Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-wg55d Total loading time: 0 Render date: 2024-05-01T16:51:18.545Z Has data issue: false hasContentIssue false

3 - Comparative virion structures of human herpesviruses

from Part I - Introduction: definition and classification of the human herpesviruses

Published online by Cambridge University Press:  24 December 2009

Fenyong Liu
Affiliation:
Division of Infectious Diseases School of Public Health University of California Berkeley, CA, USA
Z. Hong Zhou
Affiliation:
Department of Pathology and Laboratory Medicine University of Texas-Houston Medical School Houston, TX, USA
Ann Arvin
Affiliation:
Stanford University, California
Gabriella Campadelli-Fiume
Affiliation:
Università degli Studi, Bologna, Italy
Edward Mocarski
Affiliation:
Emory University, Atlanta
Patrick S. Moore
Affiliation:
University of Pittsburgh
Bernard Roizman
Affiliation:
University of Chicago
Richard Whitley
Affiliation:
University of Alabama, Birmingham
Koichi Yamanishi
Affiliation:
University of Osaka, Japan
Get access

Summary

Introduction

The herpesvirus family consists of a group of viruses distinguished by the large size of their linear double-stranded DNA genomes (∼130–250 kbp) and a common architecture of infectious particles (Fig. 3.1) (Chiu and Rixon, 2002; Gibson, 1996; Steven and Spear, 1997). Indeed, before the birth of molecular biology and the availability of genomic sequencing, the common hallmark structural features shared by these viruses were the most important criteria for the classification of a herpesvirus (Roizman and Pellett, 2001). All herpesviruses identified to date, which include eight different types that are known to infect human, and more than 170 other viruses that are found in animals as well as in fish and amphibians (Roizman and Pellett, 2001), exhibit identical structural design as illustrated using human cytomegalovirus shown in Fig. 3.1. These viruses have a highly ordered icosahedral-shape nucleocapsid of about 125–130 nm in diameter, which encases the viral DNA genome. The nucleocapsid is surrounded by a partially ordered proteinaceous layer called the tegument, which in turn is enclosed within the envelope, a polymorphic lipid bilayer containing multiple copies of more than 10 different kinds of viral glycoproteins that are responsible for viral attachment and entry to host cells.

Based on their biological properties such as growth characteristics and tissue tropism, herpesviruses can be further divided into three subfamilies. Among the eight human herpesviruses, the alpha subfamily includes neurotropic viruses and contains the herpes simplex virus (HSV) 1 and 2, and Varicella zoster virus (VZV).

Type
Chapter
Information
Human Herpesviruses
Biology, Therapy, and Immunoprophylaxis
, pp. 27 - 43
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adair, R., Douglas, E. R., Maclean, J. B.et al. (2002). The products of human cytomegalovirus genes UL23, UL24, UL43 and US22 are tegument components. J. Gen. Virol., 83, 1315–1324.CrossRefGoogle ScholarPubMed
Alexander, L., Denekamp, L., Knapp, A., Auerbach, M. R., Damania, B., and Desrosiers, R. C. (2000). The primary sequence of rhesus monkey rhadinovirus isolate 26–95: sequence similarities to Kaposi's sarcoma-associated herpesvirus and rhesus monkey rhadinovirus isolate 17577. J. Virol., 74, 3388–3398.CrossRefGoogle ScholarPubMed
Baker, M. L., Jiang, W., Bowman, B. R.et al. (2003). Architecture of the herpes simplex virus major capsid protein derived from structural bioinformatics. J. Mol. Biol., 331, 447–456.CrossRefGoogle ScholarPubMed
Baldick, C. J. Jr. and Shenk, T. (1996). Proteins associated with purified human cytomegalovirus particles. J. Virol., 70, 6097–6105.Google ScholarPubMed
