Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-tj2md Total loading time: 0 Render date: 2024-04-18T20:06:08.168Z Has data issue: false hasContentIssue false

2 - Comparative analysis of the genomes

from Part I - Introduction: definition and classification of the human herpesviruses

Published online by Cambridge University Press:  24 December 2009

Andrew J. Davison
Affiliation:
MRC Virology Unit, Institute of Virology, Glasgow, UK
Ann Arvin
Affiliation:
Stanford University, California
Gabriella Campadelli-Fiume
Affiliation:
Università degli Studi, Bologna, Italy
Edward Mocarski
Affiliation:
Emory University, Atlanta
Patrick S. Moore
Affiliation:
University of Pittsburgh
Bernard Roizman
Affiliation:
University of Chicago
Richard Whitley
Affiliation:
University of Alabama, Birmingham
Koichi Yamanishi
Affiliation:
University of Osaka, Japan
Get access

Summary

Introduction

Members of the family Herpesviridae replicate their genomes in the infected cell nucleus and have a characteristic virion morphology, which consists of the envelope, tegument, capsid and core (Davison and Clements, 1997). An extensive description of virion structure is given in Chapter 3. The present chapter focuses on the viral genome, which occupies the core of the virus particle. Electron microscopy of negatively stained capsids gives the impression that the core consists of the viral DNA molecule wrapped toroidally around a protein spindle (Furlong et al., 1972). Images reconstructed from electron micrographs of virions frozen in ice in the absence of stain, a technique by which morphology is better preserved, show that the core consists of the DNA packed at high density in liquid crystalline form, probably as a spool lacking a spindle (Booy et al., 1991; Zhou et al., 1999).

Herpesvirus genomes consist of linear, double-stranded DNA molecules that range in size from about 125 to 240kbp and in nucleotide composition from 32 to 75% G+C, depending on the virus species (Honess, 1984). The genome termini are not covalently closed (as in the Poxviridae; Moss, 2001) or covalently linked to a protein (as in the Adenoviridae; Shenk, 2001). In those herpesvirus genomes that have been examined in sufficient detail, unpaired nucleotides are present at the termini; for example, HSV-1, VZV and HCMV have a single 3′-overhanging nucleotide at each terminus (Mocarski and Roizman, 1982; Davison, 1984; Tamashiro and Spector, 1986).

Type
Chapter
Information
Human Herpesviruses
Biology, Therapy, and Immunoprophylaxis
, pp. 10 - 26
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Afonso, C. L., Tulman, E. R., Lu, Z., Zsak, L., Rock, D. L., and Kutish, G. F., (2001). The genome of turkey herpesvirus. J. Virol., 75, 971–978.CrossRefGoogle ScholarPubMed
Albrecht, J. C. (2000). Primary structure of the Herpesvirus ateles genome. J. Virol., 74, 1033–1037.CrossRefGoogle ScholarPubMed
Albrecht, M., Darai, G., and Flugel, R. M. (1985). Analysis of the genomic termini of tupaia herpesvirus DNA by restriction mapping and nucleotide sequencing. J. Virol., 56, 466–474.Google ScholarPubMed
Albrecht, J. C., Nicholas, J., Biller, D.et al. (1992). Primary structure of the herpesvirus saimiri genome. J. Virol., 66, 5047–5058.Google ScholarPubMed
Alexander, L., Denekamp, L., Knapp, A., Auerbach, M. R., Damania, B., and Desrosiers, R. C. (2000).The primary sequence of rhesus monkey rhadinovirus isolate 26–95: sequence similarities to Kaposi's sarcoma-associated herpesvirus and rhesus monkey rhadinovirus isolate 17577. J. Virol., 74, 3388–3398.CrossRefGoogle ScholarPubMed
Baer, R., Bankier, A. T., Biggin, M. D.et al. (1984). DNA sequence and expression of the B95-8 Epstein–Barr virus genome. Nature, 310, 207–211.CrossRefGoogle ScholarPubMed
Bahr, U. and Darai, G. (2001). Analysis and characterization of the complete genome of tupaia (tree shrew) herpesvirus. J. Virol., 75, 4854–4870.CrossRefGoogle ScholarPubMed
Ben-Porat, T., Veach, R. A., and Ihara, S., (1983). Localization of the regions of homology between the genomes of herpes simplex virus, type 1, and pseudorabies virus. Virology, 127, 194–204.CrossRefGoogle ScholarPubMed
Bernard, J. and Mercier, A., (1993). Sequence of two Eco RI fragments from salmonis herpesvirus 2 and comparison with ictalurid herpesvirus 1. Arch. Virol., 132, 437–442.CrossRefGoogle ScholarPubMed
Bhattacharyya, S. P. and Rao, V. B. (1993). A novel terminase activity associated with the DNA packaging protein gp17 of bacteriophage T4. Virology, 196, 34–44.CrossRefGoogle ScholarPubMed
Bhella, D., Rixon, F. J., and Dargan, D. J. (2000). Cryomicroscopy of human cytomegalovirus virions reveals more densely packed genomic DNA than in herpes simplex virus type 1. J. Mol. Biol., 295, 155–161.CrossRefGoogle ScholarPubMed
