Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-nr4z6 Total loading time: 0 Render date: 2024-05-11T00:56:57.644Z Has data issue: false hasContentIssue false

24 - Color and mate choice in non-human animals

from Part VII - Color effects on psychological and biological functioning

Published online by Cambridge University Press:  05 April 2016

Andrew J. Elliot
Affiliation:
University of Rochester, New York
Mark D. Fairchild
Affiliation:
Rochester Institute of Technology, New York
Anna Franklin
Affiliation:
University of Sussex
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allen, W. L., and Higham, J. P. (2015). Assessing the potential information content of multicomponent visual signals: a machine learning approach. Proceedings of the Royal Society of London. Series B, Biological Sciences, 282, 20142284.Google ScholarPubMed
Allen, W. L., Stevens, M., and Higham, J. P. (2014). Character displacement of cercopithecini primate visual signals. Nature Communications, 5, 4266.CrossRefGoogle ScholarPubMed
Amundsen, T., and Forsgren, E. (2001). Male mate choice selects for female coloration in a fish. Proceedings of the National Academy of Sciences of the United States of America, 98, 13155–60.Google Scholar
Andrés, J. A., Sánchez-Guillén, R. A., and Rivera, C. (2002). Evolution of female colour polymorphism in damselflies: testing the hypotheses. Animal Behaviour, 63, 677–85.CrossRefGoogle Scholar
Arak, A., and Enquist, M. (1993). Hidden preferences and the evolution of signals. Philosophical Transactions of the Royal Society of London. SeriesB, Biological Sciences, 340, 207–13.Google Scholar
Baird, T. A. (2004). Reproductive coloration in female collared lizards, Crotaphytus collaris, stimulates courtship by males. Herpetologica, 60, 337–48.CrossRefGoogle Scholar
Baird, T. A., Fox, S. F., and McCoy, J. K. (1997). Population differences in the roles of size and coloration in intra- and intersexual selection in the collared lizard, Crotaphytus collaris: influence of habitat and social organization. Behavioral Ecology, 8, 506–17.CrossRefGoogle Scholar
Bajer, K., Molnár, O., Török, J., and Herczeg, G. (2010). Female European green lizards (Lacerta viridis) prefer males with high ultraviolet throat reflectance. Behavioral Ecology and Sociobiology, 64, 2007–14.CrossRefGoogle Scholar
Baldauf, S. A., Bakker, T. C. M., Kullmann, H., and Thünken, T. (2011). Female nuptial coloration and its adaptive significance in a mutual mate choice system. Behavioral Ecology, 22, 478–85.CrossRefGoogle Scholar
Baldwin, J., and Johnsen, S. (2009). The importance of color in mate choice of the blue crab Callinectes sapidus. Journal of Experimental Biology, 212, 3762–8.CrossRefGoogle ScholarPubMed
Baldwin, J., and Johnsen, S. (2012). The male blue crab, Callinectes sapidus, uses both chromatic and achromatic cues during mate choice. Journal of Experimental Biology, 215, 1184–91.CrossRefGoogle ScholarPubMed
Bakker, T. C. M., and Mundwiler, B. (1994). Female mate choice and male red coloration in a natural three-spined stickleback (Gasterosteus aculeatus) population. Behavioral Ecology, 5, 7480.CrossRefGoogle Scholar
Bateman, A. J. (1948). Intra-sexual selection in Drosophila. Heredity, 2, 349–68.CrossRefGoogle ScholarPubMed
Baube, C. L., Rowland, W. J., and Fowler, J. B. (1995). The mechanisms of colour-based mate choice in female threespine sticklebacks: hue, contrast and configurational cues. Behaviour, 132, 979–96.CrossRefGoogle Scholar
Bennett, A. T. D., Cuthill, I. C., Partridge, J. C., and Maier, E. J. (1996). Ultraviolet vision and mate choice in zebra finches. Nature, 380, 433–5.CrossRefGoogle Scholar
Bergman, T. J., Ho, L., and Beehner, J. C. (2009). Chest color and social status in male geladas (Theropithecus gelada). International Journal of Primatology, 30, 791806.CrossRefGoogle Scholar
Bick, G. H., and Bick, J. C. (1965). Color variation and significance of color in reproduction in the damselfly, Argia apicalis (Say) (Zygoptera: Coenagriidae). Canadian Entomologist, 97, 3241.CrossRefGoogle Scholar
Bielert, C., Girolami, L., and Jowell, S. (1989). An experimental examination of the colour component in visually mediated sexual arousal of the male chacma baboon (Papio ursinus). Journal of the Zoological Society of London, 219, 569–79.CrossRefGoogle Scholar
Boal, J. G. (1997). Female choice of males in cuttlefish (Mollusca: Cephalopoda). Behaviour, 134, 975–88.Google Scholar