Batterson, W. and Roizman, B. (1983). Characterization of the herpes simplex virion-associated factor responsible for the induction of alpha genes. J. Virol., 46, 371–377.Google ScholarPubMed
Bhella, D., Rixon, F. J., and Dargan, D. J. (2000). Cryomicroscopy of human cytomegalovirus virions reveals more densely packed genomic DNA than in herpes simplex virus type 1. J. Mol. Biol., 295, 155–161.CrossRefGoogle ScholarPubMed
Booy, F. P., Newcomb, W. W., Trus, B. L., Brown, J. C., Baker, T. S., and Steven, A. C. (1991). Liquid-crystalline, phage-like packing of encapsidated DNA in herpes simplex virus. Cell, 64, 1007–1015.CrossRefGoogle ScholarPubMed
Bowman, B. R., Baker, M. L., Rixon, F. J., Chiu, W., and Quiocho, F. A. (2003). Structure of the herpesvirus major capsid protein. EMBO J., 22, 757–765.CrossRefGoogle ScholarPubMed
Bresnahan, W. A. and Shenk, T. (2000). A subset of viral transcripts packaged within human cytomegalovirus particles. Science, 288, 2373–2376.CrossRefGoogle ScholarPubMed
Browne, E. P. and Shenk, T. (2003). Human cytomegalovirus UL83-coded pp65 virion protein inhibits antiviral gene expression in infected cells. Proc. Natl Acad. Sci., USA, 100, 11439–11444.CrossRefGoogle ScholarPubMed
Butcher, S. J., Aitken, J., Mitchell, J., Gowen, B., and Dargan, D. J. (1998). Structure of the human cytomegalovirus B capsid by electron cryomicroscopy and image reconstruction. J. Struct. Biol., 124, 70–76.CrossRefGoogle ScholarPubMed
Casjens, S. and Hendrix, R. (1988). Control mechanisms in dsDNA bacteriophage assembly. In The Bacteriophages, ed. Celander, R., New York: Plenum Publishing Corp, pp. 15–91.Google Scholar
Chen, D. H., Jiang, H., Lee, M., Liu, F., and Zhou, Z. H. (1999). Three-dimensional visualization of tegument/capsid interactions in the intact human cytomegalovirus. Virology, 260, 10–16.CrossRefGoogle ScholarPubMed
Chen, D. H., Jakana, J., and McNab, D. (2001). The pattern of tegument-capsid interaction in the herpes simplex virus type 1 virion is not influenced by the small hexon-associated protein VP26. J. Virol., 75, 11863–11867.CrossRefGoogle Scholar
Chi, J. H. and Wilson, D. W. (2000). ATP-dependent localization of the herpes simplex virus capsid protein VP26 to sites of procapsid maturation. J. Virol., 74, 1468–1476.CrossRefGoogle ScholarPubMed
Chiu, W. and Rixon, F. J. (2002). High resolution structural studies of complex icosahedral viruses: a brief overview. Virus Res., 82, 9–17.CrossRefGoogle ScholarPubMed
Chou, J. and Roizman, B. (1989). Characterization of DNA sequence-common and sequence-specific proteins binding to cis-acting sites for cleavage of the terminal a sequence of the herpes simplex virus 1 genome. J. Virol., 63, 1059–1068.Google ScholarPubMed
Compton, T., Kurt-Jones, E. A., Boehme, K. W.et al. (2003). Human cytomegalovirus activates inflammatory cytokine responses via CD14 and Toll-like receptor 2. J. Virol., 77, 4588–4596.CrossRefGoogle ScholarPubMed
Conway, J. F., Duda, R. L., Cheng, N., Hendrix, R. W., and Steven, A. C. (1995). Proteolytic and conformational control of virus capsid maturation: the bacteriophage HK97 system. J. Mol. Biol., 253, 86–99.CrossRefGoogle ScholarPubMed
Davison, A. J., Dolan, A., Akter, P.et al. (2003). The human cytomegalovirus genome revisited: comparison with the chimpanzee cytomegalovirus genome. J. Gen. Virol., 84, 17–28.CrossRefGoogle ScholarPubMed
Dohner, K., Wolfstein, A., Prank, U.et al. (2002). Function of dynein and dynactin in herpes simplex virus capsid transport. Mol. Biol. Cell, 13, 2795–2809.CrossRefGoogle ScholarPubMed
Dunn, W., Chou, C., Li, H.et al. (2003). Functional profiling of human cytomegalovirus genome. Proc. Natl Acad. Sci. USA, 100, 14223–14228.CrossRefGoogle ScholarPubMed