Bodescot, M., Perricaudet., M., and Farrell, P. J. (1987). A promoter for the highly spliced EBNA family of RNAs of Epstein–Barr virus. J. Virol., 61, 3424–3430.Google ScholarPubMed
Boehmer, P. E. and Lehman, I. R. (1997). Herpes simplex virus DNA replication. Annu. Rev. Biochem., 66, 347–384.CrossRefGoogle ScholarPubMed
Booy, F. P., Newcomb, W. W., Trus, B. L., Brown, J. C., Baker, T. S., and Steven, A. C. (1991). Liquid-crystalline, phage-like packing of encapsidated DNA in herpes simplex virus. Cell, 64, 1007–1015.CrossRefGoogle ScholarPubMed
Booy, F. P., Trus, B. L., Davison, A. J., and Steven, A. C. (1996). The capsid architecture of channel catfish virus, an evolutionarily distant herpesvirus, is largely conserved in the absence of discernible sequence homology with herpes simplex virus. Virology, 215, 134–141.CrossRefGoogle ScholarPubMed
Bornkamm, G. W., Delius, H., Fleckenstein, B., Werner, F. J., and Mulder, C. (1976). Structure of Herpesvirus saimiri genomes: arrangement of heavy and light sequences in the M genome. J. Virol., 19, 154–161.Google ScholarPubMed
Bowden, R. J., Simas, J. P., Davis, A. J., and Efstathiou, S. (1997). Murine gammaherpesvirus 68 encodes tRNA-like sequences which are expressed during latency. J. Gen. Virol., 78, 1675–1687.CrossRefGoogle ScholarPubMed
Bras, F., Dezelee, S., Simonet, B.et al. (1999). The left border of the genomic inversion of pseudorabies virus contains genes homologous to the UL46 and UL47 genes of herpes simplex virus type 1, but no UL45 gene. Virus Res., 60, 29–40.CrossRefGoogle ScholarPubMed
Bresnahan, W. A. and Shenk, T. (2000). A subset of viral transcripts packaged within human cytomegalovirus particles. Science, 288, 2373–2376.CrossRefGoogle ScholarPubMed
Broll, H., Buhk, H.-J., Zimmermann, W., and Goltz, M. (1999). Structure and function of the prDNA and genomic termini of the γ2-herpesvirus bovine herpesvirus type 4. J. Gen. Virol., 80, 979–986.CrossRefGoogle ScholarPubMed
Browning, G. F. and Studdert, M. J. (1989). Physical mapping of a genome of equine herpesvirus 2 (equine cytomegalovirus). Arch. Virol., 104, 77–86.CrossRefGoogle Scholar
Cebrian, J., Berthelot, N., and Laithier, M. (1989). Genome structure of cottontail rabbit herpesvirus. J. Virol., 63, 523–531.Google ScholarPubMed
Chee, M. S., Bankier, A. T., Beck, S.et al. (1990). Analysis of the protein coding content of the sequence of human cytomegalovirus strain AD169. Curr. Top. Microbiol. Immunol., 154, 125–169.Google ScholarPubMed
Chousterman, S., Lacasa, M., and Sheldrick, P. (1979). Physical map of the channel catfish virus genome: location of sites for restriction endonucleases EcoRI, HindIII, HpaI and XbaI. J. Virol., 31, 73–85.Google ScholarPubMed
Clements, J. B., Cortini, R., and Wilkie, N. M. (1976). Analysis of herpesvirus DNA substructure by means of restriction endonucleases. J. Gen. Virol., 30, 243–256.CrossRefGoogle ScholarPubMed
Coberley, S. S., Condit, R. C., Herbst, L. H., and Klein, P. A. (2002). Identification and expression of immunogenic proteins of a disease-associated marine turtle herpesvirus. J. Virol., 76, 10553–10558.CrossRefGoogle ScholarPubMed
Cunningham, C., Barnard, S., Blackbourn, D. J., and Davison, A. J. (2003). Transcription mapping of human herpesvirus 8 genes encoding viral interferon regulatory factors. J. Gen. Virol., 84, 1471–1483.CrossRefGoogle ScholarPubMed
Davison, A. J., (1984). Structure of the genome termini of varicella-zoster virus. J. Gen. Virol., 65, 1969–1977.CrossRefGoogle ScholarPubMed
Davison, A. J. (1992). Channel catfish virus: a new type of herpesvirus. Virology, 186, 9–14.CrossRefGoogle ScholarPubMed
Davison, A. J. (1998). The genome of salmonid herpesvirus 1. J. Virol., 72, 1974–1982.Google ScholarPubMed
Davison, A. J. (2002). Evolution of the herpesviruses. Vet. Microbiol., 86, 69–88.CrossRefGoogle ScholarPubMed
Davison, A. J., and Clements, J. B. (1997). Herpesviruses: general properties. In Topley & Wilson's Microbiology and Microbial Infections, 9th edn, vol. 1, pp. 309–323. ed. Collier, L., Balows, A. and Sussman, M.; vol. ed. B. W. J. Mahy and L. Collier. London: Edward Arnold.Google Scholar
Davison, A. J., and , Scott J. E. (1986). The complete DNA sequence of varicella-zoster virus. J. Gen. Virol., 67, 1759–1816.CrossRefGoogle ScholarPubMed
Davison, A. J. and Taylor, P. (1987). Genetic relations between varicella-zoster virus and Epstein–Barr virus. J. Gen. Virol., 68, 1067–1079.CrossRefGoogle ScholarPubMed
Davison, A. J. and Wilkie, N. M. (1983). Location and orientation of homologous sequences in the genomes of five herpesviruses. J. Gen. Virol., 64, 1927–1942.CrossRefGoogle ScholarPubMed
