Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-nmvwc Total loading time: 0 Render date: 2024-06-26T18:58:47.551Z Has data issue: false hasContentIssue false

35 - HSV: immunopathological aspects of HSV infection

from Part III - Pathogenesis, clinical disease, host response, and epidemiology: HSV-1 and HSV-2

Published online by Cambridge University Press:  24 December 2009

Kaustuv Banerjee
Affiliation:
Department of Microbiology, College of Veterinary Medicine, University of Tennessee, Knoxville, TN, USA
Barry T. Rouse
Affiliation:
Department of Microbiology, College of Veterinary Medicine, University of Tennessee, Knoxville, TN, USA
Ann Arvin
Affiliation:
Stanford University, California
Gabriella Campadelli-Fiume
Affiliation:
Università degli Studi, Bologna, Italy
Edward Mocarski
Affiliation:
Emory University, Atlanta
Patrick S. Moore
Affiliation:
University of Pittsburgh
Bernard Roizman
Affiliation:
University of Chicago
Richard Whitley
Affiliation:
University of Alabama, Birmingham
Koichi Yamanishi
Affiliation:
University of Osaka, Japan
Get access

Summary

Introduction

“What is food to one man is bitter poison to others”

Lucretius De Rerum Natura (50BCE)

Foreign material entering multicellular organisms triggers a range of defense reactions which, when successful, subjugates and removes the invaders. Invertebrates and plants have natural defense systems, which recognize commonly shared patterns and usually react in a stereotypical manner. Long-lived animals such as vertebrates add to these natural defenses with adaptive systems that show discriminating recognition machinery, complex and varying effector mechanisms and development of persistent or “memory” responses. Under ideal circumstances, immune defense proceeds with minimal or inapparent damage to the host. In other situations, the defense system is less successful and the host tissues become damaged by the reaction. We usually consider the former situation as immunity and the latter as immunopathology. However, in both instances, mechanisms at play may be similar and deciding if the process is one or the other may require Lucretian logic.

With microorganisms, the commonest circumstance that results in immunopathology is where the microbe persists and continues to cause an innate and adaptive response. These, however, prove ineffective to remove or neutralize the agent. Thus the reaction becomes chronic and host tissues become damaged as a consequence. This situation occurs in tuberculosis as well as hepatitis B and C virus infections. Over time, many microbes with a long association with a host species find ways of persisting by evading responses that would either eliminate them or cause too much tissue damage.

Type
Chapter
Information
Human Herpesviruses
Biology, Therapy, and Immunoprophylaxis
, pp. 642 - 655
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anglen, C. S., Truckenmiller, M. E., Schell, T. D., and Bonneau, R. H. (2003). The dual role of CD8+ T lymphocytes in the development of stress-induced herpes simplex encephalitis. J. Neuroimmunol., 140(1–2), 13–27.CrossRefGoogle ScholarPubMed
Atherton, S. S. (2001). Acute retinal necrosis: insights into pathogenesis from the mouse model. Herpes, 8(3), 69–73.Google ScholarPubMed
