Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-mp689 Total loading time: 0 Render date: 2024-04-24T15:10:29.068Z Has data issue: false hasContentIssue false

8 - Functional imaging of chronic pain

Published online by Cambridge University Press:  05 October 2010

Frederick A. Lenz
Affiliation:
The Johns Hopkins Hospital
Kenneth L. Casey
Affiliation:
University of Michigan, Ann Arbor
Edward G. Jones
Affiliation:
University of California, Davis
William D. Willis
Affiliation:
University of Texas Medical Branch, Galveston
Get access

Summary

Introduction

In Chapter 5, we discussed the normal responses to a variety of noxious stimuli and their modulation by peripheral and central neural mechanisms. This review showed that noxious stimuli preferentially and most commonly activate a set of interconnected structures, namely the insula and secondary (SII) somatosensory cortices, anterior cingulate gyrus and thalamus. Several additional structures are also activated during normal acute pain although somewhat less frequently: the primary (SI) somatosensory cortex, components of the striatum, the cerebellum, premotor cortex, dorsolateral and orbitofrontal regions of the prefrontal cortex, and the medial midbrain in the region of the periaqueductal gray matter.

In this chapter we review the evidence that chronically painful conditions, whether of peripheral or central origin, may alter the nociceptive processing that normally follows the application of noxious or innocuous stimuli (see Chapter 7). In clinical practice and in the interpretation of the results of pain research, the assumption is often made that the perceptual abnormalities sometimes associated with chronic pain states are attributable only to changes occurring at the peripheral or spinal level. Although this assumption may be correct in most instances, functional imaging studies provide evidence to the contrary in some cases. We cannot assume that, in pathological or chronically painful conditions, information ascending through the spinothalamic tract will be processed by the same mechanisms used for acute pain; this has important clinical implications for the management of chronic pain.

The term “chronic pain” is seldom defined.

Type
Chapter
Information
The Human Pain System
Experimental and Clinical Perspectives
, pp. 540 - 589
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Albuquerque, R. J. C., Leeuw, R., Carlson, C. R.et al. (2006) Cerebral activation during thermal stimulation of patients who have burning mouth disorder: an fMRI study. Pain 122: 223–234.CrossRefGoogle Scholar
Apkarian, A. V., Stea, R. A., Manglos, S. H.et al. (1992) Persistent pain inhibits contralateral somatosensory cortical activity in humans. Neurosci Lett 140: 141–147.CrossRefGoogle ScholarPubMed
Apkarian, A. V., Darbar, A., Krauss, B. R., Gelnar, P. A., Szeverenyi, N. M. (1999) Differentiating cortical areas related to pain perception from stimulus identification: temporal analysis of fMRI activity. J Neurophysiol 81: 2956.CrossRefGoogle ScholarPubMed
Apkarian, A. V., Thomas, P. S., Krauss, B. R., Szeverenyi, N. M. (2001) Prefrontal cortical hyperactivity in patients with sympathetically mediated chronic pain. Neurosci Lett 311: 193–197.CrossRefGoogle ScholarPubMed
Apkarian, A. V., Sosa, Y., Krauss, B. R.et al. (2004a) Chronic pain patients are impaired on an emotional decision-making task. Pain 108: 129–136.CrossRefGoogle ScholarPubMed
Apkarian, A. V., Sosa, Y., Sonty, S.et al. (2004b) Chronic back pain is associated with decreased prefrontal and thalamic gray matter density. J Neurosci 24: 10410–10415.CrossRefGoogle ScholarPubMed
Ashburner, J., Friston, K. J. (2000) Voxel-based morphometry – the methods. Neuroimage 11: 805–821.CrossRefGoogle ScholarPubMed
