and sensory neurons. Neuropeptides 34: 256–271.CrossRefGoogle ScholarPubMed
Ribeiro-da-Silva, A., Tagari, P., Cuello, A. C. (1989) Morphological characterization of substance P-like immunoreactive glomeruli in the superficial dorsal horn of the rat spinal cord and trigeminal subnucleus caudalis: a quantitative study. J Comp Neurol 281: 497–515.CrossRefGoogle ScholarPubMed
Ribeiro-da-Silva, A., Pioro, E. P., Cuello, A. C. (1991) Substance P- and enkephalin-like immunoreactivities are colocalized in certain neurons of the substantia gelatinosa of the rat spinal cord: an ultrastructural double-labeling study. J Neurosci 11: 1068–1080.CrossRefGoogle Scholar
Ribeiro-da-Silva, A., Cuello, A. C., Henry, J. L. (2000) NGF over-expression during development leads to permanent alterations in innervation in the spinal cord and in behavioural responses to sensory stimuli. Neuropeptides 34: 281–291.CrossRefGoogle ScholarPubMed
Ricardo, J. A., Koh, E. T. (1978) Anatomical evidence of direct projections from the nucleus of the solitary tract to the hypothalamus, amygdala, and other forebrain structures in the rat. Brain Res 153: 1–26.CrossRefGoogle ScholarPubMed
Rieck, R. W., Carey, R. G. (1985) Organization of the rostral thalamus in the rat: evidence for connections to layer I of visual cortex. J Comp Neurol 234: 137–154.CrossRefGoogle ScholarPubMed
Robertson, B., Grant, G., Björkeland, M. (1983) Demonstration of spinocerebellar projections in cat using anterograde transport of WGA-HRP, with some observations on spinomesencephalic and spinothalamic projections. Exp Brain Res 52: 99–104.CrossRefGoogle ScholarPubMed
Robinson, C. J., Burton, H. (1980a) Somatotopographic organization in the second somatosensory area of M. fascicularis. J Comp Neurol 192: 43–67.CrossRefGoogle ScholarPubMed
Robinson, C. J., Burton, H. (1980b) Somatic submodality distribution within the second somatosensory (SII), 7b, retroinsular, postauditory, and granular insular cortical areas of M. fascicularis. J Comp Neurol 192: 93–108.CrossRefGoogle Scholar
Robinson, C. J., Burton, H. (1980c) Organization of somatosensory receptive fields in cortical areas 7b, retroinsula, postauditory and granular insula of M. fascicularis. J Comp Neurol 192: 69–92.CrossRefGoogle ScholarPubMed
Rogers, J. H., Resibois, A. (1992) Calretinin and calbindin-D28k in rat brain: patterns of partial co-localization. Neuroscience 51: 843–865.CrossRefGoogle ScholarPubMed
Rolls, E. T. (2001) The rules of formation of the olfactory representations found in the orbitofrontal cortex olfactory areas in primates. Chem Senses 26: 595–604.CrossRefGoogle ScholarPubMed
Rolls, E. T., Yaxley, S., Sienkiewicz, Z. J. (1990) Gustatory responses of single neurons in the caudolateral orbitofrontal cortex of the macaque monkey. J Neurophysiol 64: 1055–1066.CrossRefGoogle ScholarPubMed
Ross, E. D., Kirkpatrick, J. B., Lastimosa, A. C. B. (1979) Position and vibration sensations: functions of the dorsal spinocerebellar tracts?Ann Neurol 5: 171–176.CrossRefPubMed
Rouiller, E. M., Liang, F., Babalian, A., Moret, V., Wiesendanger, M. (1994) Cerebellothalamocortical and pallidothalamocortical projections to the primary and supplementary motor cortical areas: a multiple tracing study in macaque monkeys. J Comp Neurol 345: 185–213.CrossRefGoogle ScholarPubMed
Royce, G. J., Mourey, R. J. (1985) Efferent connections of the centromedian and parafascicular thalamic nuclei: an autoradiographic investigation in the cat. J Comp Neurol 235: 277–300.CrossRefGoogle ScholarPubMed
Royce, G. J., Bromley, S., Gracco, C., Beckstead, R. M. (1989) Thalamocortical connections of the rostral intralaminar nuclei: an autoradiographic analysis in the cat. J Comp Neurol 288: 555–582.CrossRefGoogle ScholarPubMed
Ruda, M. A. (1988) Spinal dorsal horn circuitry involved in the brain stem control of nociception. Prog Brain Res 77: 129–140.CrossRefGoogle ScholarPubMed
Ruda, M. A., Coffield, J., Dubner, R. (1984) Demonstration of postsynaptic opioid modulation of thalamic projection neurons by the combined techniques of retrograde horseradish peroxidase and enkephalin immunocytochemistry. J Neurosci 4: 2117–2132.CrossRefGoogle ScholarPubMed