Babu, J. S., Kanangat, S., and Rouse, B. T. (1995). T cell cytokine mRNA expression during the course of the immunopathologic ocular disease herpetic stromal keratitis. J. Immunol., 154(9), 4822–4829.Google ScholarPubMed
Babu, J. S., Thomas, J., Kanangat, S., Morrison, L. A., Knipe, D. M., and Rouse, B. T. (1996). Viral replication is required for induction of ocular immunopathology by herpes simplex virus. J. Virol., 70(1), 101–107.Google ScholarPubMed
Banerjee, K., Deshpande, S., Zheng, M., Kumaraguru, U., Schoenberger, S. P., and Rouse, B. T. (2002). Herpetic stromal keratitis in the absence of viral antigen recognition. Cell Immunol., 219(2), 108–118.CrossRefGoogle ScholarPubMed
Banerjee, K, Biswas, P. S., Kim, B, Lee, S., and Rouse, B. T. (2004a). CXCR2-/- mice show enhanced susceptibility to herpetic stromal keratitis: a role for IL-6-induced neovascularization. J. Immunol., 172(2), 1237–1245.CrossRefGoogle Scholar
Banerjee, K., Biswas, P. S., Kumaraguru, U., Schoenberger, S. P., and Rouse, B. T. (2004b). Protective and pathological roles of virus-specific and bystander CD8+ T cells in herpetic stromal keratitis. J. Immunol., 173(12), 7575–7583.CrossRefGoogle Scholar
Banerjee, K., Biswas, P. S., and Rouse, B. T. (2005). Elucidating the protective and pathologic T cell species in the virus-induced corneal immunoinflammatory condition herpetic stromal keratitis. J. Leukoc. Biol., 77(1), 24–32.CrossRefGoogle ScholarPubMed
Biswas, P. S., Banerjee, K, Kim, B., and Rouse, B. T. (2004). Mice transgenic for IL-1 receptor antagonist protein are resistant to herpetic stromal keratitis: possible role for IL-1 in herpetic stromal keratitis pathogenesis. J. Immunol., 172(6): 3736–3744.CrossRefGoogle ScholarPubMed
Bouley, D. M., Kanangat, S., Wire, W., and Rouse, B. T. (1995). Characterization of herpes simplex virus type-1 infection and herpetic stromal keratitis development in IFN-gamma knockout mice. J. Immunol., 155(8), 3964–3971.Google ScholarPubMed
Bouley, D. M., Kanangat, S., and Rouse, B. T. (1996). The role of the innate immune system in the reconstituted SCID mouse model of herpetic stromal keratitis. Clin. Immunol. Immunopathol., 80(1), 23–30.CrossRefGoogle ScholarPubMed
Daheshia, M., Kanangat, S., and Rouse, B. T. (1998a). Production of key molecules by ocular neutrophils early after herpetic infection of the cornea. Exp. Eye Res., 67(6), 619–624.CrossRefGoogle Scholar
Daheshia, M., Kuklin, N., Manickan, E., Chun, S., and Rouse, B. T. (1998b). Immune induction and modulation by topical ocular administration of plasmid DNA encoding antigens and cytokines. Vaccine, 16(11–12), 1103–1110.CrossRefGoogle Scholar
Deshpande, S. P., Lee, S., Zheng, M.et al. (2001a). Herpes simplex virus-induced keratitis: evaluation of the role of molecular mimicry in lesion pathogenesis. J. Virol., 75(7), 3077–3088.CrossRefGoogle Scholar
Deshpande, S., Zheng, M., Lee, S.et al. (2001b). Bystander activation involving T lymphocytes in herpetic stromal keratitis. J. Immunol., 167(5), 2902–2910.CrossRefGoogle Scholar
Deshpande, S. P., Zheng, M, Lee, S., and Rouse, B. T. (2002). Mechanisms of pathogenesis in herpetic immunoinflammatory ocular lesions. Vet. Microbiol., 86(1–2), 17–26.CrossRefGoogle ScholarPubMed