Davison, A. J., Sauerbier, W., Dolan, A., Addison, C., and McKinnell, R. G. (1999). Genomic studies of the Lucké tumor herpesvirus (RaHV-1). J. Cancer Res. Clin. Oncol., 125, 232–238.CrossRefGoogle Scholar
Davison, A. J., Dolan, A., Akter, P., et al. (2003a). The human cytomegalovirus genome revisited: comparison with the chimpanzee cytomegalovirus genome. J. Gen. Virol., 84, 17–28.CrossRefGoogle Scholar
Davison, A. J., Akter, P., Cunningham, C.et al. (2003b). Homology between the human cytomegalovirus RL11 gene family and human adenovirus E3 genes. J. Gen. Virol., 84, 657–663.CrossRefGoogle Scholar
Davison, A. J., Benko, M., and Harrach, B. (2003c). Genetic content and evolution of adenoviruses. J. Gen. Virol., 84, 2895–2908.CrossRefGoogle Scholar
Davison, A. J., Trus, B. L., Cheng, N.et al. (2005). A novel class of herpesvirus with bivalve hosts. J. Gen. Virol., 86, 41–53.CrossRefGoogle ScholarPubMed
Jesus, O., Smith, P. R., Spender, L. C.et al. (2003). Updated Epstein-Barr virus (EBV) DNA sequence and analysis of a promoter for the BART (CST, BARF0) RNAs of EBV. J. Gen. Virol., 84, 1443–1450.CrossRefGoogle ScholarPubMed
Delhon, G., Moraes, M. P., Lu, Z.et al. (2003). Genome of bovine herpesvirus 5. J. Virol., 77, 10339–10347.CrossRefGoogle ScholarPubMed
Delius, H. and Clements, J. B. (1976). A partial denaturation map of herpes simplex virus type 1 DNA: evidence for inversions of the unique DNA regions. J. Gen. Virol., 33, 125–133.CrossRefGoogle ScholarPubMed
DeMarchi, J. M. (1981). Human cytomegalovirus DNA: restriction enzyme cleavage maps and map locations for immediate–early, early, and late RNAs. Virology, 114, 23–38.CrossRefGoogle ScholarPubMed
Dewhurst, S., Dollard, S. C., Pellett, P. E., and Dambaugh, TR. (1993). Identification of a lytic-phase origin of DNA replication in human herpesvirus 6B strain Z29. J. Virol., 67, 7680–7683.Google ScholarPubMed
Dezelee, S., Bras, F., Vende, P.et al. (1996). The BamHI fragment 9 of pseudorabies virus contains genes homologous to the UL24, UL25, UL26, and UL26.5 genes of herpes simplex virus type 1. Virus Res., 42, 27–39.CrossRefGoogle ScholarPubMed
Dolan, A., Jamieson, F. E., Cunningham, C., Barnett, B. C., and McGeoch, D. J. (1998). The genome sequence of herpes simplex virus type 2. J. Virol., 72, 2010–2021.Google ScholarPubMed
Dolan, A., Cunningham, C., Hector, R. D.et al. (2004). Genetic content of wild type human cytomegalovirus. J. Gen. Virol., 85, 1301–1312.CrossRefGoogle ScholarPubMed
Dolan, A., Addison, C., Gatherer, D., Davison, A. J., and McGeoch, D. J. (2006). The genome of Epstein–Barr virus type 2 strain AG876. Virology, 350, 164–170.CrossRefGoogle ScholarPubMed
Dominguez, G., Black, J. B., Stamey, F. R., Inoue, N., and Pellett, P. E. (1996). Physical and genetic maps of the human herpesvirus 7 strain SB genome. Arch. Virol., 141, 2387–2408.CrossRefGoogle ScholarPubMed
Dominguez, G., Dambaugh, T. R., Stamey, F. R., Dewhurst, S., Inoue, N., and Pellett, P. E. (1999). Human herpesvirus 6B genome sequence: coding content and comparison with human herpesvirus 6A. J. Virol., 73, 8040–8052.Google ScholarPubMed
Dumas, A. M., Geelen, J. L., Weststrate, M. W., Wertheim, P., and Noordaa, J. (1981). XbaI, PstI, and BglII restriction enzyme maps of the two orientations of the varicella-zoster virus genome. J. Virol., 39, 390–400.Google ScholarPubMed
Dunn, W., Chou, C., Li, H.et al. (2003). Functional profiling of a human cytomegalovirus genome. Proc. Natl Acad. Sci. USA, 100, 14223–14228.CrossRefGoogle ScholarPubMed
Ensser, A., Pflanz, R., and Fleckenstein, B. (1997). Primary structure of the alcelaphine herpesvirus 1 genome. J. Virol., 71, 6517–6525.Google ScholarPubMed
Ensser, A., Thurau, M., Wittmann, S., and Fickenscher, H. (2003). The genome of herpesvirus saimiri C488 which is capable of transforming human T cells. Virology, 314, 471–487.CrossRefGoogle ScholarPubMed
Furlong, D., Swift, H., and Roizman, B. (1972). Arrangement of herpesvirus deoxyribonucleic acid in the core. J. Virol., 10, 1071–1074.Google ScholarPubMed
Given, D. and Kieff, E. (1979). DNA of Epstein–Barr virus. VI. Mapping of the internal tandem reiteration. J. Virol., 31, 315–324.Google ScholarPubMed
Glenn, M., Rainbow, L., Aurade, F., Davison, A., and Schulz, T. F. (1999). Identification of a spliced gene from Kaposi's sarcoma-associated herpesvirus encoding a protein with similarities to latent membrane proteins 1 and 2A of Epstein–Barr virus. J. Virol., 73, 6953–6963.Google ScholarPubMed
Gomi, Y., Sunamachi, H., Mori, Y., Nagaike, K., Takahashi, M., and Yamanishi, K. (2002). Comparison of the complete DNA sequences of the Oka varicella vaccine and its parental virus. J. Virol., 76, 11447–11459.CrossRefGoogle ScholarPubMed