Ashburner, J., Friston, K. J. (2001) Why voxel-based morphometry should be used. Neuroimage 14: 1238–1243.CrossRefGoogle Scholar
Ashburner, J., Csernansk, J. G., Davatzikos, C.et al. (2003) Computer-assisted imaging to assess brain structure in healthy and diseased brains. Lancet Neurology 2: 79–88.CrossRefGoogle ScholarPubMed
Bahra, A., Matharu, M. S., Buchel, C., Frackowiak, R. S. J., Goadsby, P. J. (2001) Brainstem activation specific to migraine headache. Lancet 357: 1016–1017.CrossRefGoogle ScholarPubMed
Baliki, M. N., Chialvo, D. R., Geha, P. Y.et al. (2006) Chronic pain and the emotional brain: specific brain activity associated with spontaneous fluctuations of intensity of chronic back pain. J Neurosci 26: 12165–12173.CrossRefGoogle ScholarPubMed
Baliki, M. N., Geha, P. Y., Apkarian, A. V., Chialvo, D. R. (2008) Beyond feeling: chronic pain hurts the brain, disrupting the default-mode network dynamics. J Neurosci 28: 1398–1403.CrossRefGoogle ScholarPubMed
Baron, J. C., D'Antona, R., Pantano, P.et al. (1986) Effects of thalamic stroke on energy metabolism of the cerebral cortex. A positron tomography study in man. Brain 109: 1243–1259.CrossRefGoogle ScholarPubMed
Becerra, L., Morris, S., Bazes, S.et al. (2006) Trigeminal neuropathic pain alters responses in CNS circuits to mechanical (brush) and thermal (cold and heat) stimuli. J Neurosci 26: 10646–10657.CrossRefGoogle ScholarPubMed
Berman, S. M., Naliboff, B. D., Suyenobu, B.et al. (2008) Reduced brainstem inhibition during anticipated pelvic visceral pain correlates with enhanced brain response to the visceral stimulus in women with irritable bowel syndrome. J Neurosci 28: 349–359.CrossRefGoogle ScholarPubMed
Biella, G., Sotgiu, M. L., Pellegata, G.et al. (2001) Acupuncture produces central activations in pain regions. Neuroimage 14: 60–66.CrossRefGoogle ScholarPubMed
Bohr, T. (1996) Problems with myofascial pain syndrome and fibromyalgia syndrome. Neurology 46: 593–597.CrossRefGoogle ScholarPubMed
Bonica, J. J. (ed.) (1953) The Management of Pain. Philadelphia: Lea and Febiger.Google Scholar
Bookstein, F. L. (2001) “Voxel-based morphometry” should not be used with imperfectly registered images. Neuroimage 14: 1454–1462.CrossRefGoogle Scholar
Borsook, D., Moulton, E., Pendse, G.et al. (2007) Comparison of evoked vs. spontaneous tics in a patient with trigeminal neuralgia (tic doloureux). Mol Pain 3: 34.CrossRefGoogle Scholar
Canavero, S., Pagni, C. A., Castellano, G.et al. (1993) The role of cortex in central pain syndromes: preliminary results of a long-term technetium-99 hexamethylpropyleneamineoxime single photon emission computed tomography study. Neurosurgery 32: 185–191.CrossRefGoogle ScholarPubMed
Casey, K. L. (2004) Central pain: distributed effects of focal lesions. Pain 108: 205–206.CrossRefGoogle Scholar
Casey, K. L. (2007) Pathophysiology of central poststroke pain: the contribution of functional imaging and a hypothesis. InCentral Neuropathic Pain: Focus on Poststroke Pain (Henry, J. L., Panju, A.Yashpal, K. eds), pp. 115–131. Seattle: IASP Press.Google Scholar
Casey, K. L., Lorenz, J., Minoshima, S. (2003) Insights into the pathophysiology of neuropathic pain through functional brain imaging. Exp Neurol 184: 80–88.CrossRefGoogle ScholarPubMed
Cesaro, P., Mann, M. W., Moretti, J. L.et al. (1991) Central pain and thalamic hyperactivity: a single photon emission computerized tomographic study. Pain 47: 329–336.Google ScholarPubMed
Chabriat, H., Pappata, S., Levasseur, M.et al. (1992) Cortical metabolism in posterolateral thalamic stroke: PET study. Acta Neurol Scand 86: 285–290.CrossRefGoogle ScholarPubMed