Ruda, M. A., Besse, D., Inagaki, S., DeLeon, M., Ren, K. (1994) Nitric oxide expression and regulation in the dorsal root ganglion and spinal cord. Ann NY Acad Sci 738: 181–190.CrossRefGoogle ScholarPubMed
Russchen, F. T., Amaral, D. G., Price, J. L. (1987) The afferent input to the magnocellular division of the mediodorsal thalamic nucleus in the monkey, Macaca fascicularis. J Comp Neurol 256: 175–210.CrossRefGoogle ScholarPubMed
Rustioni, A., Hayes, N. L., O'Neill, S. (1979) Dorsal column nuclei and ascending spinal afferents in macaques. Brain 102: 95–125.CrossRefGoogle ScholarPubMed
Sadikot, A. F., Parent, A., François, C. (1992) Efferent connections of the centromedian and parafascicular thalamic nuclei in the squirrel monkey: a PHA-L study of subcortical projections. J Comp Neurol 315: 137–159.CrossRefGoogle ScholarPubMed
Sakai, S. T., Inase, M., Tanji, J. (1996) Comparison of cerebellothalamic and pallidothalamic projections in the monkey (Macaca fuscata): a double anterograde labeling study. J Comp Neurol 368: 215–228.3.0.CO;2-6>CrossRefGoogle ScholarPubMed
Saper, C. B. (1995) The spinoparabrachial pathway: shedding new light on an old path. J Comp Neurol 353: 477–479.CrossRefGoogle ScholarPubMed
Saper, C. B. (2000) Hypothalamic connections with the cerebral cortex. Prog Brain Res 126: 39–48.CrossRefGoogle ScholarPubMed
Saper, C. B. (2002) The central autonomic nervous system: conscious visceral perception and autonomic pattern generation. Annu Rev Neurosci 25: 433–469.CrossRefGoogle ScholarPubMed
Saper, C. B., Loewy, A. D. (1980) Efferent connections of the parabrachial nucleus in the rat. Brain Res 197: 291–317.CrossRefGoogle ScholarPubMed
Schaible, H. G., Grubb, B. D. (1993) Afferent and spinal mechanisms of joint pain. Pain 55: 5–54.CrossRefGoogle ScholarPubMed
Schaible, H. G., Schmidt, R. F. (1983a) Activation of groups III and IV sensory units in medial articular nerve by local mechanical stimulation of knee joint. J Neurophysiol 49: 35–44.CrossRefGoogle ScholarPubMed
Schaible, H. G., Schmidt, R. F. (1983b) Responses of fine medial articular nerve afferents to passive movements of knee joint. J Neurophysiol 49: 1118–1126.CrossRefGoogle Scholar
Schaible, H. G., Schmidt, R. F. (1985) Effects of an experimental arthritis on the sensory properties of fine articular afferent units. J Neurophysiol 54: 1109–1126.CrossRefGoogle ScholarPubMed
Schaible, H. G., Schmidt, R. F. (1988a) Time course of mechanosensitivity changes in articular afferents during developing experimental arthritis. J Neurophysiol 60: 2180–2195.CrossRefGoogle ScholarPubMed
Schaible, H. G., Schmidt, R. F. (1988b) Excitation and sensitization of fine articular afferents from cat's knee joint by prostaglandin E2. J Physiol 403: 91–104.CrossRefGoogle ScholarPubMed
Schaible, H. G., Schmidt, R. F., Willis, W. D. (1987) Convergent inputs from articular, cutaneous and muscle receptors onto ascending tract cells in the cat spinal cord. Exp Brain Res 66: 479–488.CrossRefGoogle ScholarPubMed
Scheibel, M. E., Scheibel, A. B. (1968) Terminal axonal patterns in cat spinal cord. II. The dorsal horn. Brain Res 9: 32–58.CrossRefGoogle ScholarPubMed
Schmelz, M., Schmidt, R., Ringkamp, M., Handwerker, H. O., Torebjörk, H. E. (1994) Sensitization of insensitive branches of C nociceptors in human skin. J Physiol 480: 389–394.CrossRefGoogle ScholarPubMed
Schmelz, M., Schmidt, R., Ringkamp, M.et al. (1996) Limitation of sensitization to injured parts of receptive fields in human skin C-nociceptors. Exp Brain Res 109: 141–147.CrossRefGoogle ScholarPubMed
Schmelz, M., Schmidt, R., Bickel, A., Handwerker, H. O., Torebjörk, H. E. (1997) Specific C-receptors for itch in human skin. J Neurosci 17: 8003–8008.CrossRefGoogle ScholarPubMed
Schmidt, R., Schmelz, M., Forster, C.et al. (1995) Novel classes of responsive and unresponsive C nociceptors in human skin. J Neurosci 15: 333–341.CrossRefGoogle ScholarPubMed
Schmidt, R., Schmelz, M., Torebjörk, H. E., Handwerker, H. O. (2000) Mechano-insensitive nociceptors encode pain evoked by tonic pressure to human skin. Neuroscience 98: 793–800.CrossRefGoogle ScholarPubMed
