Skip to main content Accessibility help
×
Hostname: page-component-68945f75b7-76l5x Total loading time: 0 Render date: 2024-08-05T23:16:00.485Z Has data issue: false hasContentIssue false

8 - Quantum Monte Carlo methods

Published online by Cambridge University Press:  05 November 2014

David P. Landau
Affiliation:
University of Georgia
Kurt Binder
Affiliation:
Johannes Gutenberg Universität Mainz, Germany
Get access

Summary

Introduction

In most of the discussion presented so far in this book, the quantum character of atoms and electrons has been ignored. The Ising spin models have been an exception, but since the Ising Hamiltonian is diagonal (in the absence of a transverse magnetic field), all energy eigenvalues are known and the Monte Carlo sampling can be carried out just as in the case of classical statistical mechanics. Furthermore, the physical properties are in accord with the third law of thermodynamics for Ising-type Hamiltonians (e.g. entropy S and specific heat vanish for temperature T → 0, etc.) in contrast to the other truly classical models dealt with in previous chapters (e.g. classical Heisenberg spin models, classical fluids and solids, etc.) which have many unphysical low temperature properties. A case in point is a classical solid for which the specific heat follows the Dulong–Petit law, C = 3NkB, as T → 0, and the entropy has unphysical behavior since S → –∞. Also, thermal expansion coefficients tend to non-vanishing constants for T → 0 while the third law implies that they must be zero. While the position and momentum of a particle can be specified precisely in classical mechanics, and hence the groundstate of a solid is a perfectly rigid crystal lattice (motionless particles localized at the lattice points), in reality the Heisenberg uncertainty principle forbids such a perfect rigid crystal, even at T → 0, due to zero point motions which ‘smear out’ the particles over some region around these lattice points. This delocalization of quantum-mechanical particles increases as the atomic mass is reduced; therefore, these quantum effects are most pronounced for light atoms like hydrogen in metals, or liquid helium. Spectacular phenomena like superfluidity are a consequence of the quantum nature of the particles and have no classical counterpart at all. Even for heavier atoms, which do not show superfluidity because the fluid–solid transition intervenes before a transition from normal fluid to superfluid could occur, there are genuine effects of quantum nature. Examples include the isotope effects (remember that in classical statistical mechanics the kinetic energy part of the Boltzmann factor cancels out from all averages, and thus in thermal equilibrium no property depends explicitly on the mass of the particles).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, J. B. (1975), J. Chem. Phys. 63, 1499CrossRef
Assaad, F. F. and Evertz, H. G. (2008), Computational Many-Particle Physics, Lecture Notes in Physics (Springer, Berlin), p. 739.Google Scholar
Badinski, A. and Needs, R. J. (2007), Phys. Rev. E 76, 036707.CrossRef