Eggers, M., Bogner, E., Agricola, B., Kern, H. F., and Radsak, K. (1992). Inhibition of human cytomegalovirus maturation by brefeldin A. J. Gen. Virol., 73(Pt 10), 2679–2692.CrossRefGoogle ScholarPubMed
Everly, D. N. Jr., Feng, P., Mian, I. S., and Read, G. S. (2002). mRNA degradation by the virion host shutoff (Vhs) protein of herpes simplex virus: genetic and biochemical evidence that Vhs is a nuclease. J. Virol., 76, 8560–8571.CrossRefGoogle Scholar
Flynn, D. L., Abood, N. A., and Howerda, B. C. (1997). Recent advances in antiviral research: identification of inhibitors of the herpesvirus proteases. Curr. Opin. Chem. Biol., 1, 190–196.CrossRefGoogle ScholarPubMed
Gibson, W. (1996). Structure and assembly of the virion. Intervirology, 39, 389–400.CrossRefGoogle ScholarPubMed
Gibson, W. and Roizman, B. (1971). Compartmentalization of spermine and spermidine in the herpes simplex virion. Proc. Natl Acad. Sci. USA, 68, 2818–2821.CrossRefGoogle ScholarPubMed
Gibson, W. and Roizman, B. (1972). Proteins specified by herpes simplex virus. 8. Characterization and composition of multiple capsid forms of subtypes 1 and 2. J. Virol., 10, 1044–1052.Google ScholarPubMed
Gibson, W., Breemen, R., Fields, A., LaFemina, R., and Irmiere, A. (1984). D, L-alpha-difluoromethylornithine inhibits human cytomegalovirus replication. J. Virol., 50, 145–154.Google ScholarPubMed
Gilbert, M. J., Riddell, S. R., Plachter, B., and Greenberg, P. D. (1996). Cytomegalovirus selectively blocks antigen processing and presentation of its immediate–early gene product. Nature, 383, 720–722.CrossRefGoogle ScholarPubMed
Grundy, J. E., McKeating, J. A., and Griffiths, P. D. (1987a). Cytomegalovirus strain AD169 binds beta 2 microglobulin in vitro after release from cells. J. Gen. Virol., 68(Pt 3), 777–784.CrossRefGoogle Scholar
Grundy, J. E., McKeating, J. A., Ward, P. J., Sanderson, A. R., and Griffiths, P. D. (1987b). Beta 2 microglobulin enhances the infectivity of cytomegalovirus and when bound to the virus enables class I HLA molecules to be used as a virus receptor. J. Gen. Virol., 68(Pt 3), 793–803.CrossRefGoogle Scholar
Hayashi, M. L., Blankenship, C., and Shenk, T. (2000). Human cytomegalovirus UL69 protein is required for efficient accumulation of infected cells in the G1 phase of the cell cycle. Proc. Natl Acad. Sci. USA, 97, 2692–2696.CrossRefGoogle ScholarPubMed
Heymann, J. B., Cheng, N., Newcomb, W. W., Trus, B. L., Brown, J. C., and Steven, A. C. (2003). Dynamics of herpes simplex virus capsid maturation visualized by time-lapse cryo-electron microscopy. Nat. Struct. Biol., 10, 334–341.CrossRefGoogle ScholarPubMed
Hong, Z., Beaudet-Miller, M., Durkin, J., Zhang, R., and Kwong, A. D. (1996). Identification of a minimal hydrophobic domain in the herpes simplex virus type 1 scaffolding protein which is required for interaction with the major capsid protein. J. Virol., 70, 533–540.Google ScholarPubMed
Irmiere, A. and Gibson, W. (1985). Isolation of human cytomegalovirus intranuclear capsids, characterization of their protein constituents, and demonstration that the B-capsid assembly protein is also abundant in noninfectious enveloped particles. J. Virol., 56, 277–283.Google ScholarPubMed
Jiang, W., Li, Z., Zhang, Z., Baker, M. L., Prevelige, P. E. Jr., and Chiu, W. (2003). Coat protein fold and maturation transition of bacteriophage P22 seen at subnanometer resolutions. Nat. Struct. Biol., 10, 131–135.CrossRefGoogle ScholarPubMed
Kieff, E. and Rickinson, A. B. (2001). Epstein–Barr virus and its replication. In Fields Virology, ed. D. M. Knipe and P. M. Howley, pp. 2511–2574. Lippincott, Williams & Wilkins, Philadelphia.