Diefenbach, R. J., Miranda-Saksena, M., Diefenbach, E.et al. (2002). Herpes simplex virus tegument protein US11 interacts with conventional kinesin heavy chain. J. Virol., 76(7), 3282–3291.CrossRefGoogle ScholarPubMed
Dreizen, N. G., Whitsett, C. F., and Stulting, R. D. (1988). Modulation of HLA antigen expression on corneal epithelial and stromal cells. Invest. Ophthalmol. Vis. Sci., 29(6), 933–939.Google ScholarPubMed
Easty, D. L., Shimeld, C., Claoue, C. M., and Menage, M. (1987). Herpes simplex virus isolation in chronic stromal keratitis: human and laboratory studies. Curr. Eye Res., 6(1), 69–74.CrossRefGoogle ScholarPubMed
Ellison, A. R., Yang, L., Cevallos, A. V., and Margolis, T. P. (2003). Analysis of the herpes simplex virus type 1 UL6 gene in patients with stromal keratitis. Virology, 310(1), 24–28.CrossRefGoogle ScholarPubMed
Feldman, L. T., Ellison, A. R., Voytek, C. C., Yang, L., Krause, P., and Margolis, T. P. (2002). Spontaneous molecular reactivation of herpes simplex virus type 1 latency in mice. Proc. Natl Acad. Sci. USA, 99(2), 978–983.CrossRefGoogle ScholarPubMed
Foets, B. J., Oord, J. J., Billiau, A., Damme, J., and Missotten, L. (1991). Heterogeneous induction of major histocompatibility complex class II antigens on corneal endothelium by interferon-gamma. Invest. Ophthalmol. Vis. Sci., 32(2), 341–345.Google ScholarPubMed
Ganatra, J. B., Chandler, D., Santos, C., Kuppermann, B., and Margolis, T. P. (2000). Viral causes of the acute retinal necrosis syndrome. Am. J. Ophthalmol., 129(2), 166–172.CrossRefGoogle ScholarPubMed
Gangappa, S., Babu, J. S., Thomas, J., Daheshia, M., and Rouse, B. T. (1998). Virus-induced immunoinflammatory lesions in the absence of viral antigen recognition. J. Immunol., 161(8), 4289–4300.Google ScholarPubMed
Gangappa, S, Deshpande, S. P., and Rouse, B. T. (1999). Bystander activation of CD4(+) T cells can represent an exclusive means of immunopathology in a virus infection. Eur. J. Immunol., 29(11), 3674–3682.3.0.CO;2-7>CrossRefGoogle ScholarPubMed
Hamrah, P, Liu, Y, Zhang, Q., and Dana, M. R. (2003). The corneal stroma is endowed with a significant number of resident dendritic cells. Invest. Ophthalmol. Vis. Sci., 44(2), 581–589.CrossRefGoogle ScholarPubMed
Hegab, S. and Al-Mutawa, S. (2000). Immunopathogenesis of Behcet's disease. Clin. Immunol., 96(3), 174–186.CrossRefGoogle ScholarPubMed
Hemling, N., Roytta, M., Rinne, J.et al. (2003). Herpesviruses in brains in Alzheimer's and Parkinson's diseases. Ann. Neurol., 54(2), 267–271.CrossRefGoogle ScholarPubMed
Holland, G. N., Tufail, A., and Jordan, C. N., (1996). Cytomegalovirus diseases. In Ocular Infection and Immunity, ed. Pepose, J. S., Holland, G. N., and Wilhelmus, K. R., pp. 1088–1130. St. Louis: Mosby.Google Scholar
Hudson, S. J. and Streilein, J. W. (1994). Functional cytotoxic T cells are associated with focal lesions in the brains of SJL mice with experimental herpes simplex encephalitis. J. Immunol., 152(11), 5540–5547.Google ScholarPubMed
Hudson, S. J., Dix, R. D., and Streilein, J. W. (1991). Induction of encephalitis in SJL mice by intranasal infection with herpes simplex virus type 1: a possible model of herpes simplex encephalitis in humans. J. Infect. Dis., 163(4), 720–727.CrossRefGoogle ScholarPubMed