Barma, M. and Shastry, B. S. (1977), Phys. Lett. 61A, 15.CrossRef
Batchelder, D. N., Losee, D. L., and Simmons, R. O. (1968), Phys. Rev. 73, 873.CrossRef
Beard, B. B. and Wiese, U.-J. (1996), Phys. Rev. Lett. 77, 5130.CrossRef
Berne, B. J. and Thirumalai, D. (1986), Ann. Rev. Phys. Chem. 37, 401.CrossRef
Bethe, H. A. (1931), Z. Phys. 71, 205.CrossRef
Blanckenbecler, R., Scalapino, D. J., and Sugar, R. L. (1981), Phys. Rev. D 24, 2278.CrossRef
Boninsegni, M., Prokofev, N., and Svistunov, B. (2006a), Phys. Rev. E 74, 036701.CrossRef
Boninsegni, M., Prokof'ev, N., and Svistunov, B. (2006b), Phys. Rev. Lett. 96, 070601.CrossRef
Bonner, J. C. and Fisher, M. E. (1964), Phys. Rev. 135, A640.CrossRef
Booth, G. H., Grüneis, A., Kresse, G., and Alavi, A. (2012), Nature 493, 465.CrossRef
Booth, G. H., Thorn, A. J. W., and Alavi, A. (2009), J. Chem. Phys. 131, 054106.CrossRef
Ceperley, D. M. (1995), Rev. Mod. Phys. 67, 279.CrossRef
Ceperley, D. M. (1996), in Monte Carlo and Molecular Dynamics of Condensed Matter Systems, eds. Binder, K. and Ciccotti, G. (Societá Italiana di Fisica, Bologna), p. 445.Google Scholar
Ceperley, D. M. and Alder, B. J. (1980), Phys. Rev. Lett. 45, 566.CrossRef
Ceperley, D. M. and Kalos, M. H. (1979), Monte Carlo Methods in Statistical Physics, ed. Binder, K. (Springer, Berlin), p. 145.CrossRefGoogle Scholar
Cizek, J. (1966), J. Chem. Phys. 49, 4256.CrossRef
Cleland, D., Booth, G. H., and Alavi, A. (2010), J. Chem. Phys. 132, 041103.CrossRef
Cleland, D., Booth, G. H., Overy, C., and Alavi, A. (2012), J. Chem. Theory Comput. 8, 4138.CrossRef
Cohen, A. J., Mon-Sanchez, M., and Yang, W. (2012), Chem. Rev. 112, 189.
Cullen, J. J. and Landau, D. P. (1983), Phys. Rev. B. 27, 297.CrossRef
Dadobaev, G. and Slutsker, A. I. (1981), Soviet Phys. Solid State 23, 1131.
de Raedt, H.and Lagendijk, A. (1981), Phys. Rev. Lett. 46, 77.CrossRefGoogle Scholar
de Raedt, H.and Lagendijk, A. (1985), Phys. Rep. 127, 233.CrossRefGoogle Scholar
de Raedt, H.and von der Linden, W. (1992), in The Monte Carlo Method in Condensed Matter Physics, ed. Binder, K. (Springer, Berlin), p. 249.Google Scholar
Doll, J. D. and Gubernatis, J. E. (eds.) (1990), Qwantwm Simwlations (World Scientific, Singapore).
Doniach, S., Iuni, M., Kalmeyer, V., and Gabay, M. (1988), Europhys. Lett. 6, 663.CrossRef
Evertz, H. G. and Marcu, M. (1993), in Computer Simulations Studies in Condensed Matter Physics VI, eds. Landau, D. P., Mon, K. K., and Schüttler, H.-B. (Springer, Heidelberg).Google Scholar
Evertz, H. G., Lana, G., and Marcu, M. (1993), Phys. Rev. Lett. 70, 875.CrossRef
Ewald, P. (1921), Ann. Phys. 74, 253.CrossRef
Feynman, R. P. (1953), Phys. Rev. 90, 1116; 91, 1291; 91, 1301.CrossRef
Feynman, R. P. and Hibbs, A. R. (1965), Quantum Mechanics and Path Integrals (McGraw Hill, New York).Google Scholar
Foulkes, M. W. C., Mitas, L., Needs, R. J., and Rajagopal, G. (2001), Rev. Mod. Phys. 73, 33.CrossRef
Gillan, M. J. and Christodoulos, F. (1993), Int. J. Mod. Phys. C4, 287.CrossRef
Gomez-Santos, G.Joannopoulos, J. D., and Negele, J. W. (1989), Phys. Rev. B 39, 4435.CrossRef
Grossman, J. C. and Mitas, L. (2005), Phys. Rev. Lett. 94, 056403.CrossRef
