Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-26T06:49:39.047Z Has data issue: false hasContentIssue false

6 - Off-lattice models

Published online by Cambridge University Press:  05 November 2014

David P. Landau
Affiliation:
University of Georgia
Kurt Binder
Affiliation:
Johannes Gutenberg Universität Mainz, Germany
Get access

Summary

NVT ensemble and the virial theorem

The examination of the equation of state of a two-dimensional model fluid (the hard disk system) was the very first application of the importance sampling Monte Carlo method in statistical mechanics (Metropolis et al., 1953), and since then the study of both atomic and molecular fluids by Monte Carlo simulation has been a very active area of research. Remember that statistical mechanics can deal well analytically with very dilute fluids (ideal gases), and it can also deal well with crystalline solids (making use of the harmonic approximation and perfect crystal lattice periodicity and symmetry), but the treatment of strongly correlated dense fluids (and their solid counterparts, amorphous glasses) is much more difficult. Even the description of short range order in fluids in a thermodynamic state far away from any phase transition is a non-trivial matter (unlike the lattice models discussed in the last chapter, where far away from phase transitions the molecular field approximation, or a variant thereof, is usually both good enough and easily worked out, and the real interest is generally in phase transition problems).

The discussion in this chapter will consider only symmetric particles; for the consideration of hard rods, spherocylinders, etc., the reader is referred elsewhere (Frenkel and Smit, 1996).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alder, B. J. and Wainwright, T. E. (1962), Phys. Rev. 127, 359.CrossRef
Alejandre, J., Tildesley, D. J., and Chapela, G. A. (1995), J. Chem. Phys. 102, 4574.CrossRef
Allen, M. P. (1996), in Monte Carlo and Molecular Dynamics of Condensed Matter Systems, eds. Binder, K. and Ciccotti, G. (Società Italiana di Fisica, Bologna), p. 255.Google Scholar
Asakura, S. and Oosawa, F. (1954), J. Chem. Phys. 12, 1255.CrossRef
Baschnagel, J., Qin, K., Paul, W., and Binder, K. (1992), Macromolecules 25, 3117.CrossRef
Baumgärtner, A. (1984), Ann. Rev. Phys. Chem. 35, 419.CrossRef
Baumgärtner, A. and Binder, K. (1981), J. Chem. Phys. 75, 2994.CrossRef
Bernard, E. P. and Krauth, W. (2011), Phys. Rev. Lett. 107, 155704.CrossRef
Bernard, E. P. and Krauth, W. (2012), Phys. Rev. E 86, 017701.CrossRef
Bernard, E. P., Krauth, W., and Wilson, D. B. (2009), Phys. Rev. E 80, 056704.CrossRef
Binder, K. (1982), Phys. Rev. A 25, 1699.CrossRef
Binder, K. (1994), Adv. Polymer Sci. 112, 181.CrossRef
Binder, K. (ed.) (1995), Monte Carlo and Molecular Dynamics Simulations in Polymer Science (Oxford University Press, New York and Oxford).
Binder, K. and Landau, D. P. (1989), in Advances in Chemical Physics: Molecule-Surface Interaction, ed. Lawley, K. P. (Wiley, New York), p. 91.Google Scholar
Binder, K., Block, B., Das, S. K., Virnau, P., and Winter, D. (2011), J. Stat. Phys. 144, 690.CrossRef
Bruce, A. D., Jackson, A. N., Ackland, G. J., and Wilding, N. B. (2000), Phys. Rev. E 61, 906.CrossRef
Bruce, A. D., Wilding, N. B., and Ackland, G. J. (1997), Phys. Rev. Lett. 79, 3002.CrossRef
Caillot, J. M. (1992), J. Chem. Phys. 96, 1455.CrossRef
Catlow, C. R. A. (ed.) (1992), Modelling of Structure and Reactivity in Zeolites (Academic Press, London).
