Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-nr4z6 Total loading time: 0 Render date: 2024-05-02T19:19:24.472Z Has data issue: false hasContentIssue false

13 - Monte Carlo simulations at the periphery of physics and beyond

Published online by Cambridge University Press:  05 November 2014

David P. Landau
Affiliation:
University of Georgia
Kurt Binder
Affiliation:
Johannes Gutenberg Universität Mainz, Germany
Get access

Summary

Commentary

In the preceding chapters we described the application of Monte Carlo methods in numerous areas that can be clearly identified as belonging to physics. Although the exposition was far from complete, it should have sufficed to give the reader an appreciation of the broad impact that Monte Carlo studies has already had in statistical physics. A more recent occurrence is the application of these methods in non-traditional areas of physics related research. More explicitly, we mean subject areas that are not normally considered to be physics at all but which make use of physics principles at their core. In some cases physicists have entered these arenas by introducing quite simplified models that represent a ‘physicist's view’ of a particular problem. Often such descriptions are oversimplified, but the hope is that some essential insight can be gained as is the case in many traditional physics studies. (A provocative perspective of the role of statistical physics outside physics has been presented by Stauffer (2004).) In other cases, however, Monte Carlo methods are being applied by non-physicists (or ‘recent physicists’) to problems that, at best, have a tenuous relationship to physics. This chapter is to serve as a brief glimpse of applications of Monte Carlo methods ‘outside’ physics. The number of such studies will surely grow rapidly; and even now, we wish to emphasize that we will make no attempt to be complete in our treatment.