Gubernatis, J. E. and Kawashima, N. (1996), in Monte Carlo and Molecular Dynamics of Condensed Matter Systems, eds. Binder, K. and Ciccotti, G. (Societa Italiana di Fisica, Bologna), p. 519.Google Scholar
Gubernatis, J. E., Jarrell, M., Silver, R. N., and Sivia, D. S. (1991), Phys. Rev. B 44, 6011.CrossRef
Gull, E., Millis, A. J., Lichtenstein, A. I., Rubtsov, A. N., Troyer, M., and Werner, P. (2011), Rev. Mod. Phys. 83, 349.
Handscomb, D. C. (1962), Proc. Cambridge Philos. Soc. 58, 594.CrossRef
Handscomb, D. C. (1964), Proc. Cambridge Philos. Soc. 60, 115.CrossRef
Hirsch, J. E., Sugar, R. L., Scalapino, D. J., and Blancenbecler, R. (1982), Phys. Rev. B 26, 5033.CrossRef
Homma, S., Matsuda, H., and Ogita, N. (1984), Prog. Theor. Phys. 72, 1245.CrossRef
Homma, S., Matsuda, H., and Ogita, N. (1986), Prog. Theor. Phys. 75, 1058.CrossRef
Horsch, R. and von der Linden, W. (1988), Z. Phys. B 72, 181.CrossRef
Hubbard, J. (1963), Proc. Roy. Soc. London A 276, 238.CrossRef
Hulthén, J. L. (1938), Ark. Mat. Astron. Fjs. A 26, 1.
Huse, D. A. and Elser, V. (1988), Phys. Rev. Lett. 60, 2531.CrossRef
Kalos, M. H. (ed.) (1984), Monte Carlo Methods in Quantum Problems (D. Reidel, Dordrecht).CrossRef
Kasteleijn, P. W. (1952), Physica 18, 104.CrossRef
Kawashima, N. (1997), in Computer Simulations Studies in Condensed Matter Physics IX, eds. Landau, D. P., Mon, K. K., and Schüttler, H.-B. (Springer, Heidelberg).Google Scholar
Kawashima, N. and Gubernatis, J. E. (1995), Phys. Rev. E 51, 1547.CrossRef
Kohn, W. (1999), Rev. Mod. Phys. 71, 1253.CrossRef
Lee, D. H., Joannopoulos, J. D., and Negele, J. W. (1984), Phys. Rev. B 30, 1599.CrossRef
Liang, S., Doucot, B., and Anderson, P. W. (1988), Phys. Rev. Lett. 61, 365.CrossRef
Loewdin, P. O. (1955), Phys. Rev. 97, 1474.CrossRef
Loh, E. Y., Gubernatis, J. E., Scalettar, R. T., White, S. R., Scalapino, D. J., and Sugar, R. L. (1990), Phys. Rev. B 41, 9301.CrossRef
Lopez-Rios, P., Ma, A., Drummond, N. D., Fowler, M. D., and Needs, R. J. (2006), Phys. Rev. E 74, 066701.CrossRef
Lyklema, J. W. (1982), Phys. Rev. Lett. 49, 88.CrossRef
Manousakis, E. and Salvador, R. (1989), Phys. Rev. B 39, 575.CrossRef
Marinari, E. and Parisi, G. (1992), Europhys. Lett. 19, 451.CrossRef
Marshall, W. (1955), Proc. Roy. Soc. London A 232, 64.
Martonak, P., Paul, W., and Binder, K. (1998), Phys. Rev. E 57, 2425.CrossRef
Marx, D. and Nielaba, P. (1992), Phys. Rev. A 45, 8968.CrossRef
Marx, D. and Wiechert, H. (1996), Adv. Chem. Phys. 95, 213.
Marx, D., Opitz, O., Nielaba, P., and Binder, K. (1993), Phys. Rev. Lett. 70, 2908.CrossRef
Miyazawa, S. and Homma, S. (1995), in Computer Simulations Studies in Condensed Matter Physics VIII, eds. Landau, D. P., Mon, K. K., and Schüttler, H.-B. (Springer, Heidelberg).Google Scholar
Miyazawa, S., Miyashita, S., Makivic, M. S., and Homma, S. (1993), Prog. Theor. Phys. 89, 1167.CrossRef
Møller, C. and Plesset, M. S. (1934), Phys. Rev. 46, 618.CrossRef
Müser, M. H. (1996), Mol. Simulation 17, 131.CrossRef
Müser, M. H., Nielaba, P., and Binder, K. (1995), Phys. Rev. B 51, 2723.CrossRef
Nho, K. and Landau, D. P. (2004), Phys. Rev. A 70, 053614.CrossRef