Schneider, R. J., Friedman, D. P., Mishkin, M. (1993) A modality-specific somatosensory area within the insula of the rhesus monkey. Brain Res 621: 116–120.CrossRefGoogle ScholarPubMed
Schoenen, J. (1982) The dendritic organization of the human spinal cord: the dorsal horn. Neuroscience 7: 2057–2087.CrossRefGoogle ScholarPubMed
Schoenen, J., Faull, R. L. M. (2004) Spinal cord: cyto and chemoarchitecture. In The Human Nervous System. Second Edition (Paxinos, G., Mai, J. K., eds), pp. 190–232. Amsterdam: Elsevier.CrossRefGoogle Scholar
Schoenen, J., Lotstra, F., Vierendeels, G., Reznik, M., Vanderhaeghen, J. J. (1985) Substance P, enkephalins, somatostatin, cholecystokinin, oxytocin, and vasopressin in human spinal cord. Neurology 35: 881–890.CrossRefGoogle ScholarPubMed
Scott, T. R., Plata-Salaman, C. R. (1999) Taste in the monkey cortex. Physiol Behav 67: 489–511.CrossRefGoogle ScholarPubMed
Scott, T. R., Yaxley, S., Sienkiewicz, Z. J., Rolls, E. T. (1986) Gustatory responses in the frontal opercular cortex of the alert cynomolgus monkey. J Neurophysiol 56: 876–890.CrossRefGoogle ScholarPubMed
Sedlacek, M., Horak, M., Vyklický, L. (2007) Morphology and physiology of lamina I neurons of the caudal part of the trigeminal nucleus. Neuroscience 147: 325–333.CrossRefGoogle ScholarPubMed
Senba, E., Yanaihara, C., Yanaihara, N., Tohyama, M. (1988) Co-localization of substance P and Met-enkephalin-Arg6-Gly7-Leu8 in the intraspinal neurons of the rat, with special reference to the neurons in the substantia gelatinosa. Brain Res 453: 110–116.CrossRefGoogle ScholarPubMed
Sengupta, J. N., Gebhart, G. F. (1994) Characterization of mechanosensitive pelvic nerve afferent fibers innervating the colon of the rat. J Neurophysiol 71: 2046–2060.CrossRefGoogle ScholarPubMed
Sengupta, J. N., Saha, J. K., Goyal, R. K. (1990) Stimulus-response function studies of esophageal mechanosensitive nociceptors in sympathetic afferents of opossum. J Neurophysiol 64: 796–812.CrossRefGoogle ScholarPubMed
Sherrington, C. S. (1906) The Integrative Action of the Nervous System. New Haven: Yale University Press.Google Scholar
Shriver, J. E., Stein, B. M., Carpenter, M. B. (1968) Central projections of spinal dorsal roots in the monkey. I. Cervical and upper thoracic dorsal roots. Am J Anat 123: 27–74.CrossRefGoogle Scholar
Silverman, J. D., Kruger, L. (1990) Selective neuronal glycoconjugate expression in sensory and autonomic ganglia: relation of lectin reactivity to peptide and enzyme markers. J Neurocytol 19: 789–801.CrossRefGoogle ScholarPubMed
Siminoff, R. (1964) On-line cross correlation of peripheral nerve activity in response to natural stimuli. Exp Neurol 10: 205–215.CrossRefGoogle ScholarPubMed
Siminoff, R. (1965) Functional organization of hairy skin in response to sensory stimuli. Exp Neurol 13: 331–350.CrossRefGoogle ScholarPubMed
Simone, D. A., Marchettini, P., Caputi, G., Ochoa, J. L. (1994) Identification of muscle afferents subserving sensation of deep pain in humans. J Neurophysiol 72: 883–889.CrossRefGoogle ScholarPubMed
Siri, C. R., Shortland, P. J., Grant, G., Olivius, N. P. (2001) Delayed administration of NGF reverses nerve injury induced central alterations of afferents. NeuroReport 12: 1899–1902.CrossRefGoogle ScholarPubMed
Slugg, R. M., Light, A. R. (1994) Spinal cord and trigeminal projections to the pontine parabrachial region in the rat as demonstrated with Phaseolus vulgaris leucoagglutinin. J Comp Neurol 339: 49–61.CrossRefGoogle ScholarPubMed
Slugg, R. M., Campbell, J. N., Meyer, R. A. (2004) The population response of A- and C-fiber nociceptors in monkey encodes high-intensity mechanical stimuli. J Neurosci 24: 4649–4656.CrossRefGoogle ScholarPubMed
Sluka, K. A., Dougherty, P. M., Sorkin, L. S., Willis, W. D., Westlund, K. N. (1992) Neural changes in acute arthritis in monkeys. III. Changes in substance P, calcitonin gene-related peptide and glutamate in the dorsal horn of the spinal cord. Brain Res Rev 17: 29–38.CrossRefGoogle ScholarPubMed
Smith, M. V., Apkarian, A. V. (1991) Thalamically projecting cells of the lateral cervical nucleus in monkey. Brain Res 555: 10–18.CrossRefGoogle ScholarPubMed