Kirkitadze, M. D., Barlow, P. N., Price, N. C. (1998). The herpes simplex virus triplex protein, VP23, exists as a molten globule. J. Virol., 72, 10066–10072.Google ScholarPubMed
Klages, S., Ruger, B., and Jahn, G. (1989). Multiplicity dependent expression of the predominant phosphoprotein pp65 of human cytomegalovirus. Virus Res., 12, 159–168.CrossRefGoogle ScholarPubMed
Lagunoff, M. and Ganem, D. (1997). The structure and coding organization of the genomic termini of Kaposi's sarcoma-associated herpesvirus. Virology, 236, 147–154.CrossRefGoogle ScholarPubMed
Lees-Miller, J. P., Helfman, D. M., and Schroer, T. A. (1992). A vertebrate actin-related protein is a component of a multisubunit complex involved in microtubule-based vesicle motility. Nature, 359, 244–246.CrossRefGoogle ScholarPubMed
Liu, F. and Roizman, B. (1991). The herpes simplex virus 1 gene encoding a protease also contains within its coding domain the gene encoding the more abundant substrate. J. Virol., 65, 5149–5156.Google ScholarPubMed
Liu, F. and Roizman, B. (1992). Differentiation of multiple domains in the herpes simplex virus 1 protease encoded by the UL26 gene. Proc. Natl Acad. Sci. USA, 89, 2076–2080.CrossRefGoogle ScholarPubMed
Liu, B. and Stinski, M. F. (1992). Human cytomegalovirus contains a tegument protein that enhances transcription from promoters with upstream ATF and AP-1 cis-acting elements. J. Virol., 66, 4434–4444.Google ScholarPubMed
Lo, P., Yu, X., Atanasov, I., Chandran, B., and Zhou, Z. H. (2003). Three-dimensional localization of pORF65 in Kaposi's sarcoma-associated herpesvirus capsid. J. Virol., 77, 4291–4297.CrossRefGoogle ScholarPubMed
Mark, G. E. and Kaplan, A. S. (1971). Synthesis of proteins in cells infected with herpesvirus. III. Lack of migration of structural viral proteins to the nucleus of arginine-deprived cells. Virology, 45, 53–60.CrossRefGoogle Scholar
McGeoch, D. J., Dolan, A., and Ralph, A. C. (2000). Toward a comprehensive phylogeny for mammalian and avian herpesviruses. J. Virol., 74, 10401–10406.CrossRefGoogle Scholar
McKnight, J. L., Kristie, T. M., and Roizman, B. (1987). Binding of the virion protein mediating alpha gene induction in herpes simplex virus 1-infected cells to its cis site requires cellular proteins. Proc. Natl Acad. Sci. USA, 84, 7061–7065.CrossRefGoogle ScholarPubMed
Mettenleiter, T. C. (2002). Herpesvirus assembly and egress. J. Virol., 76, 1537–1547.CrossRefGoogle ScholarPubMed
Meyer, H. H., Ripalti, A., Landini, M. P., Radsak, K., Kern, H. F., and Hensel, G. M. (1997). Human cytomegalovirus late-phase maturation is blocked by stably expressed UL32 antisense mRNA in astrocytoma cells. J. Gen. Virol., 78(Pt 10), 2621–2631.CrossRefGoogle ScholarPubMed
Mocarski, E. S. and Courcelle, C. T. (2001). Cytomegalovirus and their replication. In Fields Virology, ed. Knipe, D. M. and Howley, P. M., pp. 2629–2673. Lippincott, Williams & Wilkins, Philadelphia.Google Scholar