Gompels, U. A., Nicholas, J., Lawrence, G.et al. (1995). The DNA sequence of human herpesvirus-6: structure, coding content, and genome evolution. Virology, 209, 29–51.CrossRefGoogle ScholarPubMed
Grafstrom, R. H., Alwine, J. C., Steinhart, W. L., and Hill, C. W. (1975a). Terminal repetitions in herpes simplex virus type 1 DNA. Cold Spring Harb. Symp. Quant. Biol., 39, 679–681.CrossRefGoogle Scholar
Grafstrom, R. H., Alwine, J. C., Steinhart, W. L., Hill, C. W., and Hyman, R. W. (1975b). The terminal repetition of herpes simplex virus DNA. Virology, 67, 144–157.CrossRefGoogle Scholar
Gray, W. L., Starnes, B., White, M. W., and Mahalingam, R. (2001). The DNA sequence of the simian varicella virus genome. Virology, 284, 123–130.CrossRefGoogle ScholarPubMed
Grose, C., Tyler, S., Peters, G.et al. (2004). Complete DNA sequence analyses of the first two varicella-zoster virus glycoprotein E (D150N) mutant viruses found in North America: evolution of genotypes with an accelerated cell spread phenotype. J. Virol., 78, 6799–6807.CrossRefGoogle ScholarPubMed
Gubser, C., Hue, S., , Kellam P., and Smith, G. L. (2004). Poxvirus genomes: a phylogenetic analysis. J. Gen. Virol., 85, 105–117.CrossRefGoogle ScholarPubMed
Guliani, S., Polkinghorne, I., Smith, G. A., Young, P., Mattick, J. S., and Mahony, T. J. (2002). Macropodid herpesvirus 1 encodes genes for both thymidylate synthase and ICP34.5. Virus Genes, 24, 207–213.CrossRefGoogle ScholarPubMed
Hannenhalli, S., Chappey, C., Koonin, E. V., and Pevzner, P. A. (1995). Genome sequence comparison and scenarios for gene rearrangements: a test case. Genomics, 30, 299–311.CrossRefGoogle ScholarPubMed
Hansen, S. G., Strelow, L. I., Franchi, D. C., Anders, D. G., and Wong, S. W. (2003). Complete sequence and genomic analysis of rhesus cytomegalovirus. J. Virol., 77, 6620–6636.CrossRefGoogle ScholarPubMed
Hayward, G. S., Jacob, R. J., Wadsworth, S. C., and Roizman, B. (1975). Anatomy of herpes simplex virus DNA: evidence for four populations of molecules that differ in the relative orientations of their long and short components. Proc. Natl Acad. Sci. USA, 72, 4243–4247.CrossRefGoogle ScholarPubMed
Honess, R. W. (1984). Herpes simplex and ‘the herpes complex’: diverse observations and a unifying hypothesis. The Eighth Fleming Lecture. J. Gen. Virol., 65, 2077–2107.CrossRefGoogle Scholar
Honess, R. W. and Roizman, B. (1974). Regulation of herpesvirus macromolecular synthesis. I. Cascade regulation of the synthesis of three groups of viral proteins. J. Virol., 14, 8–19.Google ScholarPubMed
Honess, R. W., Gompels, U. A., Barrell, B. G.et al. (1989). Deviations from expected frequencies of CpG dinucleotides in herpesvirus DNAs may be diagnostic of differences in the states of their latent genomes. J. Gen. Virol., 70, 837–855.CrossRefGoogle ScholarPubMed
Hyman, R. W., Burke, S., and Kudler, L. (1976). A nearby inverted repeat of the terminal sequence of herpes simplex virus DNA. Biochem. Biophys. Res. Commun., 68, 609–615.CrossRefGoogle ScholarPubMed
Inoue, N., Dambaugh, T. R., Rapp, J. C., and Pellett, P. E. (1994). Alphaherpesvirus origin-binding protein homolog encoded by human herpesvirus 6B, a betaherpesvirus, binds to nucleotide sequences that are similar to ori regions of alphaherpesviruses. J. Virol., 68, 4126–4136.Google ScholarPubMed
Isegawa, Y., Mukai, T., Nakano, K.et al. (1999). Comparison of the complete DNA sequences of human herpesvirus 6 variants A and B. J. Virol., 73, 8053–8063.Google ScholarPubMed
Izumiya, Y., Jang, H. K., Ono, M., and Mikami, T. (2001). A complete genomic DNA sequence of Marek's disease virus type 2, strain HPRS24. Curr. Top. Microbiol. Immunol., 255, 191–221.Google ScholarPubMed
Jenkins, F. J., and Roizman, B. (1986). Herpes simplex virus 1 recombinants with noninverting genomes frozen in different isomeric arrangements are capable of independent replication. J. Virol., 59, 494–499.Google ScholarPubMed
Jenner, R. G., Albà, M. M., Boshoff, C., and Kellam, P. (2001). Kaposi's sarcoma-associated herpesvirus latent and lytic gene expression as revealed by DNA arrays. J. Virol., 75, 891–902.CrossRefGoogle ScholarPubMed
Kellis, M., Patterson, N., Endrizzi, M., Birren, B., and Lander, E. S. (2003). Sequencing and comparison of yeast species to identify genes and regulatory elements. Nature, 423, 241–254.CrossRefGoogle ScholarPubMed
Kemble, G. W., Annunziato, P., Lungu, O.et al. (2000). Open reading frame S/L of varicella-zoster virus encodes a cytoplasmic protein expressed in infected cells. J. Virol., 74, 11311–11321.CrossRefGoogle ScholarPubMed