Chang, L., Berman, S., Mayer, E. A.et al. (2003) Brain responses to visceral and somatic stimuli in patients with irritable bowel syndrome with and without fibromyalgia. Am J Gastroenterol 98: 1354–1361.CrossRefGoogle ScholarPubMed
Chudler, E. H., Dong, W. K. (1995) The role of the basal ganglia in nociception and pain. Pain 60: 3–38.CrossRefGoogle ScholarPubMed
Cohen, A. S., Goadsby, P. J. (2004) Functional neuroimaging of primary headache disorders. Curr Neurol Neurosci Rep 4: 105–110.CrossRefGoogle ScholarPubMed
Cook, D. B., Lange, G., Ciccone, D. S.et al. (2004) Functional imaging of pain in patients with primary fibromyalgia. J Rheumatol 31: 364–378.Google ScholarPubMed
Craggs, J. G., Price, D. D., Verne, G. N., Perlstein, W. M., Robinson, M. M. (2007) Functional brain interactions that serve cognitive-affective processing during pain and placebo analgesia. Neuroimage 38: 720–729.CrossRefGoogle ScholarPubMed
Davis, K. D., Taub, E., Duffner, F.et al. (2000) Activation of the anterior cingulate cortex by thalamic stimulation in patients with chronic pain: a positron emission tomography study. J Neurosurg 92: 64–69.CrossRefGoogle ScholarPubMed
Davis, K. D., Pope, G., Chen, J.et al. (2008) Cortical thinning in IBS: implications for homeostatic, attention, and pain processing. Neurology 70: 153–154.CrossRefGoogle ScholarPubMed
Derbyshire, S. W., Jones, A. K., Devani, P.et al. (1994a) Cerebral responses to pain in patients with atypical facial pain measured by positron emission tomography. J Neurol Neurosurg Psychiatry 57: 1166–1172.CrossRefGoogle ScholarPubMed
Derbyshire, S. W. G., Jones, A. K. P., Devani, P.et al. (1994b) Cerebral responses to pain in patients with atypical facial pain measured by positron emission tomography. J Neurol Neurosurg Psychiatry 57: 1166–1172.CrossRefGoogle ScholarPubMed
Derbyshire, S. W. G., Jones, A. K. P., Collins, M., Feinmann, C., Harris, M. (1999) Cerebral responses to pain in patients suffering acute post-dental extraction pain measured by positron emission tomography (PET). Eur J Pain 3: 103–113.CrossRefGoogle Scholar
Derbyshire, S. W. G., Jones, A. K. P., Creed, F.et al. (2002) Cerebral responses to noxious thermal stimulation in chronic low back pain patients and normal controls. Neuroimage 16: 158–168.CrossRefGoogle ScholarPubMed
Di Piero, V., Jones, A. K. P., Iannotti, F.et al. (1991) Chronic pain: a PET study of the central effects of percutaneous high cervical cordotomy. Pain 46: 9–12.CrossRefGoogle ScholarPubMed
Di Piero, V., Fiacco, F., Tombari, D., Pantano, P. (1997) Tonic pain: a SPECT study in normal subjects and cluster headache patients. Pain 70: 185–191.CrossRefGoogle ScholarPubMed
Djaldetti, R., Shifrin, A., Rogowski, Z.et al. (2004) Quantitative measurement of pain sensation in patients with Parkinson disease. Neurology 62: 2171–2175.CrossRefGoogle ScholarPubMed
Ducreux, D., Attal, N., Parker, F., Bouhassira, D. (2006) Mechanisms of central neuropathic pain: a combined psychophysical and fMRI study in syringomyelia. Brain 129: 963–976.CrossRefGoogle ScholarPubMed
Duncan, G. H., Kupers, R. C., Marchand, S.et al. (1998) Stimulation of human thalamus for pain relief: possible modulatory circuits revealed by positron emission tomography. J Neurophysiol 80: 3326–3330.CrossRefGoogle ScholarPubMed
Edwards, R. R. (2005) Individual differences in endogenous pain modulation as a risk factor for chronic pain. Neurology 65: 437–443.CrossRefGoogle ScholarPubMed
Ford, B., Louis, E. D., Greene, P., Fahn, S. (1996) Oral and genital pain syndromes in Parkinson's disease. Mov Disord 11: 421–426.CrossRefGoogle ScholarPubMed
Foss, J. M., Apkarian, A. V., Chialvo, D. R. (2006) Dynamics of pain: fractal dimension of temporal variability of spontaneous pain differentiates between pain states. J Neurophysiol 95: 730–736.CrossRefGoogle ScholarPubMed