Snyder, R. (1977) The organization of the dorsal root entry zone in cats and monkeys. J Comp Neurol 174: 47–70.CrossRefGoogle ScholarPubMed
Spike, R. C., Todd, A. J. (1992) Ultrastructural and immunocytochemical study of lamina II islet cells in rat spinal dorsal horn. J Comp Neurol 323: 359–369.CrossRefGoogle ScholarPubMed
Stacey, M. J. (1969) Free nerve endings in skeletal muscle of the cat. J Anat 105: 231–254.Google ScholarPubMed
Standaert, D. G., Watson, S. J., Houghten, R. A., Saper, C. B. (1986) Opioid peptide immunoreactivity in spinal and trigeminal dorsal horn neurons projecting to the parabrachial nucleus in the rat. J Neurosci 6: 1220–1226.CrossRefGoogle ScholarPubMed
Stepniewska, I., Sakai, S. T., Qi, H. X., Kaas, J. H. (2003) Somatosensory input to the ventrolateral thalamic region in the macaque monkey: potential substrate for parkinsonian tremor. J Comp Neurol 455: 378–395.CrossRefGoogle ScholarPubMed
Stevens, R. T., Hodge, C. J., Apkarian, A. V. (1989) Medial, intralaminar, and lateral terminations of lumbar spinothalamic tract neurons: a fluorescent double-label study. Somatosens Mot Res 6: 285–308.CrossRefGoogle ScholarPubMed
Stevens, R. T., Apkarian, A. V., Hodge, C. J. (1991) The location of spinothalamic axons within spinal cord white matter in cat and squirrel monkey. Somatosens Mot Res 8: 97–102.CrossRefGoogle ScholarPubMed
Stevens, R. T., London, S. M., Apkarian, A. V. (1993) Spinothalamocortical projections to the secondary somatosensory cortex (SII) in squirrel monkey. Brain Res 631: 241–246.CrossRefGoogle Scholar
Sugiura, Y. (1975) Three dimensional analysis of the neurons in the substantia gelatinosa Rolandi. Proc Japan Acad 51: 336–341.Google Scholar
Sugiura, Y., Lee, C. L., Perl, E. R. (1986) Central projections of identified, unmyelinated (C) afferent fibers innervating mammalian skin. Science 234: 358–361.CrossRefGoogle ScholarPubMed
Sugiura, Y., Terui, N., Hosoya, Y. (1989) Difference in distribution of central terminals between visceral and somatic unmyelinated (C) primary afferent fibers. J Neurophysiol 62: 834–840.CrossRefGoogle ScholarPubMed
Sur, M., Wall, J. T., Kaas, J. H. (1981) Modular segregation of functional cell classes within the postcentral somatosensory cortex of monkeys. Science 212: 1059–1061.CrossRefGoogle ScholarPubMed
Sur, M., Wall, J. T., Kaas, J. H. (1984) Modular distribution of neurons with slowly adapting and rapidly adapting responses in area 3b of somatosensory cortex in monkeys. J Neurophysiol 51: 724–744.CrossRefGoogle ScholarPubMed
Sutherland, F. I., Bannatyne, B. A., Kerr, R., Riddell, J. S., Maxwell, D. J. (2002) Inhibitory amino acid transmitters associated with axons in presynaptic apposition to cutaneous primary afferent axons in the cat spinal cord. J Comp Neurol 452: 154–162.CrossRefGoogle ScholarPubMed
Sutherland, S. P., Benson, C. J., Adelman, J. P., McCleskey, E. W. (2001) Acid-sensing ion channel 3 matches the acid-gating current in cardiac ischemia-sensing neurons. Proc Natl Acad Sci USA 98: 711–716.CrossRefGoogle Scholar
Svensson, B. A., Rastad, J., Westman, J., Wiberg, M. (1985) Somatotopic termination of spinal afferents to the feline lateral cervical nucleus. Exp Brain Res 57: 576–584.CrossRefGoogle ScholarPubMed
Szentágothai, J. (1964a) Propriospinal pathways and their synapses. Prog Brain Res 11: 155–177.CrossRefGoogle ScholarPubMed
Szentágothai, J. (1964b) Neuronal and synaptic arrangement in the substantia gelatinosa Rolandi. J Comp Neurol 122: 219–239.CrossRefGoogle ScholarPubMed
Talairach, J., Hécaen, H., David, M., Monnier, M., Ajuriaguerra, J. (1949) Recherches sur la coagulation thérapeutique des structures souscorticales chez l'homme. Revue Neurol 81: 4–24.Google Scholar
Tao, Y. X., Li, Y. Q., Zhao, Z. Q. (2000) Synaptic interaction between GABAergic terminals and substance P receptor-positive neurons in rat spinal superficial laminae. Acta Pharmacol Sin 21: 911–914.Google ScholarPubMed
Tasker, R. R. (1982) Identification of pain processing systems by electrical stimulation of the brain. Hum Neurobiol 1: 261–272.Google ScholarPubMed
Timmermann, L., Ploner, M., Haucke, K.et al. (2001) Differential coding of pain intensity in the human primary and secondary somatosensory cortex. J Neurophysiol 86: 1499–1503.CrossRefGoogle ScholarPubMed