Jager, M. J., Atherton, S., Bradley, D., and Streilein, J. W. (1991). Herpetic stromal keratitis in mice: less reversibility in the presence of Langerhans cells in the central cornea. Curr. Eye Res., 10 Suppl, 69–73.CrossRefGoogle ScholarPubMed
Kanangat, S., Babu, J. S., Knipe, D. M., and Rouse, B. T. (1996). HSV-1-mediated modulation of cytokine gene expression in a permissive cell line: selective upregulation of IL-6 gene expression. Virology, 219(1), 295–300.CrossRefGoogle Scholar
Kastrukoff, L. F., Lau, A. S., and Kim, S. U. (1987). Multifocal CNS demyelination following peripheral inoculation with herpes simplex virus type 1. Ann. Neurol., 22(1), 52–59.CrossRefGoogle ScholarPubMed
Kastrukoff, L. F., Lau, A. S., Leung, G. Y., and Thomas, E. E. (1993). Contrasting effects of immunosuppression on herpes simplex virus type I (HSV I) induced central nervous system (CNS) demyelination in mice. J. Neurol. Sci., 117(1–2), 148–158.CrossRefGoogle ScholarPubMed
Kaufman, H. E., Kanai, A., and Ellison, E. D. (1971). Herpetic iritis: demonstration of virus in the anterior chamber by fluorescent antibody techniques and electron microscopy. Am. J. Ophthalmol., 71(2), 465–469.CrossRefGoogle ScholarPubMed
Khanna, K. M., Bonneau, R. H., Kinchington, P. R., and Hendricks, R. L. (2003). Herpes simplex virus-specific memory CD8+ T cells are selectively activated and retained in latently infected sensory ganglia. Immunity, 18(5), 593–603.CrossRefGoogle ScholarPubMed
Kieff, E. and Rickinson, A. B., (2001). Epstein–Barr virus and its replication. In Fields Virology, ed. Knipe, D. M. and Howley, P. M., pp. 2511–2574. Philadelphia: Lipincott Williams and Wilkins.Google Scholar
Kimura, S. J. (1962). Herpes Simplex Uveitis: A clinical and experimental study. Trans. Am. Ophthalmol. Soc., 60, 440–470.Google ScholarPubMed
Kobayashi, S., Shogi, S., and Ishizu, M. (1972). Electron microscopic demonstration of virus particles in keratitis. Jpn J. Ophthalmol., 16, 247–250.Google Scholar
Koelle, D. M. and Corey, L. (2003). Recent progress in herpes simplex virus immunobiology and vaccine research. Clin. Microbiol. Rev., 16(1), 96–113.CrossRefGoogle ScholarPubMed
Koelle, D. M., Reymond, S. N., Chen, H.et al. (2000). Tegument-specific, virus-reactive CD4 T cells localize to the cornea in herpes simplex virus interstitial keratitis in humans. J. Virol., 74(23), 10930–10938.CrossRefGoogle ScholarPubMed
Kumaraguru, U. and Rouse, B. T. (2002). The IL-12 response to herpes simplex virus is mainly a paracrine response of reactive inflammatory cells. J. Leukoc. Biol., 72(3), 564–570.Google ScholarPubMed
LaVail, J. H., Topp, K. S., Giblin, P. A., and Garner, J. A. (1997). Factors that contribute to the transneuronal spread of herpes simplex virus. J. Neurosci. Res., 49(4), 485–496.3.0.CO;2-4>CrossRefGoogle ScholarPubMed
Lee, S., Zheng, M., Kim, B., and Rouse, B. T. (2002a). Role of matrix metalloproteinase-9 in angiogenesis caused by ocular infection with herpes simplex virus. J. Clin. Invest., 110(8), 1105–1111.CrossRefGoogle Scholar
Lee, S., Zheng, M., Deshpande, S., Eo, S. K., Hamilton, T. A., and Rouse, B. T. (2002b). IL-12 suppresses the expression of ocular immunoinflammatory lesions by effects on angiogenesis. J. Leukoc. Biol., 71(3), 469–476.Google Scholar
Leinonen, M. and Saikku, P. (2002). Evidence for infectious agents in cardiovascular disease and atherosclerosis. Lancet Infect. Dis., 2(1), 11–17.CrossRefGoogle ScholarPubMed