Nealon, K., Newcomb, W. W., Pray, T. R., Craik, C. S., Brown, J. C., and Kedes, D. H. (2001). Lytic replication of Kaposi's sarcoma-associated herpesvirus results in the formation of multiple capsid species: isolation and molecular characterization of A, B, and C capsids from a gammaherpesvirus. J. Virol., 75, 2866–2878.CrossRefGoogle Scholar
Newcomb, W. W. and Brown, J. C. (1994). Induced extrusion of DNA from the capsid of herpes simplex virus type 1. J. Virol., 68, 433–440.Google ScholarPubMed
Newcomb, W. W., Trus, B. L., Booy, F. P., Steven, A. C., Wall, J. S., and Brown, J. C. (1993). Structure of the herpes simplex virus capsid. Molecular composition of the pentons and the triplexes. J. Mol. Biol., 232, 499–511.CrossRefGoogle ScholarPubMed
Newcomb, W. W., Homa, F. L., Thomsen, D. R.et al. (1999). Assembly of the herpes simplex virus procapsid from purified components and identification of small complexes containing the major capsid and scaffolding proteins. J. Virol., 73, 4239–4250.Google ScholarPubMed
Newcomb, W. W., Trus, B. L., Cheng, N.et al. (2000). Isolation of herpes simplex virus procapsids from cells infected with a protease-deficient mutant virus. J. Virol., 74, 1663–1673.CrossRefGoogle ScholarPubMed
Newcomb, W. W., Juhas, R. M., Thomsen, D. R.et al. (2001). The UL6 gene product forms the portal for entry of DNA into the herpes simplex virus capsid. J. Virol., 75, 10923–10932.CrossRefGoogle ScholarPubMed
O'Connor, C. M., Damania, B., and Kedes, D. H. (2003). Capsid and virion production in Rhesus monkey rhadinovirus: a model for structure and assembly of Kaposi's sarcoma-associated herpesvirus. Submitted.
Perdue, M. L., Cohen, J. C., Randall, C. C., and O'Callaghan, D. J. (1976). Biochemical studies of the maturation of herpesvirus nucleocapsid species. Virology, 74, UNKNOWN.CrossRefGoogle ScholarPubMed
Preston, C. M., Frame, M. C., and Campbell, M. E. (1988). A complex formed between cell components and an HSV structural polypeptide binds to a viral immediate early gene regulatory DNA sequence. Cell, 52, 425–434.CrossRefGoogle ScholarPubMed
Preston, V. G., Rixon, F. J., McDougall, I. M., McGregor, M., and Al-Kobaisi, M. F. (1992). Processing of the herpes simplex virus assembly protein ICP35 near its carboxy terminal end requires the product of the whole of the UL26 reading frame. Virology, 186, 87–98.CrossRefGoogle ScholarPubMed
Qiu, X., Culp, J. S., DeLilla, A. G.et al. (1996). Unique fold and active site in cytomegalovirus protease. Nature (London), 383, 275–279.CrossRefGoogle ScholarPubMed
Read, G. S. and Frenkel, N. (1983). Herpes simplex virus mutants defective in the virion-associated shutoff of host polypeptide synthesis and exhibiting abnormal synthesis of alpha (immediate early) viral polypeptides. J. Virol., 46, 498–512.Google ScholarPubMed
Renne, R., Lagunoff, M., Zhong, W., and Ganem, D. (1996). The size and conformation of Kaposi's sarcoma-associated herpesvirus (human herpesvirus 8) DNA in infected cells and virions. J. Virol., 70, 8151–8154.Google ScholarPubMed