Bradley, B. J., and Mundy, N. I. (2008). The primate palette: the evolution of primate coloration. Evolutionary Anthropology, 17, 97111.CrossRefGoogle Scholar
Breaux, S. D., Watson, S. L., and Fontenot, M. B. (2012). A free choice task evaluating chimpanzees’ preference for photographic images of sex swellings: effects of color, size, and symmetry. International Journal of Comparative Psychology, 25, 118–36.CrossRefGoogle Scholar
Briscoe, A. D., and Chittka, L. (2001). The evolution of color vision in insects. Annual Review of Entomology, 46, 471510.CrossRefGoogle ScholarPubMed
Burley, N. (1981). Mate choice by multiple criteria in a monogamous species. American Naturalist, 117, 515–28.CrossRefGoogle Scholar
Burley, N. (1986). Comparison of the band-colour preferences of two species of estrildid finches. Animal Behaviour, 34, 1732–41.CrossRefGoogle Scholar
Burley, N., and Coopersmith, C. B. (1987). Bill color preferences of zebra finches. Ethology, 76, 133–51.CrossRefGoogle Scholar
Burley, N., Krantzberg, G., and Radman, P. (1982). Influence of colour-banding on the conspecific preferences of zebra finches. Animal Behaviour, 30, 444–55.CrossRefGoogle Scholar
Burley, N. T., and Symanski, R. (1998). “A taste for the beautiful”: latent aesthetic mate preferences for white crests in two species of Australian grassfinches. American Naturalist, 152, 792802.CrossRefGoogle ScholarPubMed
Changizi, M. A., Zhang, Q., and Shimojo, S. (2006). Bare skin, blood and the evolution of primate colour vision. Biology Letters, 2, 217–21.CrossRefGoogle ScholarPubMed
Charpentier, M., Peignot, P., Hossaert-McKey, M., Gimenez, O., Setchell, J. M., and Wickings, E. J. (2005). Constraints on control: factors influencing reproductive success in male mandrills (Mandrillus sphinx). Behavioral Ecology, 16, 614–23.CrossRefGoogle Scholar
Clark, D. L., and Uetz, G. (1992). Morph-independent mate selection in a dimorphic jumping spider: demonstration of movement bias in female choice using video-controlled courtship behavior. Animal Behaviour, 43, 247–54.CrossRefGoogle Scholar
Clutton-Brock, T., and McAuliffe, K. (2009). Female mate choice in mammals. Quarterly Review of Biology, 84, 327.CrossRefGoogle ScholarPubMed
Collins, S. A., Hubbard, C., and Houtman, A. M. (1994). Female mate choice in the zebra finch – the effect of male beak colour and male song. Behavioral Ecology and Sociobiology, 35, 21–5.CrossRefGoogle Scholar
Cooper, V. J., and Hosey, G. R. (2003). Sexual dichromatism and female preference in Eulemur fulvus subspecies. International Journal of Primatology, 24, 1177–88.CrossRefGoogle Scholar
Cooper, W. E., and Vitt, L. J. (1993). Female mate choice of large male broad-headed skinks. Animal Behaviour, 45, 683–93.CrossRefGoogle Scholar
Cott, H. B. (1940). Adaptive Coloration in Animals. London: Bradford and Dickens Drayton House.Google Scholar
Cuadrado, M. (1998). The use of yellow spot colors as a sexual receptivity signal in females of Chameleo chameleon. Herpetologica, 54, 395402.Google Scholar
Cummings, M. E., García de León, F. J., Mollaghan, D. M., and Ryan, M. J. (2006). Is UV ornamentation an amplifier in swordtails? Zebrafish, 3, 91100.CrossRefGoogle ScholarPubMed
Cummings, M. E., Rosenthal, G. G., and Ryan, M. J. (2003). A private ultraviolet channel in visual communication. Proceedings of the Royal Society of London. Series B, Biological Sciences, 270, 897904.CrossRefGoogle ScholarPubMed
Cuthill, I. C., Partridge, J. C., Bennett, A. T. D., Church, S. C., Hart, N. S., and Hunt, S. (2000). Ultraviolet vision in birds. Advances in the Study of Behavior, 29, 159214.CrossRefGoogle Scholar
Darwin, C. R. (1871). The Descent of Man, and Selection in Relation to Sex, 2 vols. London, John Murray.Google Scholar
Darwin, C. R. (1876). Sexual selection in relation to monkeys. Nature, 15(366), 1819.CrossRefGoogle Scholar
Dawkins, M. S., and Guilford, T. (1996). Sensory bias and the adaptiveness of female choice. American Naturalist, 148, 937–42.CrossRefGoogle Scholar
Deaner, R. O., Khera, A. V., and Platt, M. L. (2005). Monkeys pay per view: adaptive valuation of social images by rhesus macaques. Current Biology, 15, 543–8.CrossRefGoogle ScholarPubMed
Demaria, C., and Thierry, B. (1988). Responses to animal stimulus photographs in stumptailed macaques (Macaca arctoides). Primates, 29, 237–44.CrossRefGoogle Scholar
Detto, T. (2007). The fiddler crab Uca mjoebergi uses colour vision in mate choice. Proceedings of the Royal Society of London. Series B, Biological Sciences, 274, 2785–90.Google ScholarPubMed