Liesegang, T. J. (1999). Classification of herpes simplex virus keratitis and anterior uveitis. Cornea., 18(2), 127–143.CrossRefGoogle ScholarPubMed
Liu, T., Tang, Q., and Hendricks, R. L. (1996). Inflammatory infiltration of the trigeminal ganglion after herpes simplex virus type 1 corneal infection. J. Virol., 70(1), 264–271.Google ScholarPubMed
Liu, T., Khanna, K. M., Chen, X., Fink, D. J., and Hendricks, R. L. (2000). CD8(+) T cells can block herpes simplex virus type 1 (HSV-1) reactivation from latency in sensory neurons. J. Exp. Med., 191(9), 1459–1466.CrossRefGoogle ScholarPubMed
Margolis, T. P. and Atherton, S, S., (1996). Herpes simplex virus diseases: Posterior segment of the eye. In Ocular Infection and Immunity.Pepose, J. S., Holland, G. N., and Wilhelmus, K. R. eds, pp. 1155–1168. St. Loius: Mosby.Google Scholar
Matoba, A. Y. (1990). Ocular disease associated with Epstein–Barr virus infection. Surv. Ophthalmol., 35(2), 145–150.CrossRefGoogle ScholarPubMed
Mercadal, C. M., Bouley, D. M., DeStephano, D., and Rouse, B. T. (1993). Herpetic stromal keratitis in the reconstituted scid mouse model. J. Virol., 67(6), 3404–3408.Google ScholarPubMed
Metcalf, J. F. and Kaufman, H. E. (1976). Herpetic stromal keratitis-evidence for cell-mediated immunopathogenesis. Am. J. Ophthalmol., 82(6), 827–834.CrossRefGoogle ScholarPubMed
Metcalf, J. F., Hamilton, D. S., and Reichert, R. W. (1979). Herpetic keratitis in athymic (nude) mice. Infect. Immun., 26(3), 1164–1171.Google ScholarPubMed
Meyers, R. L. and Chitjian, P. A. (1976). Immunology of herpesvirus infection: immunity to herpes simplex virus in eye infections. Surv. Ophthalmol., 21(2), 194–204.CrossRefGoogle ScholarPubMed
Meyers-Elliott, R. H., Pettit, T. H., and Maxwell, W. A. (1980). Viral antigens in the immune ring of Herpes simplex stromal keratitis. Arch. Ophthalmol., 98(5), 897–904.CrossRefGoogle ScholarPubMed
Meyers-Elliot, R. H., Chitjian, P. A., and Dethiefs, B. A (1983). Experimental herpesvirus keratitis in the rabbit: topical versus intrastromal infection routes. Ophthalmic Res., 15, 240–256.CrossRefGoogle Scholar
Miller, J. K., Laycock, K. A., Nash, M. M., and Pepose, J. S. (1993). Corneal Langerhans cell dynamics after herpes simplex virus reactivation. Invest. Ophthalmol. Vis. Sci., 34(7), 2282–2290.Google ScholarPubMed
Neta, R., Sayers, T. J., and Oppenheim, J. J. (1992). Relationship of TNF to interleukins. Immunol. Ser., 56, 499–566.Google ScholarPubMed
Niemialtowski, M. G. and Rouse, B. T. (1992). Predominance of Th1 cells in ocular tissues during herpetic stromal keratitis. J. Immunol., 149(9), 3035–3039.Google ScholarPubMed
Norn, M. S. (1970). Dendritic (herpetic) keratitis. I. Incidence–seasonal variations – recurrence rate–visual impairment–therapy. Acta Ophthalmol., 48(1), 91–107.CrossRefGoogle ScholarPubMed
Oh, J. O. (1976). Primary and secondary herpes simplex uveitis in rabbits. Surv. Ophthalmol., 21(2), 178–184.CrossRefGoogle ScholarPubMed
Osorio, Y., Wechsler, S. L., Nesburn, A. B., and Ghiasi, H. (2002). Reduced severity of HSV-1-induced corneal scarring in IL-12-deficient mice. Virus Res., 90(1–2), 317–326.CrossRefGoogle ScholarPubMed