Ceperley, D., Chester, C. V., and Kalos, M. H. (1977), Phys. Rev. B 16, 3081.CrossRef
Consta, S., Wilding, N. B., Frenkel, D., and Alexandrowicz, Z. (1999), J. Chem. Phys. 110, 3220.CrossRef
Dadobaev, G. and Slutsker, A. I. (1981), Sov. Phys. Solid State 23, 1131.
Das, S. K. and Binder, K. (2011), Molec. Phys. 109, 1043.CrossRef
Davies, G. T., Eby, K., and Colson, J. P. (1970), J. Appl. Phys. 41, 4316.CrossRef
De Gennes, P. G. (1979), Scaling Concepts in Polymer Physics (Cornell University Press, Ithaca).Google Scholar
De Miguel, E. and Jackson, G. (2006), Molec. Phys. 104, 3717.CrossRef
Deb, D., Wilms, D., Winkler, A., Virnau, P., and Binder, K. (2012), Int. J. Mod. Phys. C 23, 1240011.CrossRef
Degiorgio, V. and Corti, M. (eds.) (1985), Physics of Amphiphiles: Micelles, Vesicles and Microemulsions (North-Holland, Amsterdam).
Dress, C. and Krauth, W. (1995), J. Phys. A 28, L597.CrossRef
Dünweg, B., Stevens, M., and Kremer, K. (1995), in Monte Carlo and Molecular Dynamics Simulations in Polymer Science, ed. Binder, K. (Oxford University Press, New York and Oxford), p. 125.Google Scholar
Eisenriegler, E., Kremer, K., and Binder, K. (1982), J. Chem. Phys. 77, 6296.CrossRef
Ermak, D. L. (1975), J. Chem. Phys. 62, 4189.CrossRef
Errington, J. R. (2003), Phys. Rev. E 67, 012102.CrossRef
Errington, J. R. (2004), J. Chem. Phys. 120, 3130.CrossRef
Fasnacht, M., Swendsen, R. H., and Rosenberg, J. M. (2004), Phys. Rev. E69, 056704.
Frenkel, D. and Smit, B. (1996), Understanding Molecular Simulation: From Algorithms to Applications (Academic Press, New York).Google Scholar
Gaines, G. L. Jr. (1996), Insoluble Monolayers at Liquid-Gas Interfaces (Intersciences, New York).Google Scholar
Greengard, L. and Rokhlin, V. (1987), J. Comp. Phys. 73, 325.CrossRef
Grzelak, E. M. and Errington, J. R. (2010), J. Chem. Phys. 132, 224702.CrossRef
Haas, F. M., Hilfer, R., and Binder, K. (1996), J. Phys. Chem. 100, 15290.CrossRef
Halperin, B. I. and Nelson, D. R. (1978), Phys. Rev. Lett. 41, 121.CrossRef
Houlrik, J., Landau, D. P., and Knak Jensen, S. (1994), Phys. Rev. E 50, 2007.CrossRef
Jackson, A. N., Bruce, A. D., and Ackland, G. J. (2002), Phys. Rev. E 65, 036710.CrossRef
Jaster, A. (1998), Europhys. Lett. 42, 277.CrossRef
Karaborni, S. and O’Connell, J. P. (1990), J. Phys. Chem. 94, 2624.CrossRef
Kim, Y. C, Fisher, M. E., and Luijten, E. (2003), Phys. Rev. Lett. 91, 065701.CrossRef
Kofke, D. A. and Cummings, P. T. (1997), Molecular Phys. 92, 973.CrossRef
Kosterlitz, J. M. and Thouless, D. J. (1973), J. Phys. C 6, 1181.CrossRef
Kremer, K. and Binder, K. (1988), Computer Phys. Rep. 7, 259.CrossRef
Kremer, K. and Grest, G. S. (1990), J. Chem. Phys. 92, 5057.CrossRef
Kremer, K. and Grest, G. S. (1995), in Binder, K. (1995), p. 194.
Landau, D. P. (1991), in Phase Transitions and Surface Films 2, eds. H. Taub, G. Torzo, H. J. Lauter, and S. C. Fain, Jr., p. 11.
Landau, L. D. and Lifshitz, E. M. (1980), Statistical Physics, 3rd edn, Part 1 (Pergamon Press, Oxford).Google Scholar
Liu, J. and Luijten, E. (2004), Phys. Rev. Lett. 92, 035504.CrossRef
Lodge, T. P., Rotstein, N. A., and Prager, S. (1990), in Advances in Chemical Physics, Vol. 79, eds. Prigogine, I. and Rice, S. A. (Wiley, New York), p. 1.Google Scholar
Martonak, R., Paul, W., and Binder, K. (1996), Computer Phys. Commun. 99, 2.CrossRef
Martonak, R., Paul, W., and Binder, K. (1997), J. Chem. Phys. 106, 8918.CrossRef