Todd, A. J. (1989) Cells in laminae III and IV of rat spinal dorsal horn receive monosynaptic primary afferent input in lamina II. J Comp Neurol 289: 676–686.CrossRefGoogle ScholarPubMed
Todd, A. J., McKenzie, J. (1989) GABA-immunoreactive neurons in the dorsal horn of the rat spinal cord. Neuroscience 31: 799–806.CrossRefGoogle ScholarPubMed
Todd, A. J., Spike, R. C. (1993) The localization of classical transmitters and neuropeptides within neurons in laminae I–III of the mammalian spinal dorsal horn. Prog Neurobiol 41: 609–645.CrossRefGoogle ScholarPubMed
Todd, A. J., Sullivan, A. C. (1990) Light microscope study of the coexistence of GABA-like and glycine-like immunoreactivities in the spinal cord of the rat. J Comp Neurol 296: 496–505.CrossRefGoogle ScholarPubMed
Todd, A. J., McGill, M. M., Shehab, S. A. (2000) Neurokinin 1 receptor expression by neurons in laminae I, III and IV of the rat spinal dorsal horn that project to the brainstem. Eur J Neurosci 12: 689–700.CrossRefGoogle ScholarPubMed
Tominaga, M., Caterina, M. J., Malmberg, A. B.et al. (1998) The cloned capsaicin receptor integrates multiple pain-producing stimuli. Neuron 21: 531–543.CrossRefGoogle ScholarPubMed
Torebjörk, H. E. (1974) Afferent C units responding to mechanical, thermal and chemical stimuli in human non-glabrous skin. Acta Physiol Scand 92: 374–390.CrossRefGoogle ScholarPubMed
Torebjörk, H. E., Ochoa, J. L. (1983) Selective stimulation of sensory units in man. Adv Pain Res Therap 5: 99–104.Google Scholar
Torebjörk, H. E., Ochoa, J. L. (1990) New method to identify nociceptor units innervating glabrous skin of the human hand. Exp Brain Res 81: 509–514.CrossRefGoogle ScholarPubMed
Towers, S., Princivalle, A., Billinton, A.et al. (2000) GABAB receptor protein and mRNA distribution in rat spinal cord and dorsal root ganglia. Eur J Neurosci 12: 3201–3210.CrossRefGoogle ScholarPubMed
Towns, L. C., Tigges, J., Tigges, M. (1990) Termination of thalamic intralaminar nuclei afferents in visual cortex of squirrel monkey. Vis Neurosci 5: 151–154.CrossRefGoogle ScholarPubMed
Tracey, D. J., Asanuma, C., Jones, E. G., Porter, R. (1980) Thalamic relay to motor cortex: afferent pathways from brain stem, cerebellum, and spinal cord in monkeys. J Neurophysiol 44: 532–554.CrossRefGoogle ScholarPubMed
Tracey, D. J., Biasi, S., Phend, K., Rustioni, A. (1991) Aspartate-like immunoreactivity in primary afferent neurons. Neuroscience 40: 673–686.CrossRefGoogle ScholarPubMed
Tredici, G., Torri Tarelli, L. T., Cavaletti, G., Marmiroli, P. (1985) Ultrastructural organization of lamina VI of the spinal cord of the cat. Prog Neurobiol 24: 293–331.CrossRefGoogle ScholarPubMed
Treede, R. D., Meyer, R. A., Campbell, J. N. (1998) Myelinated mechanically insensitive afferents from monkey hairy skin: heat-response properties. J Neurophysiol 80: 1082–1093.CrossRefGoogle ScholarPubMed
Trevino, D. L. (1976) The origin and projections of a spinal nociceptive and thermoreceptive pathway. In Sensory Functions of the Skin (Zotterman, Y., ed.), pp. 367–377. Oxford: Pergamon.CrossRefGoogle Scholar
Trevino, D. L., Carstens, E. (1975) Confirmation of the location of spinothalamic neurons in the cat and monkey by the retrograde transport of horseradish peroxidase. Brain Res 98: 177–182.CrossRefGoogle ScholarPubMed
Trevino, D. L., Maunz, R. A., Bryan, R. N., Willis, W. D. (1972) Location of cells of origin of the spinothalamic tract in the lumbar enlargement of cat. Exp Neurol 34: 64–77.CrossRefGoogle ScholarPubMed
Trevino, D. L., Coulter, J. D., Willis, W. D. (1973) Location of cells of origin of spinothalamic tract in lumbar enlargement of the monkey. J Neurophysiol 36: 750–761.CrossRefGoogle ScholarPubMed
Truex, R. C., Taylor, M. J., Smythe, M. Q., Gildenberg, P. L. (1970) The lateral cervical nucleus of cat, dog and man. J Comp Neurol 139: 93–104.CrossRefGoogle ScholarPubMed
Uchida, Y., Murao, M. S. (1974) Excitation of afferent cardiac sympathetic nerve fibers during coronary occlusion. Am J Physiol 226: 1094–1099.Google ScholarPubMed