Pavilack, M. A., Elner, V. M., Elner, S. G., Todd, R. F. 3rd., and Huber, A. R. (1992). Differential expression of human corneal and perilimbal ICAM-1 by inflammatory cytokines. Invest. Ophthalmol. Vis. Sci., 33(3), 564–573.Google ScholarPubMed
Peek, R., Verjans, G. M., and Meek, B. (2002). Herpes simplex virus infection of the human eye induces a compartmentalized virus-specific B cell response. J. Infect. Dis., 186(11), 1539–1546.CrossRefGoogle ScholarPubMed
Pepose, J. S. (1991a). External ocular herpesvirus infections in immunodeficiency. Curr. Eye Res., 10 Suppl, 87–95.CrossRefGoogle Scholar
Pepose, J. S. (1991b). Herpes simplex keratitis: role of viral infection versus immune response. Surv. Ophthalmol., 35(5), 345–352.CrossRefGoogle Scholar
Pepose, J. S., Nestor, M. S., Gardner, K. M., Foos, R. Y., and Pettit, T. H. (1985a). Composition of cellular infiltrates in rejected human corneal allografts. Graefes Arch. Clin. Exp. Ophthalmol., 222(3), 128–133.CrossRefGoogle Scholar
Pepose, J. S., Gardner, K. M., Nestor, M. S., Foos, R. Y., and Pettit, T. H. (1985b). Detection of HLA class I and II antigens in rejected human corneal allografts. Ophthalmology, 92(11), 1480–1484.CrossRefGoogle Scholar
Pepose, J. S., Leib, D. A., Stuart, M., and Easty, D., (1996). Herpes simplex virus diseases: anterior segment of the eye. In Ocular Infection and Immunity, ed. Pepose, J. S., Holland, G. N., and Wilhelmus, K. R., pp. 905–932. St. Louis: Mosby.Google Scholar
Pepose, J. S., Margolis, T. P., LaRussa, P., and Pavan-Langston, D. (2003). Ocular complications of smallpox vaccination. Am. J. Ophthalmol., 136(2), 343–352.CrossRefGoogle ScholarPubMed
Pyles, R. B. (2001). The association of herpes simplex virus and Alzheimer's disease: a potential synthesis of genetic and environmental factors. Herpes, 8(3), 64–68.Google ScholarPubMed
Rager-Zisman, B., Quan, P. C., Rosner, M., Moller, J. R., and Bloom, B. R. (1987). Role of NK cells in protection of mice against herpes simplex virus-1 infection. J. Immunol., 138(3), 884–888.Google ScholarPubMed
Reddehase, M. J. (2002). Antigens and immunoevasins: opponents in cytomegalovirus immune surveillance. Nat. Rev. Immunol., 2, 831–844.CrossRefGoogle ScholarPubMed
Remeijer, L., Doornenbal, P., Geerards, A. J., Rijneveld, W. A., and Beekhuis, W. H. (1997). Newly acquired herpes simplex virus keratitis after penetrating keratoplasty. Ophthalmology., 104(4) 648–652.CrossRefGoogle ScholarPubMed
Remeijer, L., Maertzdorf, J., Buitenwerf, J., Osterhaus, A. D., and Verjans, G. M. (2002). Corneal herpes simplex virus type 1 superinfection in patients with recrudescent herpetic keratitis. Invest. Ophthalmol. Vis. Sci., 43(2), 358–363.Google ScholarPubMed
Roizman, B. and Knipe, D. M., (2001). Herpes simplex viruses and their replication. In Fields Virology, ed. Knipe, D. M., and Howley, P. M., pp. 2399–2460. Philadelphia: Lipincott Williams and Wilkins.Google Scholar
Russell, R. G., Nasisse, M. P., Larsen, H. S., and Rouse, B. T. (1984). Role of T-lymphocytes in the pathogenesis of herpetic stromal keratitis. Invest. Ophthalmol. Vis. Sci., 25(8), 938–944.Google ScholarPubMed
Shevach, E. M. (2000). Regulatory T cells in autoimmmunity. Annu. Rev. Immunol., 18, 423–449.CrossRefGoogle ScholarPubMed
Shimeld, C., Hill, T., Blyth, B., and Easty, D. (1989). An improved model of recurrent herpetic eye disease in mice. Curr. Eye Res., 8(11), 1193–1205.CrossRefGoogle ScholarPubMed