Mavrantzas, V. G. (2005), in Handbook of Materials Modelling, Vol. I: Methods and Models, ed. Yip, S. (Springer, Berlin).Google Scholar
McDonald, I. R. (1972), Mol. Phys. 23, 41.CrossRef
Metropolis, N. et al. (1953), J. Chem. Phys. 21, 1087.CrossRef
Milchev, A. and Binder, K. (1996), Macromolecules 29, 343.CrossRef
Milchev, A. and Binder, K. (1997), J. Chem. Phys. 106, 1978.CrossRef
Milchev, A. and Binder, K. (2001), J. Chem. Phys. 115, 983.
Milchev, A., Dimitrov, D. I., and Binder, K. (2008), Polymer 49, 3611.CrossRef
Milchev, A., Paul, W., and Binder, K. (1993), J. Chem. Phys. 99, 4786.CrossRef
Mon, K. K. and Griffiths, R. B. (1985), Phys. Rev. A31, 956.CrossRef
Mooij, G. C. A. M., Frenkel, D., and Smit, B. (1992), J. Phys. Condens. Matter 4, L255.CrossRef
Müller, M. and Binder, K. (1995), Macromolecules 28, 1825.CrossRef
Müller, M. and de Pablo, J. J. (2006), in Computer Simulations in Condensed Matter: From Materials to Chemical Biology, eds. Ferrario, M., Ciccotti, G., and Binder, K. (Springer, Heidelberg), vol. 1, p. 67.Google Scholar
Nelson, D. R. and Halperin, B. I. (1979), Phys. Rev. B 19, 2457.CrossRef
Nijmeijer, M. J. P. and Weis, J. J. (1995), Phys. Rev. Lett. 75, 2887.CrossRef
Nijmeijer, M. J. P., Bruin, C., Bakker, A. F., and van Leeuwen, M. J. M. (1990), Phys. Rev. A 42, 6052.CrossRef
Norman, G. E. and Filinov, V. S. (1969), High Temp. (USSR) 7, 216.
Owicki, J. C. and Scheraga, H. A. (1977), Chem. Phys. Lett. 47, 600.CrossRef
Panagiotopoulos, A. Z. (1987), Molecular Physics 61, 813.CrossRef
Panagiotopoulos, A. Z. (1995), in Observation Prediction and Simulation of Phase Transitions in Complex Fluids, eds. Baus, M., Rull, L. F. and Ryckaert, J. P. (Kluwer Academic Publ., Dordrecht), p. 463.CrossRefGoogle Scholar
Pandey, R. B., Milchev, A., and Binder, K. (1997), Macromolecules 30, 1194.CrossRef
Pangali, C., Rao, M., and Berne, B. J. (1978), Chem. Phys. Lett. 55, 413.CrossRef
Patrykiejew, A., Sokolowski, S., Zientarski, T., and Binder, K. (1995), J. Chem. Phys. 102, 8221.CrossRef
Patrykiejew, A., Sokolowski, S., Zientarski, T., and Binder, K. (1998), J. Chem. Phys. 108, 5068.CrossRef
Paul, W., Binder, K., Heermann, D. W., and Kremer, K. (1991), J. Phys. II (France) 1, 37.CrossRef
Paul, W., Yoon, D. Y., and Smith, G. D. (1995), J. Chem. Phys. 103, 1702.CrossRef
Pearson, D. S., Verstrate, G., von Meerwall, E., and Schilling, F. C. (1987), Macromolecules 20, 1133.CrossRef
Pollock, E. L. and Glosli, J. (1996), Comput. Phys. Commun. 95, 93.CrossRef
Presber, M., Dünweg, B., and Landau, D. P. (1998), Phys. Rev. E 58, 2616.CrossRef
Privman, V. (1988), Phys. Rev. Lett. 61, 183.CrossRef
Rao, M. and Berne, B. J. (1979), Mol. Phys. 37, 455.CrossRef
Rector, D. R., van Swol, F., and Henderson, J. R. (1994), Molecular Physics 82, 1009.CrossRef
Rosenbluth, M. N. and Rosenbluth, A. W. (1955), J. Chem. Phys. 23, 356.CrossRef
Rossky, P. J., Doll, J. D., and Friedman, H. L. (1978), J. Chem. Phys. 69, 4628.CrossRef
Rouse, P. E. (1953), J. Chem. Phys. 21, 127.CrossRef
Rovere, M., Heermann, D. W., and Binder, K. (1990), J. Phys. Cond. Matter 2, 7009.CrossRef
Ryckaert, J. P. (1996), in Monte Carlo and Molecular Dynamics of Condensed Matter Systems, eds. Binder, K. and Ciccotti, G. (Società Italiana di Fisica, Bologna), p. 725.Google Scholar
Sariban, A. and Binder, K. (1987), J. Chem. Phys. 86, 5859.CrossRef
Scheringer, M., Hilfer, R., and Binder, K. (1992), J. Chem. Phys. 96, 2296.CrossRef
Schilling, T. and Schmid, F. (2009), J. Chem. Phys. 131, 231102.CrossRef