Detto, T., and Blackwell, P. R. Y. (2009). The fiddler crab Uca mjoebergi uses ultraviolet cues in mate choice but not aggressive interactions. Animal Behaviour, 78, 407–11.CrossRefGoogle Scholar
Dixson, A. F. (2012). Primate Sexuality: Comparative Studies of the Prosimians, Monkeys, Apes, and Humans, 2nd edn. Oxford University Press.CrossRefGoogle Scholar
Dubuc, C., Allen, W. L., Casio, J., Lee, S. D., Maestripieri, D., Petersdorf, M., Winters, S. and Higham, J. P. (2015). Who cares? Experimental attention biases provide new insights into a mammalian sexual signal. Behavioral Ecology.Google Scholar
Dubuc, C., Allen, W. L., Maestripieri, D., and Higham, J. P. (2014a). Is male rhesus macaque red color ornamentation attractive to females? Behavioral Ecology and Sociobiology, 68, 1215–24.CrossRefGoogle ScholarPubMed
Dubuc, C., Brent, L. J. N., Accamando, A. K., Gerald, M. S., MacLarnon, A., Semple, S., Heistermann, M., et al. (2009). Sexual skin color contains information about the timing of the fertile phase in free-ranging Macaca mulatta. International Journal of Primatology, 30, 777–89.CrossRefGoogle Scholar
Dubuc, C., Winters, S., Allen, W. L., Brent, L. J. N., Cascio, J., Maestripieri, D., Ruiz-Lambides, A. V., et al. (2014b). Sexually selected skin colour is heritable and related to fitness in a non-human primate. Proceedings of the Royal Society of London. Series B, Biological Sciences, 281, 20141602.Google Scholar
Ellers, J., and Boggs, C. L. (2003). The evolution of wing color: male mate choice opposes adaptive wing color divergence in Colias butterflies. Evolution, 57, 1100–6.Google Scholar
Elliot, A. J., Kayser, D. N., Greitemeyer, T., Lichtenfeld, S., Gramzow, R. H., and Maier, M. A. (2010). Red, rank, and romance in women viewing men. Journal of Experimental Psychology: General, 139, 399417.CrossRefGoogle ScholarPubMed
Elliot, A. J., and Niesta, D. (2008). Romantic red: red enhances men’s attraction to women. Journal of Personality and Social Psychology, 95, 1150–64.CrossRefGoogle ScholarPubMed
Emlen, D. J. (2008). The evolution of animal weapons. Annual Review of Ecology, Evolution, and Systematics, 39, 387413.CrossRefGoogle Scholar
Endler, J. A. (1983). Natural and sexual selection on color patterns in poeciliid fishes. Environmental Biology of Fishes, 9, 173–90.CrossRefGoogle Scholar
Endler, J. A. (1992). Signals, signal conditions, and the direction of evolution. American Naturalist, 139, S12553.CrossRefGoogle Scholar
Endler, J. A., and Basolo, A. L. (1998). Sensory ecology, receiver biases and sexual selection. Trends in Ecology and Evolution, 13, 415–20.CrossRefGoogle ScholarPubMed
Endler, J. A., and Day, L. B. (2006). Ornament colour selection, visual contrast and the shape of colour preference functions in great bowerbirds, Chlamydera nuchalis. Animal Behaviour, 72, 1405–16.CrossRefGoogle Scholar
Endler, J. A., Westcott, D. A., Madden, J. R., and Robson, T. (2005). Animal visual systems and the evolution of color patterns: sensory processing illuminates signal evolution. Evolution, 59, 17951818.Google ScholarPubMed
Fantz, R. L. (1963). Pattern vision in newborn infants. Science, 140, 296–7.CrossRefGoogle ScholarPubMed
Fernandez, A. A., and Morris, M. R. (2007). Sexual selection and trichromatic color vision in primates: statistical support for the preexisting-bias hypothesis. American Naturalist, 170, 1020.CrossRefGoogle ScholarPubMed
Fincke, O. M., Fargevieille, A., and Schultz, T. D. (2007). Lack of innate preference for morph and species identity in mate-searching Enallagma damselflies. Behavioral Ecology and Sociobiology, 61, 1121–31.CrossRefGoogle Scholar
Fisher, R. A. (1930). The Genetical Theory of Selection. Oxford: Clarendon Press.Google Scholar
Fujita, K. (1987). Species recognition by five macaque monkeys. Primates, 28, 353–66.CrossRefGoogle Scholar
Fujita, S., Sugiura, H., Mitsunaga, F., and Shimizu, K. (2004). Hormone profiles and reproductive characteristics in wild female Japanese macaques (Macaca fuscata). American Journal of Primatology, 64, 367–75.CrossRefGoogle ScholarPubMed
Gerald, M. S., Ayala, J., Ruíz-Lambides, A., Waitt, C., and Weiss, A. (2010). Do females pay attention to secondary sexual coloration in vervet monkeys (Chlorocebus aethiops)? Naturwissenschaften, 97, 8996.CrossRefGoogle ScholarPubMed
Ghiradella, H. (1991). Light and color on the wing: structural colors in butterflies and moths. Applied Optics, 30, 34923500.CrossRefGoogle ScholarPubMed