In recent years the simulation of relatively realistic models of proteins has become a ‘self-sufficient’ enterprise. For this reason, such studies will be found in a separate, new chapter (Chapter 14), and in this chapter we will only consider models that are primarily of interest to statistical physicists.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adams, C. D., Srolovitz, D. J., and Atzmon, M. (1993), J. Appl. Phys. 74, 1707.CrossRef
Agrawal, H. (2002), Phys. Rev. Lett. 89, 268702.CrossRef
Agrawal, H. and Domany, E. (2003), Phys. Rev. Lett. 90, 158102.CrossRef
Assié, K., Breton, V., Buvat, I., Comtat, C., Jan, S., Krieguer, M., Lazaro, D., Morel, C., Rey, M., Santin, G., Simon, L., Staelens, S., Strul, D., Vieira, J.-M., and van der Walle, R. (2004), Nucl. Instr. and Methods in Phys. Res. A 527, 180.CrossRef
Bachmann, M. and Janke, W. (2004), J. Chem. Phys. 120, 6779.CrossRef
Battogtokh, D., Asch, D. K., Case, M. E., Arnold, J., and Schüttler, H.-B. (2002), Proc. Natl Acad. Sci. (USA) 99, 16904.CrossRef
Chaumont, P., Gnanou, Y., Hild, G., and Rempp, P. (1985), Macromol. Chem. 186, 2321.CrossRef
Chen, N., Glazier, J. A., Izaguirre, J. A., and Alber, M. S. (2007), Comput. Phys. Commun. 176, 670.CrossRef
Chowdhury, D., Santen, L., and Schadschneider, A. (2000), Phys. Rep, 329, 199.CrossRef
Cont, R. and Bouchaud, J. P (2000), Macroeconomic Dynamics 4, 170.CrossRef
Cuticchia, A. J., Arnold, J., and Timberlake, W. E. (1992), Genetics 132, 591.
Czirók, A. and Vicsek, T. (2000), Physica A 322, 17.CrossRef
de Oliveira, S. M., de Oliveira, P. M. C., and Stauffer, D. (2003), Physica A 322, 521.CrossRef
Derrida, B., Manrubia, S. C., and Zanette, D. H. (2000), Physica A 281, 1.CrossRef
Deutsch, H.-P. (2002), Derivatives and Internal Models, 2nd edn. (Palgrave, New York).CrossRefGoogle Scholar
Dill, K. A. (1985), Biochemistry 24, 1501.CrossRef
Elliott, J. and Hancock, B., eds. (2006), MRS Bulletin 31.CrossRef
Ertl, G. (1990), Adv. Catalysis 37, 213.
Fasolino, A., Los, J. H., and Katsnelson, M. I. (2007), Nature Mater. 6, 858.CrossRef
Gilks, W. R., Richardson, S., and Spiegelhalter, D. J. (eds.) (1996), Markov Chain Monte Carlo in Practice (Chapman and Hall, London).
Graner, F. and Glazier, J. A. (1992), Phys. Rev. Lett. 69, 2013.CrossRef
Guclu, H., Korniss, G., Novotny, M. A., Toroczkai, Z., and Rácz, Z. (2006), Phys. Rev. E 73, 066115.CrossRef
Hammel, C. and Paul, W. B. (2002), Physica A 313, 640.CrossRef
Hastings, W. (1970), Biometrika 57, 97.CrossRef
Hitchcock, D. H. (2003), Amer. Stat. 57, 254.CrossRef
Hsu, H.-P., Mehra, V., Nadler, W., and Grassberger, P. (2003a), Phys. Rev. E 68, 021113.CrossRef
Hsu, H.-P., Mehra, V., Nadler, W., and Grassberger, P. (2003b), J. Chem. Phys. 118, 444.CrossRef
Imbiehl, R. (1993), Progr. Surf. Sci. 44, 185.CrossRef
Ishisaki, Y., Maeda, Y., Fujimoto, R., Ozaki, M., Ebisawa, K., Takahashi, T., Ueda, Y., Ogasaka, Y., Ptak, A., Mukai, K., Hamaguchi, K., Hirayama, M., Kotani, T., Kubo, H., Shibata, R., Ebara, M., Furuzawa, A., Izuka, R., Inoue, H., Mori, H., Okada, S., Yokoyama, Y., Matsumoto, H., Nakajima, H., Yamaguchi, H., Anabuki, N., Tawa, N., Nagai, M., Katsuda, S., Hayashida, K., Bamba, A., Miller, E. D., Sato, K., and Yamasaki, N.Y. (2007), Publ. Astron. Soc. Japan 59, S113.CrossRef
Jäckel, P. (2002), Monte Carlo Methods in Finance (Wiley, Chichester).Google Scholar
John, A. and Sommer, J.-U. (2008), Macromol. Theory Simul. 17, 274.CrossRef
Johnson, A. F. and O’Driscoll, K. F. (1984), Eur. Polym. J. 20, 979CrossRef
Johnson, J. K. (1999), in Monte Carlo Methods in Chemical Physics, eds. Ferguson, D. M., Siepmann, J. I., and Truhlar, D. G. (J. Wiley & Sons, New York), p. 461.Google Scholar
Jorgensen, W. L. and Tirado-Rives, J. (1996), J. Phys. Chem. 100, 14508.CrossRef
Kopelman, R. (1989), in The Fractal Approach to Heterogeneous Chemistry, ed. Avnir, D. (J. Wiley & Sons, New York), p. 295.Google Scholar
Kou, S. C., Oh, J., and Wong, W. H. (2006), J. Chem. Phys. 124, 244 903.CrossRef