Klupp, B. G., Hengartner, C. J., Mettenleiter, T. C., and Enquist, L. W. (2004). Complete, annotated sequence of the pseudorabies virus genome. J. Virol., 78, 424–440.CrossRefGoogle ScholarPubMed
Koch, H. G., Delius, H., Matz, B., Flugel, R. M., Clarke, J., and Darai, G., (1985). Molecular cloning and physical mapping of the tupaia herpesvirus genome. J. Virol., 55, 86–95.Google ScholarPubMed
Lagunoff, M. and Ganem, D. (1997). The structure and coding organization of the genomic termini of Kaposi's sarcoma-associated herpesvirus. Virology, 236, 147–154.CrossRefGoogle ScholarPubMed
Lee, L. F., Wu, P., Sui, D.et al. (2000). The complete unique long sequence and the overall genomic organization of the GA strain of Marek's disease virus. Proc. Natl Acad. Sci. USA, 97, 6091–6096.CrossRefGoogle ScholarPubMed
Lindquester, G. J. and Pellett, P. E. (1991). Properties of the human herpesvirus 6 strain Z29 genome: G + C content, length, and presence of variable-length directly repeated terminal sequence elements. Virology, 182, 102–110.CrossRefGoogle ScholarPubMed
Locker, H. and Frenkel, N. (1979). BamI, KpnI, and SalI restriction enzyme maps of the DNAs of herpes simplex virus strains Justin and F: occurrence of heterogeneities in defined regions of the viral DNA. J. Virol., 32, 429–441.Google Scholar
Markine-Goriaynoff, N., Georgin, J. P., Goltz, M.et al. (2003). The core 2 β-1,6-N-acetylglucosaminyltransferase-mucin encoded by bovine herpesvirus 4 was acquired from an ancestor of the African buffalo. J. Virol., 77, 1784–1792.CrossRefGoogle ScholarPubMed
Marks, J. R. and Spector, D. H. (1988). Replication of the murine cytomegalovirus genome: structure and role of the termini in generation and cleavage of concatenates. J. Virol., 162, 98–107.CrossRefGoogle ScholarPubMed
Martin, M. E., Thomson, B. J., Honess, R. W.et al. (1991). The genome of human herpesvirus 6: maps of unit-length and concatemeric genomes for nine restriction endonucleases. J. Gen. Virol., 72, 157–168.CrossRefGoogle ScholarPubMed
McGeoch, D. J. (1990). Evolutionary relationships of virion glycoprotein genes in the S regions of alphaherpesvirus genomes. J. Gen. Virol., 71, 2361–2367.CrossRefGoogle Scholar
McGeoch, D. J. and Cook, S. (1994). Molecular phylogeny of the Alphaherpesvirinae subfamily and a proposed evolutionary timescale. J. Mol. Biol., 238, 9–22.CrossRefGoogle Scholar
McGeoch, D. J., and Davison, A. J. (1999). The molecular evolutionary history of the herpesviruses. In Origin and Evolution of Viruses, ed. Domingo, E., Webster, R., and Holland, J., pp. 441–465. London: Academic Press.Google Scholar
McGeoch, D. J. and Gatherer, D. (2005). Integrating reptilian herpesviruses into the family Herpesviridae. J. Virol., 79, 725–731.CrossRefGoogle ScholarPubMed
McGeoch, D. J., Dalrymple, M. A., Davison, A. J.et al. (1988). The complete DNA sequence of the long unique region in the genome of herpes simplex virus type 1. J. Gen. Virol., 69, 1531–1574.CrossRefGoogle Scholar
McGeoch, D. J., Cook, S., Dolan, A., Jamieson, F. E., and Telford, E. A. R. (1995). Molecular phylogeny and evolutionary timescale for the family of mammalian herpesviruses. J. Mol. Biol., 247, 443–458.CrossRefGoogle ScholarPubMed
McGeoch, D. J., Dolan, A., and Ralph, A. C. (2000). Toward a comprehensive phylogeny for mammalian and avian herpesviruses. J. Virol., 74, 10401–10406.CrossRefGoogle Scholar
McLysaght, A., Baldi, P. F., and Gaut, B. S. (2003). Extensive gene gain associated with adaptive evolution of poxviruses. Proc. Natl Acad. Sci. USA, 100, 15655–15660.CrossRefGoogle ScholarPubMed
Megaw, A. G., Rapaport, D., Avidor, B., Frenkel, N., and Davison, A. J., (1998). The DNA sequence of the RK strain of human herpesvirus 7. Virology, 244, 119–132.CrossRefGoogle ScholarPubMed
Midgley, R. S., Bell, A. I., McGeoch, D. J., and Rickinson, A. B. (2003). Latent gene sequencing reveals familial relationships among Chinese Epstein–Barr virus strains and evidence for positive selection of A11 epitope changes. J. Virol., 77, 11517–11530.CrossRefGoogle ScholarPubMed
Mitchell, M. S., Matsuzaki, S., Imai, S., and Rao, V. B. (2002). Sequence analysis of bacteriophage T4 DNA packaging/terminase genes 16 and 17 reveals a common ATPase center in the large subunit of viral terminases. Nucleic Acids Res., 30, 4009–4021.CrossRefGoogle ScholarPubMed
, Mocarski E. S. and Roizman, B. (1982). Structure and role of the herpes simplex virus DNA termini in inversion, circularization and generation of virion DNA. Cell, 31, 89–97.Google Scholar
Moss, B. (2001). Poxviridae: the viruses and their replication. In Fields Virology, 4th edn., ed. Knipe, D. M., Howley, P. M., Griffin, D. E.et al. vol. 2, pp. 2849–2883. Philadelphia: Lippincott, Williams and Wilkins.Google Scholar