Uddenberg, N. (1968a) Differential localization in dorsal funiculus of fibres originating from different receptors. Exp Brain Res 4: 367–376.CrossRefGoogle ScholarPubMed
Uddenberg, N. (1968b) Functional organization of long, second-order afferents in the dorsal funiculus. Exp Brain Res 4: 377–382.CrossRefGoogle ScholarPubMed
Vallbo, A., Olausson, H., Wessberg, J., Norrsell, U. (1993) A system of unmyelinated afferents for innocuous mechanoreception in the human skin. Brain Res 628: 301–304.CrossRefGoogle ScholarPubMed
Vallbo, A. B., Olausson, H., Wessberg, J. (1999) Unmyelinated afferents constitute a second system coding tactile stimuli of the human hairy skin. J Neurophysiol 81: 2753–2763.CrossRefGoogle ScholarPubMed
Werf, Y. D., Witter, M. P., Groenewegen, H. J. (2002) The intralaminar and midline nuclei of the thalamus. Anatomical and functional evidence for participation in processes of arousal and awareness. Brain Res Rev 39: 107–140.CrossRefGoogle ScholarPubMed
Vogt, C., Vogt, O. (1941) Thalamusstudien I-III. J Psychol Neurol 50: 32–154.Google Scholar
Voshart, K., Kooy, D. (1981) The organization of the efferent projections of the parabrachial nucleus of the forebrain in the rat: a retrograde fluorescent double-labeling study. Brain Res 212: 271–286.CrossRefGoogle ScholarPubMed
Waldeyer, W. (1888) Das Gorilla Rückenmark. Abhandl königl preuss Akad Wiss Berlin 1888: 1–47.Google Scholar
Waldmann, R., Lazdunski, M. (1998) H+-gated cation channels: neuronal acid sensors in the NaC/DEG family of ion channels. Curr Opin Neurobiol 8: 418–424.CrossRefGoogle ScholarPubMed
Waldvogel, H. J., Faull, R. L. M., Jansen, K. L.et al. (1990) GABA, GABA receptors and benzodiazepine receptors in the human spinal cord: an autoradiographic and immunohistochemical study at the light and electron microscopic levels. Neuroscience 39: 361–385.CrossRefGoogle ScholarPubMed
Wang, D., Li, Y. Q., Li, J. L.et al. (2000) Gamma-aminobutyric acid- and glycine-immunoreactive neurons postsynaptic to substance P-immunoreactive axon terminals in the superficial layers of the rat medullary dorsal horn. Neurosci Lett 288: 187–190.CrossRefGoogle ScholarPubMed
Wang, H., Woolf, C. J. (2005) Pain TRPs. Neuron 46: 9–12.CrossRefGoogle ScholarPubMed
Watson, A. H., Hughes, D. I., Bazzaz, A. A. (2002) Synaptic relationships between hair follicle afferents and neurones expressing GABA and glycine-like immunoreactivity in the spinal cord of the rat. J Comp Neurol 452: 367–380.CrossRefGoogle ScholarPubMed
Weinberg, R. J., Conti, F., Eyck, S. L., Petrusz, P., Rustioni, A. (1987) Glutamate immunoreactivity in superficial laminae of rat dorsal horn and spinal trigeminal nucleus. In Excitatory Amino Acid Transmission (Hicks, T. P., Lodge, D., McClennan, H., eds), pp. 173–176. New York: Liss.Google Scholar
Wessberg, J., Olausson, H., Fernstrom, K. W., Vallbo, A. B. (2003) Receptive field properties of unmyelinated tactile afferents in the human skin. J Neurophysiol 89: 1567–1575.CrossRefGoogle ScholarPubMed
Westlund, K. N., Bowker, R. M., Ziegler, M. G., Coulter, J. D. (1983) Noradrenergic projections to the spinal cord of the rat. Brain Res 263: 15–31.CrossRefGoogle ScholarPubMed
Westlund, K. N., Zhang, D., Carlton, S. M., Sorkin, L. S., Willis, W. D. (1991) Noradrenergic innervation of somatosensory thalamus and spinal cord. Prog Brain Res 88: 77–88.CrossRefGoogle ScholarPubMed
Westlund, K. N., Carlton, S. M., Zhang, D., Willis, W. D. (1992) Glutamate-immunoreactive terminals synapse on primate spinothalamic tract cells. J Comp Neurol 322: 519–527.CrossRefGoogle ScholarPubMed
Westman, J. (1968) The lateral cervical nucleus in the cat. I. A Golgi study. Brain Res 10: 352–368.CrossRefGoogle ScholarPubMed
White, J. C., Sweet, W. H. (1969) Pain and the Neurosurgeon: A Forty Year Experience. Springfield: Thomas.Google Scholar
Whitsel, B. L., Petrucelli, L. M., Werner, G. (1969) Symmetry and connectivity in the map of the body surface in somatosensory area II of primates. J Neurophysiol 32: 170–183.CrossRefGoogle ScholarPubMed
Wiberg, M., Westman, J., Blomqvist, A. (1987) Somatosensory projection to the mesencephalon: an anatomical study in the monkey. J Comp Neurol 264: 92–117.CrossRefGoogle ScholarPubMed