Gomez, D., Richardson, C., Lengagne, T., Derex, M., Plenet, S., Joly, P., Léna, J., et al. (2010). Support for a role of colour vision in mate choice in the nocturnal European tree frog (Hyla arborea). Behaviour, 147, 1753–68.Google Scholar
Gomez, D., Richardson, C., Lengagne, T., Plenet, S., Joly, P., Léna, J., and Théry, M. (2009). The role of nocturnal vision in mate choice: females prefer conspicuous males in the European tree frog (Hyla arborea). Proceedings of the Royal Society of London. Series B, Biological Sciences, 276, 2351–8.Google ScholarPubMed
Groves, C. P. (2005). Order Primates. In Wilson, D. E. and Reeder, D. M. (eds.), Mammal Species of the World, 3rd edn (pp. 111–84). Baltimore, MD: Johns Hopkins University Press.Google Scholar
Guéguen, N. (2012). Color and women attractiveness: when red clothed women are perceived to have more intense sexual intent. Journal of Social Psychology, 152, 261–5.CrossRefGoogle ScholarPubMed
Guilford, T., and Harvey, P. H. (1998). Ornithology: the purple patch. Nature, 392, 867–9.CrossRefGoogle Scholar
Hagelin, J. C., and Ligon, J. D. (2001). Female quail prefer testosterone-mediated traits, rather than the ornate plumage of males. Animal Behaviour, 61, 465–76.CrossRefGoogle Scholar
Hamilton, P. S., and Sullivan, B. K. (2005). Female mate attraction in ornate tree lizards, Urosaurus ornatus: a multivariate analysis. Animal Behaviour, 69, 219–24.CrossRefGoogle Scholar
Hanlon, R. T., and Messenger, J. B. (1996). Cephalopod Behaviour. Cambridge University Press.Google Scholar
Hebets, E. A. (2003). Subadult experience influences adult mate choice in an arthropod: exposed female wolf spiders prefer males of a familiar phenotype. Proceedings of the National Academy of Sciences of the United States of America, 100, 13390–5.Google Scholar
Higham, J. P., Brend, L. J. N., Dubuc, C., Accamando, A. K., Engelhardt, A., Gerald, M. S., Heistermann, M., et al. (2010). Color signal information content and the eye of the beholder: a case study in the rhesus macaque. Behavioral Ecology, 21, 739–46.CrossRefGoogle ScholarPubMed
Higham, J. P., Hughes, K. D., Brent, L. J. N., Dubuc, C., Engelhardt, A., Heistermann, M., Maestripieri, D., et al. (2011). Familiarity affects the assessment of female facial signals of fertility by free-ranging male rhesus macaques. Proceedings of the Royal Society of London. Series B, Biological Sciences, 278, 3452–8.Google ScholarPubMed
Higham, J. P., Pfefferle, D., Heistermann, M., Maestripieri, D., and Stevens, M. (2013). Signaling in multiple modalities in male rhesus macaques: sex skin coloration and barks in relation to androgen levels, social status, and mating behavior. Behavioral Ecology and Sociobiology, 67, 1457–69.CrossRefGoogle ScholarPubMed
Hill, G. E. (1990). Female house finches prefer colourful males: sexual selection for a condition-dependent trait. Animal Behaviour, 40, 563–72.CrossRefGoogle Scholar
Hill, G. E. (1991). Plumage coloration is a sexually selected indicator of male quality. Nature, 350, 337–9.CrossRefGoogle Scholar
Hill, G. E. (1993). Male mate choice and the evolution of female plumage coloration in the house finch. Evolution, 47, 1515–25.CrossRefGoogle Scholar
Hill, G. E. (2006). Female mate choice for ornamental coloration. In Hill, and McGraw, , Bird Coloration, pp. 137200.Google Scholar
Hill, G. E., and McGraw, K. J. (2006). Bird Coloration: Function and Evolution. Cambridge, MA: Harvard University Press.Google Scholar
Hill, G. E., and Montgomerie, R. (1994). Plumage colour signals nutritional condition in the house finch. Proceedings of the Royal Society of London. Series B, Biological Sciences, 258, 4752.Google Scholar
Hill, J. A., Enstrom, D. A., Ketterson, E. D., Nolan, V., and Ziegenfus, C. (1999). Mate choice based on static versus dynamic secondary sexual traits in the dark-eyed junco. Behavioral Ecology, 10, 91–6.CrossRefGoogle Scholar
Hill, W. C. O. (1955). A note on integumental colours with special reference to the genus Mandrillus. Saeugetierkundliche Mitteilungen, 3, 145–51.Google Scholar
Houde, A. E. (1987). Mate choice based upon naturally occurring color-pattern variation in a guppy population. Evolution, 41, 110.Google Scholar
Houde, A. E. (1997). Sex, Color, and Mate Choice in Guppies. Princeton University Press.Google Scholar
Houde, A. E., and Torio, A. J. (1992). Effect of parasitic infection on male color pattern and female choice in guppies. Behavioral Ecology, 3, 346–51.CrossRefGoogle Scholar
