Skip to main content Accessibility help
×
Hostname: page-component-7bb8b95d7b-wpx69 Total loading time: 0 Render date: 2024-09-23T20:06:54.436Z Has data issue: false hasContentIssue false

5 - Paradoxical Thermodynamics

Published online by Cambridge University Press:  05 June 2012

Douglas Heggie
Affiliation:
University of Edinburgh
Piet Hut
Affiliation:
Institute for Advanced Study, Princeton, New Jersey
Get access

Summary

A strange black box

Compared to laboratory situations, a self-gravitating star cluster is a very strange object. Imagine that you were handed a star cluster in a closed box, so that you could only measure the temperature at the surface of the box. Imagine also that you could change the conditions of the star cluster from the outside in two ways: (1) you could put the box inside a larger box with a different temperature, as an effective heat bath, in order to change the temperature inside; (2) you could change the size of the box, compressing or expanding its volume.

So far, there is nothing unusual, and we might still pretend that we are about to carry out a textbook thermodynamics experiment. But when we dip our box into a heat bath, something strange may occur: depending on the exact conditions inside the box, the box may exhibit a most bizarre behaviour. When placed in a colder environment, the box may actually heat up, without limit. The only way to cool the box back to its original temperature would be to place it temporarily inside an even hotter environment – but not for too long, otherwise it will cool to below its original temperature.

This contrary tendency of self-gravitating systems corresponds to the fact that such systems can exhibit a negative heat capacity. We will return to this mysterious character later on, when we analyse its effects in detail, both on macroscopic scales, governing the evolution of a star cluster as a whole, and on a microscopic scale, when we deal with few-body systems.

Type
Chapter
Information
The Gravitational Million–Body Problem
A Multidisciplinary Approach to Star Cluster Dynamics
, pp. 43 - 48
Publisher: Cambridge University Press
Print publication year: 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Paradoxical Thermodynamics
  • Douglas Heggie, University of Edinburgh, Piet Hut, Institute for Advanced Study, Princeton, New Jersey
  • Book: The Gravitational Million–Body Problem
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9781139164535.008
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Paradoxical Thermodynamics
  • Douglas Heggie, University of Edinburgh, Piet Hut, Institute for Advanced Study, Princeton, New Jersey
  • Book: The Gravitational Million–Body Problem
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9781139164535.008
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Paradoxical Thermodynamics
  • Douglas Heggie, University of Edinburgh, Piet Hut, Institute for Advanced Study, Princeton, New Jersey
  • Book: The Gravitational Million–Body Problem
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9781139164535.008
Available formats
×