Reynolds, A. E., Ryckman, B. J., Baines, J. D., Zhou, Y., Liang, L., and Roller, R. J. (2001). U(L)31 and U(L)34 proteins of herpes simplex virus type 1 form a complex that accumulates at the nuclear rim and is required for envelopment of nucleocapsids. J. Virol., 75, 8803–8817.CrossRefGoogle Scholar
Rixon, F. J. (1993). Structure and assembly of herpesviruses. Seminars in Virology, 4, 135–144.CrossRefGoogle Scholar
Rixon, F. J. and McNab, D. (1999). Packaging-competent capsids of a herpes simplex virus temperature-sensitive mutant have properties similar to those of in vitro-assembled procapsids. J. Virol., 73, 5714–5721.Google ScholarPubMed
Roby, C. and Gibson, W. (1986). Characterization of phosphoproteins and protein kinase activity of virions, noninfectious enveloped particles, and dense bodies of human cytomegalovirus. J. Virol., 59, 714–727.Google ScholarPubMed
Roizman, B. and Furlong, D. (1974). The replication of herpes viruses. In Comprehensive Virology, ed. Fraenkel-Conrat, H., and Wagner, R. R., pp. 229–403. New York, NY: Plenum Press.Google Scholar
Roizman, B. and Knipe, D. M. (2001). Herpes simplex viruses and their replication. In Fields Virology, ed. Knipe, D. M. and Howley, P. M., vol. 2, pp. 2399–2460. Philadelphia, PA: Lippincott Williams & Wilkins.Google Scholar
Roizman, B. and Pellett, P. E. (2001). The family herpesviridae: a brief introduction. In Fields Virology, ed. Knipe, D. M. and Howley, P. M., vol. 2, pp. 2381–2398. Philadelphia, PA. LippincottWilliams & Wilkins.Google Scholar
Roizman, B. and Sears, A. E. (1996). Herpes simplex viruses and their replication. In Fields, B. N., Knipe, D. M. and Howley, P. M. (eds.), Fields Virology, ed. Fields, B. N., Knipe, D. M., and Howley, P. M., vol. 2, pp. 2231–2295. Philadelphia, PA: Lippincott–Raven Publishers.Google Scholar
Sanchez, V., Sztul, E., and Britt, W. J. (2000). Human cytomegalovirus pp28 (UL99) localizes to a cytoplasmic compartment which overlaps the endoplasmic reticulum–golgi–intermediate compartment. J. Virol., 74, 3842–3851.CrossRefGoogle ScholarPubMed
Schmolke, S., Kern, H. F., Drescher, P., Jahn, G., and Plachter, B. (1995). The dominant phosphoprotein pp65 (UL83) of human cytomegalovirus is dispensable for growth in cell culture. J. Virol., 69, 5959–5968.Google ScholarPubMed
Schrag, J. D., Prasad, B. V., Rixon, F. J., and Chiu, W. (1989). Three-dimensional structure of the HSV1 nucleocapsid. Cell, 56, 651–660.CrossRefGoogle ScholarPubMed
Schroer, T. A., Fyrberg, E., Cooper, J. A.et al. (1994). Actin-related protein nomenclature and classification. J. Cell Biol., 127, 1777–1778.CrossRefGoogle ScholarPubMed
Sciortino, M. T., Suzuki, M., Taddeo, B., and Roizman, B. (2001). RNAs extracted from herpes simplex virus 1 virions: apparent selectivity of viral but not cellular RNAs packaged in virions. J. Virol., 75, 8105–8116.CrossRefGoogle Scholar
Searles, R. P., Bergquam, E. P., Axthelm, M. K., and Wong, S. W. (1999). Sequence and genomic analysis of a Rhesus macaque rhadinovirus with similarity to Kaposi's sarcoma-associated herpesvirus/human herpesvirus 8. J. Virol., 73, 3040–3053.Google ScholarPubMed