Fox, M. D., Snyder, A. Z., Vincent, J. L.et al. (2005) The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc Natl Acad Sci USA 102: 9673–9678.CrossRefGoogle ScholarPubMed
Garcia-Larrea, L., Peyron, R. (2007) Motor cortex stimulation for neuropathic pain: from phenomenology to mechanisms. Neuroimage 37 (Suppl 1): S71–S79.CrossRefGoogle ScholarPubMed
García-Larrea, L., Peyron, R., Mertens, P.et al. (1999) Electrical stimulation of motor cortex for pain control: a combined PET-scan and electrophysiological study. Pain 83: 259–273.CrossRefGoogle ScholarPubMed
Geha, P. Y., Baliki, M. N., Chialvo, D. R.et al. (2007) Brain activity for spontaneous pain of postherpetic neuralgia and its modulation by lidocaine patch therapy. Pain 128: 88–100.CrossRefGoogle ScholarPubMed
Giesecke, T., Gracely, R. H., Grant, M. A.et al. (2004) Evidence of augmented central pain processing in idiopathic chronic low back pain. Arthritis Rheum 50: 613–623.CrossRefGoogle ScholarPubMed
Giesecke, T., Gracely, R. H., Williams, D. A.et al. (2005) The relationship between depression, clinical pain, and experimental pain in a chronic pain cohort. Arthritis Rheum 52: 1577–1584.CrossRefGoogle Scholar
Gracely, R. H., Petzke, F., Wolf, J. M.Clauw, D. J. (2002) Functional magnetic resonance imaging evidence of augmented pain processing in fibromyalgia. Arthritis Rheum 46: 1333–1343.CrossRefGoogle ScholarPubMed
Gracely, R. H., Geisser, M. E., Giesecke, T.et al. (2004) Pain catastrophizing and neural responses to pain among persons with fibromyalgia. Brain 127: 835–843.CrossRefGoogle ScholarPubMed
Grachev, I. D., Fredrickson, B. E., Apkarian, A. V. (2000) Abnormal brain chemistry in chronic back pain: an in vivo proton magnetic resonance spectroscopy study. Pain 89: 7–18.CrossRefGoogle Scholar
Hagelberg, N., Martikainen, I. K., Mansikka, H.et al. (2002) Dopamine D2 receptor binding in the human brain is associated with the response to painful stimulation and pain modulatory capacity. Pain 99: 273–279.CrossRefGoogle ScholarPubMed
Hagelberg, N., Forssell, H., Aalto, S.et al. (2003a) Altered dopamine D2 receptor binding in atypical facial pain. Pain 106: 43–48.CrossRefGoogle ScholarPubMed
Hagelberg, N., Forssell, H., Rinne, J. O.et al. (2003b) Striatal dopamine D1 and D2 receptors in burning mouth syndrome. Pain 101: 149–154.CrossRefGoogle ScholarPubMed
Harris, R. E., Clauw, D. J., Scott, D. J.et al. (2007) Decreased central μ-opioid receptor availability in fibromyalgia. J Neurosci 27: 10000–10006.CrossRefGoogle ScholarPubMed
Hirato, M., Watanabe, K., Takahashi, A.et al. (1994) Pathophysiology of central (thalamic) pain: combined change of sensory thalamus with cerebral cortex around central sulcus. Stereotact Funct Neurosurg 62: 300–303.CrossRefGoogle ScholarPubMed
Honey, C. R., Stoessl, A. J., Tsui, J. K. C., Schulzer, M., Calne, D. B. (1999) Unilateral pallidotomy for reduction of parkinsonian pain. J Neurosurg 91: 198–201.CrossRefGoogle ScholarPubMed
Hsieh, J. -C., Belfrage, M., Stone-Elander, S., Hansson, P., Ingvar, M. (1995) Central representation of chronic ongoing neuropathic pain studied by positron emission tomography. Pain 63: 225–236.CrossRefGoogle ScholarPubMed
Hsieh, J. C., Hannerz, J., Ingvar, M. (1996) Right-lateralised central processing for pain of nitroglycerin-induced cluster headache. Pain 67: 59–68.CrossRefGoogle ScholarPubMed
Iadarola, M. J., Max, M. B., Berman, K. F.et al. (1995) Unilateral decrease in thalamic activity observed with positron emission tomography in patients with chronic neuropathic pain. Pain 63: 55–64.CrossRefGoogle ScholarPubMed
Iadarola, M. J., Berman, K. F., Zeffiro, T. A.et al. (1998) Neural activation during acute capsaicin-evoked pain and allodynia assessed with PET. Brain 121: 931–947.CrossRefGoogle ScholarPubMed