Hughes, K. D., Higham, J. P., Allen, W. L., Elliot, A. J., and Hayden, B. Y. (2015). Extraneous color affects female macaques’ gaze preference for photographs of male conspecifics. Evolution and Human Behavior, 36, 2531.CrossRefGoogle ScholarPubMed
Hunt, S., Cuthill, I. C., Bennett, A. T. D., and Griffiths, R. (1999). Preferences for ultraviolet partners in the blue tit. Animal Behaviour, 58, 809–15.CrossRefGoogle ScholarPubMed
Hunt, S., Cuthill, I. C., Swaddle, J. P., and Bennett, A. T. D. (1997). Ultraviolet vision and band-colour preferences in female zebra finches, Taeniopygia guttata. Animal Behaviour, 54, 1383–92.CrossRefGoogle ScholarPubMed
Jacobs, G. H. (1993). The distribution and nature of colour vision among the mammals. Biological Reviews, 68, 413–71.CrossRefGoogle ScholarPubMed
Johnson, J. L. (1994). Pulse-coupled neural nets: translation, rotation, scale, distortion, and intensity signal invariance for images. Applied Optics, 33, 6239–53.CrossRefGoogle ScholarPubMed
Kemp, D. J. (2007). Female butterflies prefer males bearing bright iridescent ornamentation. Proceedings of the Royal Society of London. Series B, Biological Sciences, 274, 1043–7.Google ScholarPubMed
Kemp, D. J. (2008). Female mating biases for bright ultraviolet iridescence in the butterfly Eurema hecabe (Pieridae). Behavioral Ecology, 19, 18.CrossRefGoogle Scholar
Kingston, J. J., Rosenthal, G. G., and Ryan, M. L. (2003). The role of sexual selection in maintaining a colour polymorphism in the pygmy swordtail, Xiphophorus pygmaeus. Animal Behaviour, 65, 735–43.CrossRefGoogle Scholar
Kodric-Brown, A. (1985). Female preference and sexual selection for male coloration in the guppy (Poecilia reticulata). Behavioral Ecology and Sociobiology, 17, 199205.CrossRefGoogle Scholar
Kodric-Brown, A., and Johnson, S. C. (2002). Ultraviolet reflectance patterns of male guppies enhance attractiveness to females. Animal Behaviour, 63, 391–6.CrossRefGoogle Scholar
Kwiatkowski, M. A., and Sullivan, B. K. (2002). Geographic variation in sexual selection among populations of an iguanid lizard, Sauromalus obesus (=ater). Evolution, 56, 2039–51.Google ScholarPubMed
Lall, A. B., Cronin, T. W., Carvalho, A. A., de Souza, J. M., Parros, M. P., Stevani, C. V., Bechara, E. J. H., et al. (2010). Vision in click beetles (Coleoptera: Elateridae): pigments and spectral correspondence between visual sensitivity and species bioluminescence emission. Journal of Comparative Physiology A, 196, 629–38.CrossRefGoogle ScholarPubMed
Lall, A. B., Seliger, H. H., Biggley, W. H., and Lloyd, J. E. (1980). Ecology of colors of firefly bioluminescence. Science, 210, 560–2.CrossRefGoogle ScholarPubMed
Lande, R. (1981). Models of speciation by sexual selection on polygenic traits. Proceedings of the National Academy of Sciences of the United States of America, 78, 3721–5.Google ScholarPubMed
Lane, E. K. (2013). Sexual Selection of Beard Color in the Inland Bearded Dragon (Pogona vitticeps). Ph.D. dissertation, California State University–San Marcos.Google Scholar
LeBas, N. R., and Marshall, N. J. (2000). The role of colour in signaling and mate choice in the agamid lizard Ctenophorus ornatus. Proceedings of the Royal Society of London. Series B, Biological Sciences, 267, 445–52.Google ScholarPubMed
Li, J., Zhang, Z., Liu, F., Liu, Q., Gan, W., Chen, J., Lim, M. L. M., et al. (2008). UVB-based mate-choice cues used by females of the jumping spider Phintella vittata. Current Biology, 18, 399403.CrossRefGoogle ScholarPubMed
Ligon, J. D., and Sqartjes, P. W. (1995). Ornate plumage of male red junglefowl does not influence mate choice by females. Animal Behaviour, 49, 117–25.CrossRefGoogle Scholar
Lim, M. L. M., Land, M. F., and Li, D. (2007a). Sex-specific UV and fluorescence signals in jumping spiders. Science, 315, 481.CrossRefGoogle ScholarPubMed
Lim, M. L. M., Land, M. F., and Li, D. (2007b). Effect of UV-reflecting marking on female mate-choice decisions in Cosmophasis umbratica, a jumping spider from Singapore. Behavioral Ecology, 19, 61–6.CrossRefGoogle Scholar
Lind, O., Mitku, M., Olsson, P., and Kelber, A. (2013). Ultraviolet sensitivity and colour vision in raptor foraging. Journal of Experimental Biology, 216, 1819–26.CrossRefGoogle ScholarPubMed
Long, K. D., and Houde, A. E. (1989). Orange spots as a visual cue for female mate choice in the guppy (Poecilia reticulata). Ethology, 82, 316–24.CrossRefGoogle Scholar
Maan, M. E., and Cummings, M. E. (2009). Sexual dimorphism and direction selection on aposematic signals in a poison frog. Proceedings of the National Academy of Sciences of the United States of America, 106, 19072–7.Google Scholar