Muir, W. B., Nichols, R., and Breuer, J. (2002). Phylogenetic analysis of varicella-zoster virus: evidence of intercontinental spread of genotypes and recombination. J. Virol., 76, 1971–1979.CrossRefGoogle Scholar
Murphy, E., Rigoutsos, I., Shibuya, T., and Shenk, T. E. (2003a). Reevaluation of human cytomegalovirus coding potential. Proc. Natl Acad. Sci. USA, 100, 13585–13590.CrossRefGoogle Scholar
Murphy, E., Yu, D., Grimwood, J.et al. (2003b). Coding potential of laboratory and clinical strains of human cytomegalovirus. Proc. Natl Acad. Sci. USA, 100, 14976–14981.CrossRefGoogle Scholar
Nash, A. A., Dutia, B. M., Stewart, J. P., and Davison, A. J. (2001). Natural history of murine γ-herpesvirus infection. Phil. Trans. Roy. Soc. Lond. B Biol. Sci., 356, 569–579.CrossRefGoogle ScholarPubMed
Neipel, F., Albrecht, J. C., and Fleckenstein, B. (1997). Cell-homologous genes in the Kaposi's sarcoma-associated rhadinovirus human herpesvirus 8: determinants of its pathogenicity?J. Virol., 71, 4187–4192.Google ScholarPubMed
Newcomb, W. W., Homa, F. L., Thomsen, D. R.et al. (1996). Assembly of the herpes simplex virus capsid: characterization of intermediates observed during cell-free capsid formation. J. Mol. Biol., 263, 432–446.CrossRefGoogle ScholarPubMed
Nicholas, J. (1996). Determination and analysis of the complete nucleotide sequence of human herpesvirus 7. J. Virol., 70, 5975–5989.Google Scholar
Nicholas, J., Cameron, K. R., and Honess, R. W. (1992). Herpesvirus saimiri encodes homologues of G protein-coupled receptors and cyclins. Nature, 355, 362–365.CrossRefGoogle ScholarPubMed
Nugent, J., Birch-Machin, I., Smith, K. C.et al. (2006). Analysis of equid herpesvirus 1 strain variation reveals a point mutation of the DNA polymerase strongly associated with neuropathogenic versus nonneuropathogenic disease outbreaks. J. Virol., 80, 4047–4060.CrossRefGoogle ScholarPubMed
O'Hare, P. (1993). The virion transactivator of herpes simplex virus. Semin. Virol., 4, 145–155.CrossRefGoogle Scholar
Ohsawa, K., Black, D. H., Sato, H., and Eberle, R. (2002). Sequence and genetic arrangement of the US region of the monkey B virus (Cercopithecine herpesvirus 1) genome and comparison with the US regions of other primate herpesviruses. J. Virol., 76, 1516–1520.CrossRefGoogle Scholar
Perelygina, L., Zhu, L., Zurkuhlen, H., Mills, R., Borodovsky, M., and Hilliard, J. K. (2003). Complete sequence and comparative analysis of the genome of herpes B virus (Cercopithecine herpesvirus 1) from a rhesus monkey. J. Virol., 77, 6167–6177.CrossRefGoogle Scholar
Poole, L. J., Zong, J. C., Ciufo, D. M.et al. (1999). Comparison of genetic variability at multiple loci across the genomes of the major subtypes of Kaposi's sarcoma-associated herpesvirus reveals evidence for recombination and for two distinct types of open reading frame K15 alleles at the right-hand end. J. Virol., 73, 6646–6660.Google Scholar
Prince, V. E. and Pickett, F. B. (2002). Splitting pairs: the diverging fates of duplicated genes. Nat. Rev. Genet., 3, 827–837.CrossRefGoogle ScholarPubMed
Quackenbush, S. L., Work, T. M., Balazs, G. H.et al. (1998). Three closely related herpesviruses are associated with fibropapillomatosis in marine turtles. Virology, 246, 392–399.CrossRefGoogle ScholarPubMed
Rall, G. F., Kupershmidt, S., Lu, X. Q., Mettenleiter, T. C., and Ben-Porat, T. (1991). Low-level inversion of the L component of pseudorabies virus is not dependent on sequence homology. J. Virol., 65, 7016–7019.Google Scholar
Rao, V. B. and Black, L. W. (1988). Cloning, overexpression and purification of the terminase proteins gp16 and gp17 of bacteriophage T4. Construction of a defined in-vitro DNA packaging system using purified terminase proteins. J. Mol. Biol., 200, 475–488.CrossRefGoogle ScholarPubMed
Rawlinson, W. D., Farrell, H. E., and Barrell, B. G. (1996). Analysis of the complete DNA sequence of murine cytomegalovirus. J. Virol., 70, 8833–8849.Google ScholarPubMed
Rivailler, P., Cho, Y. G., and Wang, F., (2002a). Complete genomic sequence of an Epstein–Barr virus-related herpesvirus naturally infecting a new world primate: a defining point in the evolution of oncogenic lymphocryptoviruses. J. Virol., 76, 12055–12068.CrossRefGoogle Scholar
Rivailler, P., Jiang, H., Cho, Y. G., Quink, C., and Wang, F. (2002b). Complete nucleotide sequence of the rhesus lymphocryptovirus: genetic validation for an Epstein–Barr virus animal model. J. Virol., 76, 421–426.CrossRefGoogle Scholar
Rixon, F. J. and Ben-Porat, T. (1979). Structural evolution of the DNA of pseudorabies-defective viral particles. Virology, 97, 151–163.CrossRefGoogle ScholarPubMed