Jones, A. K., Derbyshire, S. W. (1997) Reduced cortical responses to noxious heat in patients with rheumatoid arthritis. Ann Rheum Dis 56: 601–607.CrossRefGoogle ScholarPubMed
Jones, A. K., Kitchen, N. D., Watabe, H.et al. (1999) Measurement of changes in opioid receptor binding in vivo during trigeminal neuralgic pain using [11C] diprenorphine and positron emission tomography. J Cereb Blood Flow Metab 19: 803–808.CrossRefGoogle Scholar
Kishima, H., Saitoh, Y., Osaki, Y.et al. (2007) Motor cortex stimulation in patients with deafferentation pain: activation of the posterior insula and thalamus. J Neurosurg 107: 43–48.CrossRefGoogle ScholarPubMed
Koyama, T., McHaffie, J. G., Laurienti, P. J., Coghill, R. C. (2005) The subjective experience of pain: where expectations become reality. Proc Natl Acad Sci USA 102: 12950–12955.CrossRefGoogle ScholarPubMed
Kupers, R. C., Gybels, J. M., Gjedde, A. (2000) Positron emission tomography study of a chronic pain patient successfully treated with somatosensory thalamic stimulation. Pain 87: 295–302.CrossRefGoogle ScholarPubMed
Kwan, C. L., Diamant, N. E., Mikula, K., Davis, K. D. (2005a) Characteristics of rectal perception are altered in irritable bowel syndrome. Pain 113: 160–171.CrossRefGoogle ScholarPubMed
Kwan, C. L., Diamant, N. E., Pope, G.et al. (2005b) Abnormal forebrain activity in functional bowel disorder patients with chronic pain. Neurology 65: 1268–1277.CrossRefGoogle ScholarPubMed
Kwiatek, R., Barnden, L., Tedman, R.et al. (2000) Regional cerebral blood flow in fibromyalgia: single-photon-emission computed tomography evidence of reduction in the pontine tegmentum and thalami. Arthritis Rheum 43: 2823–2833.3.0.CO;2-E>CrossRefGoogle ScholarPubMed
Lorenz, J., Cross, D., Minoshima, S.et al. (2002) A unique representation of heat allodynia in the human brain. Neuron 35: 383–393.CrossRefGoogle ScholarPubMed
Lorenz, J., Minoshima, S., Casey, K. L. (2003) Keeping pain out of mind: the role of the dorsolateral prefrontal cortex in pain modulation. Brain 126: 1079–1091.CrossRefGoogle ScholarPubMed
Maarrawi, J., Peyron, R., Mertens, P.et al. (2007a) Differential brain opioid receptor availability in central and peripheral neuropathic pain. Pain 127: 183–194.CrossRefGoogle ScholarPubMed
Maarrawi, J., Peyron, R., Mertens, P.et al. (2007b) Motor cortex stimulation for pain control induces changes in the endogenous opioid system. Neurology 69: 827–834.CrossRefGoogle ScholarPubMed
Maihofner, C., Handwerker, H. O. (2005) Differential coding of hyperalgesia in the human brain: a functional MRI study. Neuroimage 28: 996–1006.CrossRefGoogle ScholarPubMed
Maihofner, C., Handwerker, H. O., Birklein, F. (2006) Functional imaging of allodynia in complex regional pain syndrome. Neurology 66: 711–717.CrossRefGoogle ScholarPubMed
Mailis-Gagnon, A., Giannoylis, I., Downar, J.et al. (2003) Altered central somatosensory processing in chronic pain patients with “hysterical” anesthesia. Neurology 60: 1501.CrossRefGoogle ScholarPubMed
May, A. (2008) Chronic pain may change the structure of the brain. Pain 137: 7–15.CrossRefGoogle Scholar
May, A., Gaser, C. (2006) Magnetic resonance-based morphometry: a window into structural plasticity of the brain. Curr Opin Neurol 19: 407–411.CrossRefGoogle Scholar
May, A., Bahra, A., Buchel, C., Frackowiack, R. S. J., Goadsby, P. J. (1998) Hypothalamic activation in cluster headache attacks. Lancet 352: 275–278.CrossRefGoogle ScholarPubMed
May, A., Bahra, A., Buchel, C., Turner, R., Goadsby, P. J. (1999a) Functional magnetic resonance imaging in spontaneous attacks of SUNCT: short-lasting neuralgiform headache with conjunctival injection and tearing. Ann Neurol 46: 791–794.3.0.CO;2-8>CrossRefGoogle ScholarPubMed