Maan, M. E., Hofker, K. D., van Alphen, J. J. M., and Seehausen, O. (2006). Sensory drive in cichlid speciation. American Naturalist, 167, 947–54.CrossRefGoogle ScholarPubMed
Marty, J. S., Higham, J. P., Gadsby, E. L., and Ross, C. (2009). Dominance, coloration, and social and sexual behavior in male drills Mandrillus leucophaeus. International Journal of Primatology, 30, 807–23.CrossRefGoogle Scholar
McGraw, K. J. (2006a). Mechanics of carotenoid-based coloration. In Hill, and McGraw, , Bird Coloration, pp. 177294.CrossRefGoogle Scholar
McGraw, K. J. (2006b). Mechanisms of uncommon colors: pterins, porphyrins, and psittacofulvins. In Hill, and McGraw, , Bird Coloration, pp. 354–98.CrossRefGoogle Scholar
McKinnon, J. S. (1995). Video mate preferences of female three-spined sticklebacks from populations with divergent male coloration. Animal Behaviour, 50, 1645–55.CrossRefGoogle Scholar
McLennan, D. A., and McPhail, J. D. (1990). Experimental investigations of the evolutionary significance of sexually dimorphic nuptial colouration in the Gasterosteus aculeatus (L.): the relationship between male colour and female behaviour. Canadian Journal of Zoology, 68, 482–92.CrossRefGoogle Scholar
Milinski, M., and Bakker, T. C. M. (1990). Female sticklebacks use male coloration in mate choice and hence avoid parasitized males. Nature, 344, 330–3.CrossRefGoogle Scholar
Morehouse, N. I., and Rutowski, R. L. (2010). In the eyes of the beholders: female choice and avian predation risk associated with an exaggerated male butterfly color. American Naturalist, 176, 768–84.CrossRefGoogle ScholarPubMed
Muma, K. E., and Weatherhead, P. J. (1989). Male traits expressed in females: direct or indirect sexual selection? Behavioral Ecology and Sociobiology, 25, 2331.CrossRefGoogle Scholar
Newton, A. V. (1896). A Dictionary of Birds. London: A & C Black.Google Scholar
Osorio, D., and Vorobyev, M. (2005). Photoreceptor spectral sensitivities in terrestrial animals: adaptations for luminance and colour vision. Proceedings of the Royal Society of London. Series B, Biological Sciences, 272, 1745–52.Google ScholarPubMed
Palmer, M. S., and Hankison, S. J. (2012). UV and mate choice in the sailfin molly, Poecilia latipinna [abstract]. Society for Integrative and Comparative Biology Annual Meeting; January 3–7, 2012, Charleston, South Carolina.Google Scholar
Pierotti, M. E. R., Martín-Fernández, J. A., and Seehausen, O. (2009). Mapping individual variation in male mating preference space: multiple choice in a color polymorphic cichlid fish. Evolution, 63, 2372–88.CrossRefGoogle Scholar
Pincemy, G., Dobson, F. S., and Jouventin, P. (2009). Experiments on colour ornaments and mate choice in king penguins. Animal Behaviour, 78, 1247–53.CrossRefGoogle Scholar
Prum, R. O. (2006). Anatomy, physics, and evolution of structural colors. In Hill, and McGraw, , Bird Coloration, pp. 295353.Google Scholar
Pryke, S. R., Andersson, S., and Lawes, M. J. (2001). Sexual selection of multiple handicaps in the red-collared widowbird: female choice of tail length but not carotenoid display. Evolution, 55, 1452–63.Google Scholar
Qu, X., Yan, J., Xiao, H., and Zhu, Z. (2008). Image fusion algorithm based on spatial frequency-motivated pulse coupled neural networks in nonsubsampled contourlet transform domain. Acta Automatica Sinica, 34, 1508–14.Google Scholar
Re, D. E., Whitehead, R. D., Xio, D., and Perrett, D. I. (2011). Oxygenated-blood colour change thresholds for perceived facial redness, health, and attractiveness. PLoS ONE, 6, e17859.Google ScholarPubMed
Renoult, J. P., Schaefer, H. M., Sallé, B., and Charpentier, M. J. E. (2011). The evolution of the multicoloured face of mandrills: insights from the perceptual space of colour vision. PLoS ONE, 6, e29117.CrossRefGoogle ScholarPubMed
Rhodes, G., and Jeffery, L. (2006). Adaptive norm-based coding of facial identity. Vision Research, 46, 2977–87.CrossRefGoogle ScholarPubMed
Rick, I. P., Modarressie, R., and Bakker, T. C. M. (2006). UV wavelengths affect female mate choice in three-spined sticklebacks. Animal Behaviour, 71, 307–13.CrossRefGoogle Scholar
Roberts, S. C., Owen, R. C., and Havlicek, J. (2010). Distinguishing between perceiver and wearer effects in clothing color-associated attributions. Evolutionary Psychology, 8, 350–64.CrossRefGoogle ScholarPubMed
Rudh, A., and Qvarnström, A. (2013). Adaptive colouration in amphibians. Seminars in Cell and Developmental Biology, 24, 553–61.CrossRefGoogle ScholarPubMed