Roizman, B., and Knipe, D. M. (2001). Herpes simplex viruses and their replication. In Fields Virology, 4th edn., ed. Knipe, D. M., Howley, P. M., Griffin, D. E.et al. vol. 2, pp. 2399–2459, Philadelphia: Lippincott, Williams and Wilkins.Google Scholar
Roizman, B. and Pellett, P. E. (2001). The family Herpesviridae: a brief introdution. In Fields Virology, 4th edn., ed. Knipe, D. M., Howley, P. M., Griffin, D. E.et al. vol. 2, pp. 2381–2397, Philadelphia: Lippincott, Williams and Wilkins.Google Scholar
Rosa, M. D., Gottlieb, E., Lerner, M. R., and Steitz, J. A., (1981). Striking similarities are exhibited by two small Epstein–Barr virus-encoded ribonucleic acids and the adenovirus-associated ribonucleic acids VAI and VAII. Mol. Cell. Biol., 1, 785–796.CrossRefGoogle Scholar
Russo, J. J., Bohenzky, R. A., Chien, M. C.et al. (1996). Nucleotide sequence of the Kaposi sarcoma-associated herpesvirus (HHV8). Proc. Natl Acad. Sci. USA, 93, 14862–14867.CrossRefGoogle Scholar
Ruvolo, V. R., Berneman, Z., Secchiero, P., and Nicholas, J. (1996). Cloning, restriction endonuclease mapping and partial sequence analysis of the genome of human herpesvirus 7 strain JI. J. Gen. Virol., 77, 1901–1912.CrossRefGoogle ScholarPubMed
Sarid, R., Flore, O., Bohenzky, R. A., Chang, Y., and Moore, P. S. (1998). Transcription mapping of the Kaposi's sarcoma-associated herpesvirus (human herpesvirus 8) genome in a body cavity-based lymphoma cell line (BC-1). J. Virol., 72, 1005–1012.Google Scholar
Schwyzer, M. and Ackermann, M. (1996). Molecular virology of ruminant herpesviruses. Vet. Microbiol., 53, 17–29.CrossRefGoogle ScholarPubMed
Searles, R. P., Bergquam, E. P., Axthelm, M. K., and Wong, S. W. (1999). Sequence and genomic analysis of a rhesus macaque rhadinovirus with similarity to Kaposi's sarcoma-associated herpesvirus/human herpesvirus 8. J. Virol., 73, 3040–3053.Google ScholarPubMed
Sheldrick, P. and Berthelot, N. (1975). Inverted repetitions in the chromosome of herpes simplex virus. Cold Spring Harb. Symp. Quant. Biol., 39, 667–678.CrossRefGoogle ScholarPubMed
Shenk, T., (2001). Adenoviridae: the viruses and their replication. In Fields Virology, 4th edn., ed. Knipe, D. M., Howley, P. M., Griffin, D. E.et al. vol. 2, pp. 2265–2300, Philadelphia: Lippincott, Williams & Wilkins.Google Scholar
Silverstein, P. S., Bird, R. C., Santen, V. L., and Nusbaum, K. E. (1995). Immediate–early transcription from the channel catfish virus genome: characterization of two immediate–early transcripts. J. Virol., 69, 3161–3166.Google ScholarPubMed
Stenberg, R. M., Witte, P. R., and Stinski, M. F. (1985). Multiple spliced and unspliced transcripts from human cytomegalovirus immediate–early region 2 and evidence for a common initiation site within immediate–early region 1. J. Virol., 56, 665–675.Google ScholarPubMed
Stevens, J. G., Wagner, E. K., Devi-Rao, G. B., Cook, M. L., and Feldman, L. T. (1987). RNA complementary to a herpesvirus alpha gene mRNA is prominent in latently infected neurons. Science, 235, 1056–1059.CrossRefGoogle ScholarPubMed
Stinski, M. F. (1978). Sequence of protein synthesis in cells infected by human cytomegalovirus: early and late virus-induced polypeptides. J. Virol., 26, 686–701.Google ScholarPubMed
Tamashiro, J. C. and Spector, D. H. (1986). Terminal structure and heterogeneity in human cytomegalovirus strain AD169. J. Virol., 59, 591–594.Google ScholarPubMed
Telford, E. A. R., Watson, M. S., McBride, K., and Davison, A. J. (1992). The DNA sequence of equine herpesvirus-1. Virology, 189, 304–316.CrossRefGoogle ScholarPubMed
Telford, E. A. R., Watson, M. S., Aird, H. C., Perry, J., and Davison, A. J. (1995). The DNA sequence of equine herpesvirus 2. J. Mol. Biol., 249, 520–528.CrossRefGoogle ScholarPubMed
Telford, E. A. R., Watson, M. S., Perry, J., Cullinane, A. A., and Davison, A. J., (1998). The DNA sequence of equine herpesvirus-4. J. Gen. Virol., 79, 1197–1203.CrossRefGoogle ScholarPubMed
Thureen, D. R. and Keeler, C. L. Jr. (2006). Psittacid herpesvirus 1 and infectious laryngotracheitis virus: comparative genome sequence analysis of two avian alphaherpesviruses. J. Virol., 80, 7863–7872.CrossRefGoogle ScholarPubMed
Trus, B. L., Gibson, W., Cheng, N., and Steven, A. C. (1999). Capsid structure of simian cytomegalovirus from cryoelectron microscopy: evidence for tegument attachment sites. J. Virol., 73, 2181–2192.Google ScholarPubMed
Tulman, E. R., Afonso, C. L., Lu, Z., Zsak, L., Rock, D. L., and Kutish, G. F. (2000). The genome of a very virulent Marek's disease virus. J. Virol., 74, 7980–7988.CrossRefGoogle ScholarPubMed
Tyler, S. D. and Severini, A. (2006). The complete genome sequence of herpesvirus papio 2 (Cercopithecine herpesvirus 16) shows evidence of recombination events among various progenitor herpesviruses. J. Virol., 80, 1214–1221.CrossRefGoogle ScholarPubMed