Shimeld, C., Whiteland, J. L., Nicholls, S. M., et al. (1995). Immune cell infiltration and persistence in the mouse trigeminal ganglion after infection of the cornea with herpes simplex virus type 1. J. Neuroimmunol., 61(1), 7–16.CrossRefGoogle ScholarPubMed
Shimeld, C., Whiteland, J. L., Nicholls, S. M., Easty, D. L., and Hill, T. J. (1996). Immune cell infiltration in corneas of mice with recurrent herpes simplex virus disease. J. Gen. Virol., 77(5), 977–985.CrossRefGoogle ScholarPubMed
Shimeld, C., Efstathiou, S., and Hill T., (2001). Tracking the spread of a lacZ-tagged herpes simplex virus type 1 between the eye and the nervous system of the mouse: comparison of primary and recurrent infection. J. Virol., 75(11), 5252–5262.CrossRefGoogle ScholarPubMed
Simmons, A. (2002). Clinical manifestations and treatment considerations of herpes simplex virus infection. J. Infect Dis., 186 Suppl 1: S71–577.CrossRefGoogle ScholarPubMed
Streilein, J. W., Dana, M. R., and Ksander, B. R. (1997). Immunity causing blindness: five different paths to herpes stromal keratitis. Immunol. Today, 18(9), 443–449.CrossRefGoogle ScholarPubMed
Su, Y. H., Yan, X. T., Oakes, J. E., and Lausch, R. N. (1996). Protective antibody therapy is associated with reduced chemokine transcripts in herpes simplex virus type 1 corneal infection. J. Virol., 70(2), 1277–1281.Google ScholarPubMed
Sundmacher, R. and Neumann-Haefelin, D. (1979a). Herpes simplex virus isolations from the aqueous humor of patients suffering from focal iritis, endotheliitis, and prolonged disciform keratitis with glaucoma. Klin. Monatsbl. Augenheilkd., 175(4), 488–501.Google Scholar
Sundmacher, R. and Neumann-Haefelin, D., (1979b). Herpes simplex virus-positive and negative keratouveitis. In Immunology and Immunopathology of the Eye. ed. Silverstein, A. M., and O'Connor, G. R., pp. 225–229. New York: Masson Publishing.Google Scholar
Suvas, S, Azkur, A. K., Kim, B. S., Kumaraguru, U., and Rouse, B. T. (2004). CD4+CD25+ regulatory T cells control the severity of viral immunoinflammatory lesions. J. Immunol., 172(7), 4123–4132.CrossRefGoogle ScholarPubMed
Swanborg, R. H., Whittum-Hudson, J. A., and Hudson, A. P. (2003). Infectious agents and multiple sclerosis – areChlamydia pneumoniae and human herpes virus 6 involved? J. Neuroimmunol., 136(1–2), 1–8.Google ScholarPubMed
Tamesis, R. R., Messmer, E. M., Rice, B. A., Dutt, J. E., and Foster, C. S. (1994). The role of natural killer cells in the development of herpes simplex virus type 1 induced stromal keratitis in mice. Eye., 8(Pt 3), 298–306.CrossRefGoogle ScholarPubMed
Tang, Q. and Hendricks, R. L. (1996). Interferon gamma regulates platelet endothelial cell adhesion molecule 1 expression and neutrophil infiltration into herpes simplex virus-infected mouse corneas. J. Exp. Med., 184(4), 1435–1447.CrossRefGoogle ScholarPubMed
Thomas, J. and Rouse, B. T. (1998). Immunopathology of herpetic stromal keratitis: discordance in CD4+ T cell function between euthymic host and reconstituted SCID recipients. J. Immunol., 160, 3965–3970.Google ScholarPubMed
Thomas, J., Gangappa, S., Kanangat, S., and Rouse, BT. (1997). On the essential involvement of neutrophils in the immunopathologic disease: herpetic stromal keratitis. J. Immunol., 158(3), 1383–1391.Google ScholarPubMed