Rutowski, R. L., and Rajyaguru, P. K. (2013). Male-specific iridescent coloration in the pipevine swallowtail (Battus philenor) is used in mate choice by females but not sexual discrimination by males. Journal of Insect Behavior, 26, 200–11.CrossRefGoogle Scholar
Ryan, M. J. (1990). Sexual selection, sensory systems and sensory exploitation. Oxford Surveys in Evolutionary Biology, 7, 157–95.Google Scholar
Schwartz, S., and Singer, M. (2012). Romantic red revisited: red enhances men’s attraction to young, but not menopausal women. Journal of Experimental Social Psychology, 49, 161–4.Google Scholar
Seehausen, O., van Alphen, J. J. M., and Witte, F. (1997). Cichlid fish diversity threatened by eutrophication that curbs sexual selection. Science, 277, 1808–11.CrossRefGoogle Scholar
Seitz, J. J., Schmutz, S. M., Thue, T. D., and Buchanan, F. C. (1999). A missense mutation in the bovine MGF gene is associated with the roan phenotype in Belgian Blue and Shorthorn cattle. Mammalian Genome, 10, 710–12.CrossRefGoogle ScholarPubMed
Semler, D. E. (1971). Some aspects of adaptation in a polymorphism for breeding colours in the threespine stickleback (Gasterosteus aculeatus). Journal of the Zoological Society of London, 165, 291302.CrossRefGoogle Scholar
Senar, J. C., and Escobar, D. (2002). Carotenoid derived plumage coloration in the siskin Carduelis spinus is related to foraging ability. Avian Science, 2, 1924.Google Scholar
Setchell, J. M. (2005). Do female mandrills prefer brightly colored males? International Journal of Primatology, 26, 715–35.CrossRefGoogle Scholar
Setchell, J. M., Adams, M. J., and Knapp, L. A. (2014). Female mate choice in mandrills (Mandrillus sphinx) [abstract]. American Journal of Physical Anthropology, 153, 236–7.Google Scholar
Setchell, J. M., Charpentier, M. J. E., Abbott, K. M., Wickings, E. J., and Knapp, L. A. (2009). Is brightest best? Testing the Hamilton–Zuk hypothesis in mandrills. International Journal of Primatology, 30, 825–44.CrossRefGoogle Scholar
Setchell, J. M., Charpentier, M., and Wickings, E. J. (2005). Mate guarding and paternity in mandrills: factors influencing alpha male monopoly. Animal Behaviour, 70, 1105–20.CrossRefGoogle Scholar
Setchell, J. M., and Dixson, A. F. (2001). Changes in the secondary sexual adornments of male mandrills (Mandrillus sphinx) are associated with gain and loss of alpha status. Hormones and Behavior, 39, 177–84.CrossRefGoogle ScholarPubMed
Setchell, J. M., and Wickings, E. J. (2004). Sexual swelling in mandrills (Mandrillus sphinx): a test of the reliable indicator hypothesis. Behavioral Ecology, 15, 438–45.CrossRefGoogle Scholar
Setchell, J. M., and Wickings, E. J. (2005). Dominance, status signals and coloration in male mandrills (Mandrillus sphinx). Ethology, 111, 2550.CrossRefGoogle Scholar
Setchell, J. M., Wickings, E. J., and Knapp, L. A. (2006). Signal content of red facial coloration in female mandrills (Mandrillus sphinx). Proceedings of the Royal Society of London. Series B, Biological Sciences, 273, 23952400.Google ScholarPubMed
Sigmund, W. R. (1983). Female preference for Anolis carolinensis males as a function of dewlap color and background coloration. Journal of Herpetology, 17, 137–43.CrossRefGoogle Scholar
Slominski, A., Wortsman, J., Plonka, P. M., Schallreuter, K. U., Paus, R., and Tobin, D. J. (2004). Hair follicle pigmentation. Journal of Investigative Dermatology, 124, 1321.CrossRefGoogle Scholar
Smith, E. J., Partridge, J. C., Parsons, K. N., White, E. M., Cuthill, I. C., Bennett, A. T. D., and Church, S. C. (2002). Ultraviolet vision and mate choice in the guppy (Poecilia reticulata). Behavioral Ecology, 13, 1119.CrossRefGoogle Scholar
Stephen, I. D., Oldham, F. H., Perrett, D. I., and Barton, R. A. (2012). Redness enhances perceived aggression, dominance and attractiveness in men’s faces. Evolutionary Psychology, 10, 562–72.CrossRefGoogle ScholarPubMed
Stevens, M., and Cuthill, I. C. (2007). Hidden messages: are ultraviolet signals a special channel in avian communication? BioScience, 57, 501–7.CrossRefGoogle Scholar
Stoddard, M. C., and Prum, R. O. (2008). Evolution of avian plumage color in a tetrahedral color space: a phylogenetic analysis of New World buntings. American Naturalist, 171, 755–76.CrossRefGoogle Scholar
Stoddard, M. C., and Prum, R. O. (2011). How colorful are birds? Evolution of the avian plumage color gamut. Behavioral Ecology, 22, 1042–52.Google Scholar