May, A., Buchel, C., Bahra, A., Goadsby, P. J., Frackowiak, R. S. (1999b) Intracranial vessels in trigeminal transmitted pain: a PET study. Neuroimage 9: 453–460.CrossRefGoogle ScholarPubMed
Mayer, E. A., Berman, S., Suyenobu, B.et al. (2005) Differences in brain responses to visceral pain between patients with irritable bowel syndrome and ulcerative colitis. Pain 115: 398–409.CrossRefGoogle ScholarPubMed
Merskey, H., Bogduk, N. (eds) (1994) Classification of chronic pain: descriptions of chronic pain syndromes and definitions of pain terms. Seattle: IASP Press.Google Scholar
Moisset, X., Bouhassira, D. (2007) Brain imaging of neuropathic pain. Neuroimage 37: S80–S88.CrossRefGoogle ScholarPubMed
Mountz, J. M., Bradley, L. A., Modell, J. G.et al. (1995) Fibromyalgia in women: abnormalities of regional cerebral blood flow in the thalamus and the caudate nucleus are associated with low pain threshold levels. Arthritis Rheum 38: 926–938.CrossRefGoogle ScholarPubMed
Naliboff, B. D., Berman, S., Suyenobu, B.et al. (2006) Longitudinal change in perceptual and brain activation response to visceral stimuli in irritable bowel syndrome patients. Gastroenterology 131: 352–365.CrossRefGoogle ScholarPubMed
Napadow, V., Kettner, N., Liu, J.et al. (2007) Hypothalamus and amygdala response to acupuncture stimuli in carpal tunnel syndrome. Pain 130: 254–266.CrossRefGoogle ScholarPubMed
Nicotra, A., Critchley, H. D., Mathias, C. J., Dolan, R. J. (2006) Emotional and autonomic consequences of spinal cord injury explored using functional brain imaging. Brain 129: 718–728.CrossRefGoogle ScholarPubMed
Pagni, C. A., Canavero, S. (1995) Functional thalamic depression in a case of reversible central pain due to a spinal intramedullary cyst. J Neurosurg 83: 163–165.CrossRefGoogle Scholar
Pappata, S., Mazoyer, B., Tran Dinh, S.et al. (1990) Effects of capsular or thalamic stroke on metabolism in the cortex and cerebellum: a positron tomography study. Stroke 21: 519–524.CrossRefGoogle ScholarPubMed
Petrovic, P., Ingvar, M., Stone-Elander, S., Petersson, K. M., Hansson, P. (1999) A PET activation study of dynamic mechanical allodynia in patients with mononeuropathy. Pain 83: 459–470.CrossRefGoogle ScholarPubMed
Peyron, R., Garcia-Larrea, L., Gregoire, M. C.et al. (1998) Allodynia after lateral-medullary (Wallenberg) infarct. A PET study. Brain 121: 345–356.CrossRefGoogle ScholarPubMed
Peyron, R., García-Larrea, L., Grégoire, M. C.et al. (2000) Parietal and cingulate processes in central pain. A combined positron emission tomography (PET) and functional magnetic resonance imaging (fMRI) study of an unusual case. Pain 84: 77–87.CrossRefGoogle Scholar
Peyron, R., Schneider, F., Faillenot, I.et al. (2004) An fMRI study of cortical representation of mechanical allodynia in patients with neuropathic pain. Neurology 63: 1838–1846.CrossRefGoogle ScholarPubMed
Peyron, R., Faillenot, I., Mertens, P., Laurent, B., Garcia-Larrea, L. (2007) Motor cortex stimulation in neuropathic pain. Correlations between analgesic effect and hemodynamic changes in the brain. A PET study. Neuroimage 34: 310–321.CrossRefGoogle Scholar
Pleger, B., Ragert, P., Schwenkreis, P.et al. (2006) Patterns of cortical reorganization parallel impaired tactile discrimination and pain intensity in complex regional pain syndrome. Neuroimage 32: 503–510.CrossRefGoogle ScholarPubMed
Price, D. D., Craggs, J., Verne, G. N., Perlstein, W. M., Robinson, M. E. (2007) Placebo analgesia is accompanied by large reductions in pain-related brain activity in irritable bowel syndrome patients. Pain 127: 63–72.CrossRefGoogle ScholarPubMed