Wiesenfeld-Hallin, Z., Hökfelt, T., Lundberg, J. M.et al. (1984) Immunoreactive calcitonin gene-related peptide and substance P coexist in sensory neurons to the spinal cord and interact in spinal behavioral responses of the rat. Neurosci Lett 52: 199–204.CrossRefGoogle ScholarPubMed
Williamson, A. M., Ralston, H. J., III. (1993) Fine structure of calcitonin gene-related peptide immunoreactive synaptic contacts in the thalamus of the rat. J Comp Neurol 328: 130–144.CrossRefGoogle ScholarPubMed
Willis, W. D. (2006) The nociceptive membrane: historical overview. Current Topics in Membranes 57: 73–111.CrossRefGoogle Scholar
Willis, W. D., Coggeshall, R. E. (1991) Sensory Mechanisms of the Spinal Cord. Second Edition. New York: Plenum.CrossRefGoogle Scholar
Willis, W. D., Coggeshall, R. E. (2004) Sensory Mechanisms of the Spinal Cord. Third Edition. New York: Plenum.Google Scholar
Willis, W. D., Leonard, R. B., Kenshalo, D. R. (1978) Spinothalamic tract neurons in the substantia gelatinosa. Science 202: 986–988.CrossRefGoogle ScholarPubMed
Willis, W. D., Kenshalo, D. R., Leonard, R. B. (1979) The cells of origin of the primate spinothalamic tract. J Comp Neurol 188: 543–573.CrossRefGoogle ScholarPubMed
Willis, W. D., Al-Chaer, E. D., Quast, M. J., Westlund, K. N. (1999) A visceral pain pathway in the dorsal column of the spinal cord. Proc Natl Acad Sci USA 96: 7675–7679.CrossRefGoogle ScholarPubMed
Willis, W. D., Zhang, X., Honda, C. N., Giesler, G. J. (2001) Projections from the marginal zone and deep dorsal horn to the ventrobasal nuclei of the primate thalamus. Pain 92: 267–276.CrossRefGoogle ScholarPubMed
Willis, W. D., Zhang, X., Honda, C. N., Giesler, G. J. (2002) A critical review of the role of the proposed VMpo nucleus in pain. J Pain 3: 79–94.CrossRefGoogle ScholarPubMed
Winter, H. C., Ueda, T. (1993) Glutamate uptake system in the presynaptic vesicle: glutamic acid analogs as inhibitors and alternate substrates. Neurochem Res 18: 79–85.CrossRefGoogle ScholarPubMed
Witter, M. P., Ostendorf, R. H., Groenewegen, H. J. (1990) Heterogeneity in the dorsal subiculum of the rat. Distinct neuronal zones project to different cortical and subcortical targets. Eur J Neurosci 2: 718–725.CrossRefGoogle ScholarPubMed
Woodbury, C. J., Ritter, A. M., Koerber, H. R. (2000) On the problem of lamination in the superficial dorsal horn of mammals: a reappraisal of the substantia gelatinosa in postnatal life. J Comp Neurol 417: 88–102.3.0.CO;2-U>CrossRefGoogle ScholarPubMed
Woods, T. M., Cusick, C. G., Pons, T. P., Taub, E., Jones, E. G. (2000) Progressive transneuronal changes in the brainstem and thalamus after long-term dorsal rhizotomies in adult macaque monkeys. J Neurosci 20: 3884–3899.CrossRefGoogle ScholarPubMed
Woolf, C. J., Fitzgerald, M. (1983) The properties of neurones recorded in the superficial dorsal horn of the rat spinal cord. J Comp Neurol 221: 313–328.CrossRefGoogle ScholarPubMed
Woolf, C. J., Salter, M. W. (2000) Neuronal plasticity: increasing the gain in pain. Science 288: 1765–1768.CrossRefGoogle ScholarPubMed
Woolsey, C. N. (1958) Organization of somatic sensory and motor areas of the cerebral cortex. In Biological and Biochemical Bases of Behavior (Harlow, H., Woolsey, C. N., eds), pp. 63–81. Madison: University of Wisconsin Press.Google Scholar
Wu, W., Wessendorf, M. W. (1992) Organization of the serotonergic innervation of spinal neurons in rats. I. Neuropeptide coexistence in varicosities innervating some spinothalamic tract neurons but not in those innervating postsynaptic dorsal column neurons. Neuroscience 50: 885–898.CrossRefGoogle Scholar
Yamamoto, T., Matsuo, R., Kawamura, Y. (1980) Localization of cortical gustatory area in rats and its role in taste discrimination. J Neurophysiol 44: 440–455.CrossRefGoogle ScholarPubMed
Yamamoto, T., Takahashi, T., Kawamura, Y. (1981a) Access to the cerebral cortex of extra-lingual taste inputs in the rat. Neurosci Lett 24: 129–132.CrossRefGoogle ScholarPubMed
Yamamoto, T., Yuyama, N., Kawamura, Y. (1981b) Cortical neurons responding to tactile, thermal and taste stimulations of the rat's tongue. Brain Res 221: 202–206.CrossRefGoogle ScholarPubMed