Thomas, J., Kanangat, S., and Rouse, B. T. (1998). Herpes simplex virus replication-induced expression of chemokines and proinflammatory cytokines in the eye: implications in herpetic stromal keratitis. J. Interferon Cytokine Res., 18(9), 681–690.CrossRefGoogle ScholarPubMed
Tran, M. T., Dean, D. A., Lausch, R. N., and Oakes, J. E. (1998). Membranes of herpes simplex virus type-1-infected human corneal epithelial cells are not permeabilized to macromolecules and therefore do not release IL-1alpha. Virology, 244(1), 74–48.CrossRefGoogle Scholar
Tumpey, T. M., Chen, S. H., Oakes, J. E., and Lausch, R. N. (1996). Neutrophil-mediated suppression of virus replication after herpes simplex virus type 1 infection of the murine cornea. J. Virol., 70(2), 898–904.Google ScholarPubMed
Verjans, G. M., Remeijer, L., van Binnendijk, R. S. et al. (1998). Identification and characterization of herpes simplex virus-specific CD4+ T cells in corneas of herpetic stromal keratitis patients. J. Infect. Dis., 177(2), 484–488.CrossRefGoogle ScholarPubMed
Verjans, G. M., Dings, M. E., McLauchlan, J.et al. (2000). Intraocular T cells of patients with herpes simplex virus (HSV)-induced acute retinal necrosis recognize HSV tegument proteins VP11/12 and VP13/14. J. Infect. Dis., 182(3), 923–927.CrossRefGoogle ScholarPubMed
Whitley, R. J., (2001). Herpes simplex viruses. In Fields Virology., ed. Knipe, D. M., and Howley, P. M., pp. 2461–2510. Philadelphia: Lippincott Williams and Wilkins.Google Scholar
Williams, L. E., Nesburn, A. B., and Kaufman, H. E. (1965). Experimental induction of disciform keratitis. Arch. Ophthalmol., 73, 112–118.CrossRefGoogle ScholarPubMed
Yan, X. T., Tumpey, T. M., Kunkel, S. L., Oakes, J. E., and Lausch, R. N. (1998). Role of MIP-2 in neutrophil migration and tissue injury in the herpes simplex virus-1-infected cornea. Invest. Ophthalmol. Vis. Sci., 139(10), 1854–1862.Google Scholar
Youinou, P., Colin, J., and Mottier, D. (1985). Immunological analysis of the cornea in herpetic stromal keratitis. J. Clin. Lab. Immunol., 17(2), 105–106.Google ScholarPubMed
Youinou, P., Colin, J., and Ferec, C. (1986). Monoclonal antibody analysis of blood and cornea T lymphocyte subpopulations in herpes simplex keratitis. Graefes Arch. Clin. Exp. Ophthalmol., 224(2), 131–133.CrossRefGoogle ScholarPubMed
Zhao, Z. S., Granucci, F., Yeh, L., Schaffer, P. A., and Cantor, H. (1998). Molecular mimicry by herpes simplex virus-type 1: autoimmune disease after viral infection. Science., 279(5355), 1344–137.CrossRefGoogle ScholarPubMed
Zheng, M., Schwarz, M. A., Lee, S., Kumaraguru, U., and Rouse, B. T. (2001a). Control of stromal keratitis by inhibition of neovascularization. Am. J. Pathol., 159(3), 1021–1029.CrossRefGoogle Scholar
Zheng, M., Deshpande, S., Lee, S., Ferrara, N., and Rouse, B. T. (2001b). Contribution of vascular endothelial growth factor in the neovascularization process during the pathogenesis of herpetic stromal keratitis. J. Virol., 75(20), 9828–9835.CrossRefGoogle Scholar
Zheng, M., Klinman, D. M., Gierynska, M., and Rouse, B. T. (2002). DNA containing CpG motifs induces angiogenesis. Proc. Natl Acad. Sci. USA, 99(13), 8944–8949.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×