Tyler, S. D., Peters, G. A., and Severini, A. (2005). Complete genome sequence of cercopithecine herpesvirus 2 (SA8) and comparison with other simplexviruses. Virology, 331, 429–440.CrossRefGoogle ScholarPubMed
Upton, C., Slack, S., Hunter, A. L., Ehlers, A., and Roper, R. L. (2003). Poxvirus orthologous clusters: toward defining the minimum essential poxvirus genome. J. Virol., 77, 7590–7600.CrossRefGoogle ScholarPubMed
Varnum, S. M., Streblow, D. N., Monroe, M. E.et al. (2004). Identification of proteins in human cytomegalovirus (HCMV) particles: the HCMV proteome. J. Virol., 78, 10960–10966.CrossRefGoogle ScholarPubMed
Vassilev, V. (2005). Stable and consistent genetic profile of Oka varicella vaccine virus is not linked with appearance of infrequent breakthrough cases postvaccination. J. Clin. Microbiol., 43, 5415–5416.CrossRefGoogle Scholar
Vink, C., Beuken, E., and Bruggeman, C. A. (1996). Structure of the rat cytomegalovirus genome termini. J. Virol., 70, 5221–5229.Google ScholarPubMed
Vink, C., Beuken, E., and Bruggeman, C. A. (2000). Complete DNA sequence of the rat cytomegalovirus genome. J. Virol., 74, 7656–7665.CrossRefGoogle ScholarPubMed
Virgin, H. W. 4th, Latreille, P., Wamsley, P.et al. (1997). Complete sequence and genomic analysis of murine gammaherpesvirus 68. J. Virol., 71, 5894–5904.Google ScholarPubMed
Wadsworth, S., Jacob, R. J., and Roizman, B. (1975). Anatomy of herpes simplex virus DNA. II. Size, composition, and arrangement of inverted terminal repetitions. J. Virol., 15, 1487–1497.Google ScholarPubMed
Wadsworth, S., Hayward, G. S., and Roizman, B. (1976). Anatomy of herpes simplex virus DNA. V. Terminally repetitive sequences. J. Virol., 17, 503–512.Google ScholarPubMed
Wagner, E. K. (1985). Individual HSV transcripts. In The Herpesviruses, ed. Roizman, B., vol. 3, pp. 45–104, New York: Plenum Press.Google Scholar
Wagner, M. J. and Summers, W. C. (1978). Structure of the joint region and the termini of the DNA of herpes simplex virus type 1. J. Virol., 27, 374–387.Google ScholarPubMed
Waltzek, T. B., Kelley, G. O., Stone, D. M.et al. (2005). Koi herpesvirus represents a third cyprinid herpesvirus (CyHV-3) in the familyHerpesviridae. J. Gen. Virol., 86, 1659–1667.CrossRefGoogle Scholar
Ward, P. L. and Roizman, B. (1994). Herpes simplex genes: the blueprint of a successful human pathogen. Trends Genet., 10, 267–274.CrossRefGoogle ScholarPubMed
Weststrate, M. W., Geelen, J. L., and Noordaa, J. (1980). Human cytomegalovirus DNA: physical maps for restriction endonucleases BglII, HindIII and XbaI. J. Gen. Virol., 49, 1–21.CrossRefGoogle ScholarPubMed
Wilkie, N. M. (1976). Physical maps for herpes simplex virus type 1 DNA for restriction endonucleases Hind III, Hpa-1, and X. bad. J. Virol., 20, 222–233.Google Scholar
Wilkie, N. M. and Cortini, R. (1976). Sequence arrangement in herpes simplex virus type 1 DNA: identification of terminal fragments in restriction endonuclease digests and evidence for inversions in redundant and unique sequences. J. Virol., 20, 211–221.Google ScholarPubMed
Yu, D. and Weller, S. K. (1998). Genetic analysis of the UL15 gene locus for the putative terminase of herpes simplex virus type 1. Virology, 243, 32–44.CrossRefGoogle ScholarPubMed
Yu, D., Silva, M. C., and Shenk, T. (2003). Functional map of human cytomegalovirus AD169 defined by global mutational analysis. Proc. Natl Acad. Sci. USA, 100, 12396–12401.CrossRefGoogle ScholarPubMed
Yu, Q., Hu, N., Lu, Y., Nerurkar, V. R., and Yanagihara, R., (2001). Rapid acquisition of entire DNA polymerase gene of a novel herpesvirus from green turtle fibropapilloma by a genomic walking technique. J. Virol. Methods, 91, 183–195.CrossRefGoogle ScholarPubMed
Zeng, M. S., Li, D. J., Liu, Q. L.et al. (2005). Genomic sequence analysis of Epstein–Barr virus strain GD1 from a nasopharyngeal carcinoma patient. J. Virol., 79, 15323–15330.CrossRefGoogle ScholarPubMed
Zhou, Z. H., Chen, D. H., Jakana, J.Rixon, F. J., and , Chiu W. (1999). Visualization of tegument–capsid interactions and DNA in intact herpes simplex virus type 1 virions. J. Virol., 73, 3210–3218.Google ScholarPubMed
Ziemann, K., Mettenleiter, T. C., and Fuchs, W., (1998). Gene arrangement within the unique long genome region of infectious laryngotracheitis virus is distinct from that of other alphaherpesviruses. J. Virol., 72, 847–852.Google ScholarPubMed
Zimmermann, W., Broll, H., Ehlers, B., Buhk, H. J., Rosenthal, A., and Goltz, M. (2001). Genome sequence of bovine herpesvirus 4, a bovine Rhadinovirus, and identification of an origin of DNA replication. J. Virol., 75, 1186–1194.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×