Yamamoto, T., Matsuo, R., Kiyomitsu, Y., Kitamura, R. (1988) Sensory inputs from the oral region to the cerebral cortex in behaving rats: an analysis of unit responses in cortical somatosensory and taste areas during ingestive behavior. J Neurophysiol 60: 1303–1321.CrossRefGoogle ScholarPubMed
Yamamoto, T., Matsuo, R., Kiyomitsu, Y., Kitamura, R. (1989) Taste responses of cortical neurons in freely ingesting rats. J Neurophysiol 61: 1244–1258.CrossRefGoogle ScholarPubMed
Yasui, Y., Itoh, K., Mizuno, N.et al. (1983) The posteromedial ventral nucleus of the thalamus (VPM) of the cat: direct ascending projections to the cytoarchitectonic subdivisions. J Comp Neurol 220: 219–228.CrossRefGoogle ScholarPubMed
Yasui, Y., Saper, C. B., Cechetto, D. F. (1989) Calcitonin gene-related peptide immunoreactivity in the visceral sensory cortex, thalamus, and related pathways in the rat. J Comp Neurol 290: 487–501.CrossRefGoogle ScholarPubMed
Yaxley, S., Rolls, E. T., Sienkiewicz, Z. J. (1990) Gustatory responses of single neurons in the insula of the macaque monkey. J Neurophysiol 63: 689–700.CrossRefGoogle ScholarPubMed
Yezierski, R. P., Sorkin, L. S., Willis, W. D. (1987) Response properties of spinal neurons projecting to midbrain or midbrain-thalamus in the monkey. Brain Res 437: 165–170.CrossRefGoogle ScholarPubMed
Yoshida, A., Dostrovsky, J. O., Sessle, B. J., Chiang, C. Y. (1991) Trigeminal projections to the nucleus submedius of the thalamus in the rat. J Comp Neurol 307: 609–625.CrossRefGoogle ScholarPubMed
Yoshida, A., Dostrovsky, J. O., Chiang, C. Y. (1992) The afferent and efferent connections of the nucleus submedius in the rat. J Comp Neurol 324: 115–133.CrossRefGoogle ScholarPubMed
Zhang, E. T., Craig, A. D. (1997) Morphology and distribution of spinothalamic lamina I neurons in the monkey. J Neurosci 17: 3274–3284.CrossRefGoogle ScholarPubMed
Zhang, H. Q., Zachariah, M. K., Coleman, G. T., Rowe, M. J. (2001a) Hierarchical equivalence of somatosensory areas I and II for tactile processing in the cerebral cortex of the marmoset monkey. J Neurophysiol 85: 1823–1835.CrossRefGoogle ScholarPubMed
Zhang, H. Q., Murray, G. M., Coleman, G. T.et al. (2001b) Functional characteristics of the parallel SI- and SII-projecting neurons of the thalamic ventral posterior nucleus in the marmoset. J Neurophysiol 85: 1805–1822.CrossRefGoogle ScholarPubMed
Zhang, M., Broman, J. (1998) Cervicothalamic tract termination: a reexamination and comparison with the distribution of monoclonal antibody Cat-301 immunoreactivity in the cat. Anat Embryol 198: 451–472.CrossRefGoogle ScholarPubMed
Zhang, M., Broman, J. (2001) Morphological features of cat cervicothalamic tract terminations in different target regions. Brain Res 890: 280–286.CrossRefGoogle ScholarPubMed
Zhang, X., Kostarczyk, E., Giesler, G. J. (1995) Spinohypothalamic tract neurons in the cervical enlargement of rats: descending axons in the ipsilateral brain. J Neurosci 15: 8393–8407.CrossRefGoogle ScholarPubMed
Zhang, X., Bao, L., Arvidsson, U., Elde, R., Hökfelt, T. (1998) Localization and regulation of the delta-opioid receptor in dorsal root ganglia and spinal cord of the rat and monkey: evidence for association with the membrane of large dense-core vesicles. Neuroscience 82: 1225–1242.CrossRefGoogle ScholarPubMed
Zhang, X., Wenk, H. N., Gokin, A. P., Honda, C. N., Giesler, G. J. (1999) Physiological studies of spinohypothalamic tract neurons in the lumbar enlargement of monkeys. J Neurophysiol 82: 1054–1058.CrossRefGoogle ScholarPubMed
Zhang, X., Wenk, H. N., Honda, C. N., Giesler, G. J. (2000a) Locations of spinothalamic tract axons in cervical and thoracic spinal cord white matter in monkeys. J Neurophysiol 83: 2869–2880.CrossRefGoogle ScholarPubMed
Zhang, X., Honda, C. N., Giesler, G. J.. (2000b) Position of spinothalamic tract axons in upper cervical spinal cord of monkeys. J Neurophysiol 84: 1180–1185.CrossRefGoogle ScholarPubMed
Zhang, X., Gokin, A. P., Giesler, G. J. (2002) Responses of spinohypothalamic tract neurons in the thoracic spinal cord of rats to somatic stimuli and to graded distention of the bile duct. Somatosens Mot Res 19:5–17.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×