Shieh, H.-S., Kurumbail, R. G., Stevens, A. M.et al. (1996). Three-dimensional structure of human cytomegalovirus protease. Nature (London), 383, 279–282.CrossRefGoogle ScholarPubMed
Silva, M. C., Yu, Q. C., Enquist, L., and Shenk, T. (2003). Human cytomegalovirus UL99encoded pp28 is required for the cytoplasmic envelopment of tegument-associated capsids. J. Virol., 77, 10594–10605.CrossRefGoogle ScholarPubMed
Sodeik, B., Ebersold, M. W., and Helenius, A. (1997). Microtubule-mediated transport of incoming herpes simplex virus 1 capsids to the nucleus. J. Cell Biol., 136, 1007–1021.CrossRefGoogle ScholarPubMed
Steven, A. C. and Spear, P. G. (1997). Herpesvirus capsid assembly and envelopment. In Structural Biology of Viruses, ed. Chiu, W., Burnett, R. M., and Garcea, R. L., pp. 312–351. New York: Oxford University Press.Google Scholar
Steven, A. C., Roberts, C. R., Hay, J., Bisher, M. E., Pun, T., and Trus, B. L. (1986). Hexavalent capsomers of herpes simplex virus type 2: symmetry, shape, dimensions, and oligomeric status. J. Virol., 57, 578–584.Google ScholarPubMed
Tong, L., Qian, C., Massariol, M.-J., Bonneau, P. R., Cordingley, M. G., and Lagace, L. (1996). A new serine-protease fold revealed by the crystal structure of human cytomegalovirus protease. Nature (London), 383, 272–275.CrossRefGoogle ScholarPubMed
Tong, L., Qian, C., Massariol, M. J., Deziel, R., Yoakim, C., and Lagace, L. (1998). Conserved mode of peptidomimetic inhibition and substrate recognition of human cytomegalovirus protease. Nature Struct. Biol., 5, 819–826.CrossRefGoogle ScholarPubMed
Trus, B. L., Homa, F. L., Booy, F. P.et al. (1995). Herpes simplex virus capsids assembled in insect cells infected with recombinant baculoviruses: structural authenticity and localization of VP26. J. Virol., 69, 7362–7366.Google ScholarPubMed
Trus, B. L., Booy, F. P., Newcomb, W. W.et al. (1996). The herpes simplex virus procapsid: structure, conformational changes upon maturation, and roles of the triplex proteins VP19c and VP23 in assembly. J. Mol. Biol., 263, 447–462.CrossRefGoogle ScholarPubMed
Trus, B. L., Gibson, W., Cheng, N., and Steven, A. C. (1999). Capsid structure of simian cytomegalovirus from cryoelectron microscopy: evidence for tegument attachment sites. J. Virol., 73, 2181–2192.Google ScholarPubMed
Trus, B. L., Heymann, J. B., Nealon, K.et al. (2001). Capsid structure of Kaposi's sarcoma-associated herpesvirus, a gammaherpesvirus, compared to those of an alphaherpesvirus, herpes simplex virus type 1, and a betaherpesvirus, cytomegalovirus. J. Virol., 75, 2879–2890.CrossRefGoogle Scholar
Vernon, S. K., Lawrence, W. C., Long, C. A., Rubin, B. A., and Sheffield, J. B. (1982). Morphological components of herpesvirus. IV. Ultrastructural features of the envelope and tegument. J. Ultrastruct. Res., 81, 163–171.CrossRefGoogle ScholarPubMed