Ringel, Y., Drossman, D. A., Leserman, J. L.et al. (2008) Effect of abuse history on pain reports and brain responses to aversive visceral stimulation: an FMRI study. Gastroenterology 134: 396–404.CrossRefGoogle Scholar
Sage, J. I., Kortis, H. I., Sommer, W. (1990) Evidence for the role of spinal cord systems in Parkinson's disease-associated pain. Clin Neuropharmacol 13: 171–174.CrossRefGoogle ScholarPubMed
Schestatsky, P., Kumru, H., Valls-Sole, J.et al. (2007) Neurophysiologic study of central pain in patients with Parkinson disease. Neurology 69: 2162–2169.CrossRefGoogle ScholarPubMed
Schweinhardt, P., Glynn, C., Brooks, J.et al. (2006) An fMRI study of cerebral processing of brush-evoked allodynia in neuropathic pain patients. Neuroimage 32: 256–265.CrossRefGoogle ScholarPubMed
Schweinhardt, P., Kalk, N., Wartolowska, K.et al. (2008) Investigation into the neural correlates of emotional augmentation of clinical pain. Neuroimage 40: 759–766.CrossRefGoogle ScholarPubMed
Song, G. H., Venkatraman, V., Ho, K. Y.et al. (2006) Cortical effects of anticipation and endogenous modulation of visceral pain assessed by functional brain MRI in irritable bowel syndrome patients and healthy controls. Pain 126: 79–90.CrossRefGoogle ScholarPubMed
Starkstein, S. E., Preziosi, T. J., Robinson, R. G. (1991) Sleep disorders, pain, and depression in Parkinson's disease. Eur Neurol 31: 352–355.CrossRefGoogle ScholarPubMed
Stoeter, P., Bauermann, T., Nickel, R.et al. (2007) Cerebral activation in patients with somatoform pain disorder exposed to pain and stress: an fMRI study. Neuroimage 36: 418–430.CrossRefGoogle Scholar
Szelies, B., Herholz, K., Pawlik, G.et al. (1991) Widespread functional effects of discrete thalamic infarction. Arch Neurol 48: 178–182.CrossRefGoogle ScholarPubMed
Teutsch, S., Herken, W., Bingel, U., Schoell, E., May, A. (2008) Changes in brain gray matter due to repetitive painful stimulation. Neuroimage 42: 845–849.CrossRefGoogle ScholarPubMed
Verne, G. N., Himes, N. C., Robinson, M. E.et al. (2003) Central representation of visceral and cutaneous hypersensitivity in the irritable bowel syndrome. Pain 103: 99–110.CrossRefGoogle ScholarPubMed
Vierck, C. J. (2006) Mechanisms underlying development of spatially distributed chronic pain (fibromyalgia). Pain 124: 242–263.CrossRefGoogle Scholar
Weiller, C., May, A., Limmroth, V.et al. (1995) Brain stem activation in spontaneous human migraine attacks. Nature Medicine 1: 658–660.CrossRefGoogle ScholarPubMed
Wiech, K., Seymour, B., Kalisch, R.et al. (2005) Modulation of pain processing in hyperalgesia by cognitive demand. Neuroimage 27: 59–69.CrossRefGoogle ScholarPubMed
Wik, G., Fischer, H., Bragee, B., Kristianson, M., Fredrikson, M. (2003) Retrosplenial cortical activation in the fibromyalgia syndrome. Neuroreport 14: 619–621.CrossRefGoogle ScholarPubMed
Wik, G., Fischer, H., Finer, B.et al. (2006) Retrospenial cortical deactivation during painful stimulation of fibromyalgic patients. Int J Neurosci 116: 1–8.CrossRefGoogle ScholarPubMed
Willoch, F., Schindler, F., Wester, H. J.et al. (2004) Central poststroke pain and reduced opioid receptor binding within pain processing circuitries: a [11C]diprenorphine PET study. Pain 108: 213–220.CrossRefGoogle Scholar
Witting, N., Kupers, R. C., Svensson, P.et al. (2001) Experimental brush-evoked allodynia activates posterior parietal cortex. Neurology 57: 1817–1824.CrossRefGoogle ScholarPubMed
Witting, N., Kupers, R. C., Svensson, P., Jensen, T. S. (2006) A PET activation study of brush-evoked allodynia in patients with nerve injury pain. Pain 120: 145–154.CrossRefGoogle ScholarPubMed
Wood, P. B., Schweinhardt, P., Jaeger, E.et al. (2007) Fibromyalgia patients show an abnormal dopamine response to pain. Eur J Neurosci 25: 3576–3582.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×