Kumpula, J. M., Onnela, J.-P., Saramäki, J., Kaski, K., and Kertész, J. (2007), Phys. Rev. Lett. 99, 228 701.CrossRef
Lattmann, E. E., Fiebig, K. M., and Dill, K. A. (1994), Biochemistry 33, 6158.CrossRef
Lau, K. F., and Dill, K. A. (1989), Macromolecules 22, 3986.CrossRef
Leal, A., Sánchez-Doblado, F., Perucha, M., Carrasco, E., and Rincón, M. (2004), Comput. in Sci. and Eng. 6, 60.CrossRef
Lesh, N., Mitzenmacher, M., and Whitesides, S. (2003), in Proceedings of the 7th Annual International Conference on Research in Computational Molecular Biology (ACM Press, New York), p. 188.Google Scholar
Liu, J. (2001), Monte Carlo Strategies in Scientific Computing (Springer, New York).Google Scholar
Loscar, E. and Albano, E. V. (2003), Rep. Progr. Phys. 66, 1343.CrossRef
McLeish, D. L. (2005), Monte Carlo Simulation and Finance (Wiley, Hoboken).Google Scholar
Malec, H. A. (1971), Microelectronics and Reliability 10, 339.CrossRef
Marro, J. and Dickman, R. (1999), Nonequilibrium Phase Transitions and Critical Phenomena (Cambridge University Press, Cambridge).Google Scholar
Mücke, A., Engel, R., Rachen, J. P., Protheroe, R. J., and Stanev, T. (2000), Comp. Phys. Commun. 124, 290.CrossRef
Mustonen, V. and Rajesh, R. (2003), J. Phys. A: Math and General 36, 6651.CrossRef
Nagase, F. and Watanabe, S. (2006), Adv. Space Res. 38, 2737.CrossRef
Nagel, K. and Schreckenberg, M. (1992), J. Physique I 2, 2221.CrossRef
Newman, M. E. J. and Girvan, M. (2004), Phys. Rev. E 69, 026113.CrossRef
Northrup, S. H. and McCammon, J. A. (1980), Biopol. 19, 1001.CrossRef
Onnela, J.-P., Saramäki, J., Hyvönen, J., Szabó, G., Lazer, D., Kaski, K., Kertész, J., and Barabási, A.-L. (2007), PNAS 104, 7332.CrossRef
Pitfield, D. E. and Jerrard, E. A. (1999), J. Air Trans. Manag. 5, 185.CrossRef
Pitfield, D. E., Brooks, A. S., and Jerrard, E. A. (1998), J. Air Trans. Manag. 4, 3.CrossRef
Richardson, R. B. and Dubeau, J. (2003), Rad. Prot. Dosim. 103, 5.CrossRef
Shirinifard, A., Glazier, J. A., Swat, M., Gens, J. S., Family, F., Hiang, Y., and Grossniklaus, H. E. (2012), PLoS Comput. Biol. 8, e1002440.CrossRef
Stanley, H. E., Amaral, L. A. N., Canning, D., Gopikrishnan, P., Lee, Y., and Liu, Y. (1999), Physica A 269, 156.CrossRef
Stanley, H. E., Ausloos, M., Kertesz, J., Mantegna, R. N., Scheinkman, J. A., and Takayasu, H. (2003), The Proceedings of the International Econophysics Conference, Physica A 324.
Stauffer, D. (2001), Adv. Complex Systems 4, 19.CrossRef
Stauffer, D. (2002), Comput. Phys. Commun. 146, 93.CrossRef
Stauffer, D. (2003), Comput. in Sci. and Eng. May–June, 5, 71.CrossRef
Stauffer, D. (2004), Physica A 336, 1.CrossRef
Stauffer, D., Moss de Oliveira, S., de Oliveira, P. M. C., and Martins, Sá. (2006), Biology, Sociology, Geology by Computational Physicists (Elsevier, Amsterdam).CrossRefGoogle Scholar
Sznajd-Weron, K. and Sznajd, J. (2000), Int. J. Mod. Phys. C 11, 1239.CrossRef
Tang, S. H. and Ong, P. P. (1988), Appl. Acoustics 23, 263.CrossRef
Toma, L. and Toma, S. (1996), Protein Sci. 5, 147.CrossRef
Waldeer, K. T. (2003), Comput. Phys. Commun. 156, 1.CrossRef
Watanabe, S., Nagase, F., Takahashi, T., Sako, M., Kahn, S. M., Ishida, M., Ishisaki, Y., Kohmura, T., and Paerels, F. (2004), 22nd Texas Symposium on Relativistic Astrophysics, SLAC-PUB-11350.Google Scholar
Watts, D. J. and Strogatz, S. H. (1998), Nature 393, 440.CrossRef
Wüst, T. and Landau, D. P. (2008), Comput. Phys. Comm. 179, 124.CrossRef
Yip, S. (ed.) (2005), Handbook of Materials Modeling (Springer, Berlin).CrossRef
Yip, M. H. and Carvalho, M. J. (2007), Comput. Phys. Commun. 177, 965.CrossRef
Yu, Y., Dong, W., Altimus, C., Tang, X., Griffith, J., Morello, M., Dudek, L., Arnold, J., and Schüttler, H.-B. (2007), PNAS 104, 2809.CrossRef
Zhang, J., Kou, S.C., and Liu, J. (2007), J. Chem. Phys. 126, 225 101.CrossRef
Ziff, R., Gulari, E., and Barshad, Y. (1986) Phys. Rev. Lett. 56, 2553.CrossRef

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×