Schmid, F., Stadler, C., and Lange, H. (1998), in Computer Simulation Studies in Condensed-Matter Physics X, eds. Landau, D. P., Mon, K. K., and Schüttler, H.-B. (Springer, Berlin), p. 37.CrossRefGoogle Scholar
Siepmann, J. I. and Frenkel, D. (1992), Mol. Phys. 75, 90.
Smit, B. (1988), Phys. Rev. A 37, 3481.CrossRef
Smit, B. (1995), J. Phys. Chem. 99, 5597.CrossRef
Smit, B., Esselink, K., Hilbers, P. A. J., van Os, N. M., Rupert, L. A. M., and Szleifer, I. (1993), Langmuir 9, 9.CrossRef
Sokal, A. D. (1995), in Monte Carlo and Molecular Dynamics Simulations in Polymer Science, ed. Binder, K. (Oxford University Press, New York and Oxford), p. 47.Google Scholar
Theodorou, D. N. (2002), in Bridging Time Scales: Molecular Simulations for the Next Decade, eds. Nielaba, P., Mareschal, M., and Ciccotti, G. (Springer, Berlin).Google Scholar
Viduna, D., Milchev, A., and Binder, K. (1998), Macromol. Theory and Simul. 7, 649.3.0.CO;2-J>CrossRef
Vink, R. L. C. and Horbach, J. (2004), J. Chem. Phys. 121, 3253.CrossRef
Virnau, P. and Müller, M. (2004), J. Chem. Phys. 120, 10925.CrossRef
Von Gottberg, F. K., Smith, K. A., and Hatton, T. A. (1997), J. Chem. Phys. 106, 9850.CrossRef
Weber, H., Marx, D., and Binder, K. (1995), Phys. Rev. B 15, 14636.CrossRef
Werner, A., Schmid, F., Müller, M., and Binder, K. (1997), J. Chem. Phys. 107, 8175.CrossRef
Widom, B. (1963), J. Chem. Phys. 39, 2808.CrossRef
Wilding, N. (2006), in Computer Simulations in Condensed Matter: From Materials to Chemical Biology, eds. Ferrario, M., Ciccotti, G., and Binder, K. (Springer, Heidelberg), vol. 1, p. 39.Google Scholar
Wilding, N. B. (1997), J. Phys. Condensed Matter 9, 585.CrossRef
Wilding, N. B. (2001), Am. J. Phys. 69, 1147.CrossRef
Wilding, N. B. and Binder, K. (1996), Physica A 231, 439.CrossRef
Wilding, N. B. and Bruce, A. D. (2000), Phys. Rev. Lett. 85, 5138.CrossRef
Wilding, N. B. and Landau, D. P. (2003), in Bridging Time Scales: Molecular Simulations for the Next Decade, eds. Nielaba, P., Marechal, M., and Ciccotti, G. (Springer, Heidelberg).Google Scholar
Wittmer, J. P., Beckrich, P., Meyer, H., Cavallo, A., Johner, A., and Baschnagel, J. (2007), Phys. Rev. E 76, 011803.CrossRef
Yoon, D. Y., Smith, G. D., and Matsuda, T. (1993), J. Chem. Phys. 98, 10037.CrossRef
Young, A. P. (1979), Phys. Rev. B 19, 1855.CrossRef
Zollweg, J. A. and Chester, G. V. (1992), Phys. Rev. B 46, 11187.CrossRef

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Off-lattice models
  • David P. Landau, University of Georgia, Kurt Binder, Johannes Gutenberg Universität Mainz, Germany
  • Book: A Guide to Monte Carlo Simulations in Statistical Physics
  • Online publication: 05 November 2014
  • Chapter DOI: https://doi.org/10.1017/CBO9781139696463.007
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Off-lattice models
  • David P. Landau, University of Georgia, Kurt Binder, Johannes Gutenberg Universität Mainz, Germany
  • Book: A Guide to Monte Carlo Simulations in Statistical Physics
  • Online publication: 05 November 2014
  • Chapter DOI: https://doi.org/10.1017/CBO9781139696463.007
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Off-lattice models
  • David P. Landau, University of Georgia, Kurt Binder, Johannes Gutenberg Universität Mainz, Germany
  • Book: A Guide to Monte Carlo Simulations in Statistical Physics
  • Online publication: 05 November 2014
  • Chapter DOI: https://doi.org/10.1017/CBO9781139696463.007
Available formats
×