Summers, K., Symula, R., Clough, M., and Cronin, T. (1999). Visual mate choice in poison frogs. Proceedings of the Royal Society of London. Series B, Biological Sciences, 266, 2141–5.Google ScholarPubMed
Sumner, P., and Mollon, J. D. (2003). Colors of primate pelage and skin: objective assessment of conspicuousness. American Journal of Primatology, 59, 6791.CrossRefGoogle ScholarPubMed
Taylor, L. A., and McGraw, K. J. (2013). Male ornamental coloration improves courtship success in a jumping spider, but only in the sun. Behavioral Ecology, 24, 955–67.CrossRefGoogle Scholar
Toomey, M. B., and McGraw, K. J. (2012). Mate choice for a male carotenoid-based ornament is linked to female dietary carotenoid intake and accumulation. BMC Evolutionary Biology, 12, 3.CrossRefGoogle ScholarPubMed
Torres, R., and Velando, A. (2003). A dynamic trait affects continuous pair assessment in the blue-footed booby, Sula nebouxii. Behavioral Ecology and Sociobiology, 55, 6572.CrossRefGoogle Scholar
Torres, R., and Velando, A. (2005). Male preference for female foot colour in the socially monogamous blue-footed booby, Sula nebouxii. Animal Behaviour, 69, 5965.CrossRefGoogle Scholar
Trivers, R. L. (1972). Parental investment and sexual selection. In Campbell, B. (ed.), Sexual Selection and the Descent of Man 1871–1971 (pp. 136207). Chicago: Aldine.Google Scholar
van Gossum, H., Stoks, R., and De Bruyn, L. (2001). Reversible frequency-dependent switches in male mate choice. Proceedings of the Royal Society of London. Series B, Biological Sciences, 268, 83–5.Google ScholarPubMed
van Gossum, H., Stoks, R., Matthysen, E., Valck, F., and De Bruyn, L. (1999). Male choice for female colour morphs in Ischnura elegans (Odonata, Coenagrionidae): testing the hypotheses. Animal Behaviour, 57, 1229–32.CrossRefGoogle Scholar
Vásquez, T., and Pfenning, K. S. (2007). Looking on the bright side: females prefer coloration indicative of male size and condition in the sexually dichromatic spadefoot toad, Scaphiopus couchii. Behavioral Ecology and Sociobiology, 62, 127–35.CrossRefGoogle Scholar
Vorobyev, M., and Osorio, D. (1998). Receptor noise as a determinant of colour thresholds. Proceedings of the Royal Society of London. Series B, Biological Sciences, 265, 351–8.Google ScholarPubMed
Waitt, C., Gerald, M. S., Little, A. C., and Kraiselburd, E. (2006). Selective attention toward female secondary sexual color in male rhesus macaques. American Journal of Primatology, 68, 738–44.CrossRefGoogle ScholarPubMed
Waitt, C., Little, A. C., Wolfensohn, S., Honess, P., Brown, A. P., Buchanan-Smith, H. M., and Perrett, D. I. (2003). Evidence from rhesus macaques suggests that male coloration plays a role in female primate mate choice. Proceedings of the Royal Society of London. Series B, Biological Sciences, 270, S144–6.Google Scholar
Watkins, G. G. (1997). Inter-sexual signaling and the functions of female coloration in the tropidurid lizard Microlophus occipitalis. Animal Behaviour, 53, 843–52.CrossRefGoogle Scholar
West, P. M., and Packer, C. (2002). Sexual selection, temperature, and the lion’s mane. Science, 297, 1339–43.CrossRefGoogle ScholarPubMed
White, E. M., Partridge, J. C., and Church, S. C. (2003). Ultraviolet dermal reflexion and mate choice in the guppy, Poecilia reticulata. Animal Behaviour, 65, 693700.CrossRefGoogle Scholar
Wiernasz, D. C. (1989). Female choice and sexual selection of male wing melanin pattern in Pieris occidentalis (Lepidoptera). Evolution, 43, 1672–82.CrossRefGoogle ScholarPubMed
Wiernasz, D. C. (1995). Male choice on the basis of female melanin patterns in Pieris butterflies. Animal Behaviour, 49, 4551.CrossRefGoogle Scholar
Winters, S., Dubuc, C., and Higham, J. P. (2015). Perspectives: the looking time experimental paradigm in studies of non-human perception and cognition. Ethology, 121, 116.CrossRefGoogle Scholar
Winters, S., Kamilar, J. M., Webster, T. H., Bradley, B. J., and Higham, J. P. (2014). Primate camouflage as seen by felids, raptors, and conspecifics. American Journal of Physical Anthropology, 153, 275.Google Scholar
Wong, B. B. M., Candolin, U., and Lindstrom, K. (2007). Environmental deterioration compromises socially enforced signals of male quality in three-spined sticklebacks. American Naturalist, 170, 184–9.CrossRefGoogle ScholarPubMed
Zuk, M., Thornhill, R., Ligon, J. D., Johnson, K., Austad, S., Ligon, S. H., Thornhill, N. W., et al. (1990). The role of male ornaments and courtship behavior in female mate choice of red jungle fowl. American Naturalist, 136, 459–73.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×