Nielaba, P. (1997), in Annual Reviews of Computational Physics V, ed. Stauffer, D. (World Scientific, Singapore) p. 137.CrossRefGoogle Scholar
Okabe, Y. and Kikuchi, M. (1986), Phys. Rev. B 34, 7896.CrossRef
Onsager, L. (1944), Phys. Rev. 65, 117.CrossRef
Ovchinnikov, A. A. (1973), Sov. Phys. JETP 37, 176.
Pople, J. A. (1999), Rev. Mod. Phys. 71, 1267.CrossRef
Raghavachari, K., Trucks, G. W., Pople, J. A., and Head-Gordon, M. (1989), Chem. Phys. Lett. 157, 479.CrossRef
Reger, J. D. and Young, A. P. (1988), Phys. Rev. B 37, 5978.CrossRef
Rutledge, G. C., Lacks, D. J., Martonak, R., and Binder, K. (1998), J. Chem. Phys. 108, 10274.CrossRef
Sandvik, A. W. (1992), J. Phys. A 25, 3667.CrossRef
Sandvik, A. W. (1997), Phys. Rev. B 56, 14510.CrossRef
Sandvik, A. W. (1998), Phys. Rev. Lett. 80, 5196.CrossRef
Sandvik, A. W. and Kurkijärvi, J. (1991), Phys. Rev. B 43, 5950.CrossRef
Schmidt, K. E. and Ceperley, D. M. (1992), in The Monte Carlo Method in Condensed Matter Physics, ed. Binder, K. (Springer, Berlin), p. 205.CrossRefGoogle Scholar
Schmidt, K. E. and Kalos, M. H. (1984), in Applications of the Monte Carlo Method in Statistical Physics, ed. Binder, K. (Springer, Berlin), p. 125.CrossRefGoogle Scholar
Shepherd, J. J., Booth, G. H., Grüneis, A., and Alavi, A. (2012), Phys. Rev. B 85, 081103 (R).CrossRef
Skilling, J. (ed.) (1989), Maximum Entropy and Bayesian Methods (Kluwer, Dordrecht).CrossRef
Suzuki, M. (1966), J. Phys. Soc. Jpn. 21, 2274.CrossRef
Suzuki, M. (1971), Prog. Theor. Phys. 46, 1337.CrossRef
Suzuki, M. (1976a), Commun. Math. Phys. 51, 183.CrossRef
Suzuki, M. (1976b), Prog. Theor. Phys. 56, 1454.CrossRef
Suzuki, M. (ed.) (1986), Quantum Monte Carlo Methods (Springer, Berlin).
Suzuki, M. (ed.) (1992), Quantum Monte Carlo Methods in Condensed Matter Physics (World Scientific, Singapore).
Trivedi, N. and Ceperley, D. M. (1989), Phys. Rev. B 40, 2737.CrossRef
Trotter, H. F. (1959), Proc. Am. Math. Soc. 10, 545.CrossRef
Troyer, M., Wessel, S., and Alet, F. (2003), Phys. Rev. Lett. 90, 120201.CrossRef

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Quantum Monte Carlo methods
  • David P. Landau, University of Georgia, Kurt Binder, Johannes Gutenberg Universität Mainz, Germany
  • Book: A Guide to Monte Carlo Simulations in Statistical Physics
  • Online publication: 05 November 2014
  • Chapter DOI: https://doi.org/10.1017/CBO9781139696463.009
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Quantum Monte Carlo methods
  • David P. Landau, University of Georgia, Kurt Binder, Johannes Gutenberg Universität Mainz, Germany
  • Book: A Guide to Monte Carlo Simulations in Statistical Physics
  • Online publication: 05 November 2014
  • Chapter DOI: https://doi.org/10.1017/CBO9781139696463.009
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Quantum Monte Carlo methods
  • David P. Landau, University of Georgia, Kurt Binder, Johannes Gutenberg Universität Mainz, Germany
  • Book: A Guide to Monte Carlo Simulations in Statistical Physics
  • Online publication: 05 November 2014
  • Chapter DOI: https://doi.org/10.1017/CBO9781139696463.009
Available formats
×