Weinheimer, S. P., Boyd, B. A., Durham, S. K., Resnick, J. L., and O'Boyle, D. R., 2nd. (1992). Deletion of the VP16 open reading frame of herpes simplex virus type 1. J. Virol., 66, 258–269.Google ScholarPubMed
Welch, A. R., Woods, A. S., McNally, L. M., Cotter, R. J., and Gibson, W. (1991). A herpesvirus maturational proteinase, assemblin: identification of its gene, putative active site domain, and cleavage site. Proc. Natl Acad. Sci. USA, 88, 10792–10796.CrossRefGoogle ScholarPubMed
Wright, J. F., Kurosky, A., Pryzdial, E. L., and Wasi, S. (1995). Host cellular annexin II is associated with cytomegalovirus particles isolated from cultured human fibroblasts. J. Virol., 69, 4784–4791.Google ScholarPubMed
Wu, L., Lo, P., Yu, X., Stoops, J. K., Forghani, B., and Zhou, Z. H. (2000). Three-dimensional structure of the human herpesvirus 8 capsid. J. Virol., 74, 9646–9654.CrossRefGoogle ScholarPubMed
Yu, X.-K., O'Connor, C. M., Atanasov, I., Damania, B., Kedes, D. H., and Zhou, Z. H. (2003). Three-dimensional structures of the A, B and C capsids of Rhesus monkey rhadinovirus: insights into gammaherpesvirus capsid assembly, maturation and DNA packing. J. Virol., 77, 14182–14193.CrossRefGoogle Scholar
Yu, X., Trang, P., Shah, S.et al. (2005). Dissecting human cytomegalovirus gene function and capsid maturation by ribozyme targeting and electron cryomicroscopy. Proc. Natl Acad. Sci. USA, 102, 7103–7108.CrossRefGoogle ScholarPubMed
Zhou, Z. H., Prasad, B. V., Jakana, J., Rixon, F. J., and Chiu, W. (1994). Protein subunit structures in the herpes simplex virus A-capsid determined from 400 kV spot-scan electron cryomicroscopy. J. Mol. Biol., 242, 456–469.CrossRefGoogle ScholarPubMed
Zhou, Z. H., He, J., Jakana, J., Tatman, J. D., Rixon, F. J., and Chiu, W. (1995). Assembly of VP26 in herpes simplex virus-1 inferred from structures of wild-type and recombinant capsids. Nat. Struct. Biol., 2, 1026–1030.CrossRefGoogle ScholarPubMed
Zhou, Z. H., Chiu, W., Haskell, K.et al. (1998a). Refinement of herpesvirus B-capsid structure on parallel supercomputers. Biophys. J., 74, 576–588.CrossRefGoogle Scholar
Zhou, Z. H., Macnab, S. J., Jakana, J., Scott, L. R., Chiu, W., and Rixon, F. J. (1998b). Identification of the sites of interaction between the scaffold and outer shell in herpes simplex virus-1 capsids by difference electron imaging. Proc. Natl Acad. Sci. USA, 95, 2778–2783.CrossRefGoogle Scholar
Zhou, Z. H., Chen, D. H., Jakana, J., Rixon, F. J., and Chiu, W. (1999). Visualization of tegument–capsid interactions and DNA in intact herpes simplex virus type 1 virions. J. Virol., 73, 3210–3218.Google ScholarPubMed
Zhou, Z. H., Dougherty, M., Jakana, J., He, J., Rixon, F. J., and Chiu, W. (2000). Seeing the herpesvirus capsid at 8.5 A. Science, 288, 877–880.CrossRefGoogle ScholarPubMed
Zhu, H., Cong, J. P., Mamtora, G., Gingeras, T., and Shenk, T. (1998). Cellular gene expression altered by human cytomegalovirus: global monitoring with oligonucleotide arrays. Proc. Natl Acad. Sci. USA, 95, 14470–14475.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×