Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-26T13:08:20.827Z Has data issue: false hasContentIssue false

Chapter 4 - Rock Physics of CO2 Storage Monitoring in Porous Media

from Part II - Geophysical Techniques

Published online by Cambridge University Press:  19 April 2019

Thomas L. Davis
Affiliation:
Colorado School of Mines
Martin Landrø
Affiliation:
Norwegian University of Science and Technology, Trondheim
Malcolm Wilson
Affiliation:
New World Orange BioFuels
Get access
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aki, K. and Richards, P. G. (2002). Quantitative seismology. Sausalito, CA: University Science Books.Google Scholar
Al Hosni, M., Caspari, E., Pevzner, R., Daley, T. M., and Gurevich, B. (2016a). Case history: Using time‐lapse vertical seismic profiling data to constrain velocity–saturation. Geophysical Prospecting, 64(4): 9871000.CrossRefGoogle Scholar
Al Hosni, M., Vialle, S., Gurevich, B., and Daley, T. M. (2016b). Estimation of rock frame weakening using time-lapse crosswell: The Frio Brine Pilot Project. Geophysics, 81: B235B245. DOI:10.1190/GEO2015-0684.1.CrossRefGoogle Scholar
Archie, G. E. (1942). The electrical resistivity log as an aid in determining some reservoir characteristics. Transactions of the American Institute of Mining, Metallurgical, and Petroleum Engineers, 146: 5462.Google Scholar
Arts, R., Eiken, O., Chadwick, A., Zweigel, P., van der Meer, L., and Zinszner, B. (2004). Monitoring of CO2 injected at Sleipner using time-lapse seismic data. Energy, 29: 13831392.CrossRefGoogle Scholar
Avseth, P., Dvorkin, J., Mavko, G., and Rykkje, J. (2000). Rock physics diagnostic of North Sea sands: Link between microstructure and seismic properties. Geophysical Research Letters, 27: 27612764. DOI:10.1029/ 1999GL008468.CrossRefGoogle Scholar
Batzle, M., and Wang, Z. (1992). Seismic properties of pore fluids. Geophysics, 57: 13961408.CrossRefGoogle Scholar
Benson, S. (2008). Multi-phase flow of CO2 and brine in saline aquifers. Expanded Abstracts, Society of Exploration Geophysicists, 27: 2839. DOI:10.1190/1.3063934.Google Scholar
Benson, S., Tomutsa, L., Silin, D., Kneafsey, T., and Miljkovic, L. (2005). Core scale and pore scale studies of carbon dioxide migration in saline formations. Lawrence Berkeley National Laboratory Report, LBNL-59082. http://repositories.cdlib.org/lbnl/LBNL-59082Google Scholar
Bergmann, P., Schmidt-Hattenberger, C., Kiessling, D., et al. (2012). Surface-downhole electrical resistivity tomography applied to monitoring of CO2 storage at Ketzin, Germany. Geophysics, 77(6): B253B267.CrossRefGoogle Scholar
Berryman, J. G. (1995). Mixture theories for rock properties. In Ahrens, T. J. (ed.), Rock physics & phase relations: A handbook of physical constants. Washington, DC: American Geophysical Union. DOI:10.1029/RF003, 205–228.Google Scholar
Biot, M. A. (1956). Theory of propagation of elastic waves in a fluid-saturated porous solid. 1. Low-frequency range. Journal of the Acoustical Society of America, 28(2): 168178.CrossRefGoogle Scholar
Carrigan, C. R., Yang, X., LaBrecque, D. J., et al. (2013). Electrical resistance tomographic monitoring of CO2 movement in deep geologic reservoirs. International Journal of Greenhouse Gas Control, 18: 401408. http://dx.doi.org/10.1016/j.ijggc.2013.04.016.CrossRefGoogle Scholar
Chadwick, R. A., Williams, G. A., and White, J. C. (2016). High-resolution imaging and characterization of a CO2 layer at the Sleipner CO2 storage operation, North Sea using time-lapse seismics. First Break, 34(2): 7785.CrossRefGoogle Scholar
Cook, P. J., ed. (2014). Geologically storing carbon: Learning from the Otway Project experience. Melbourne: CSIRO Publishing.CrossRefGoogle Scholar
Dafflon, B., Wu, Y., Hubbard, S. S., et al. (2012). Monitoring CO2 intrusion and associated geochemical transformations in a shallow groundwater system using complex electrical method. Environmental Science and Technology 47(1): 314321.CrossRefGoogle Scholar
Daley, T. M., Solbau, R. D., Ajo-Franklin, J. B., and Benson, S. M. (2007). Continuous active-source monitoring of CO2 injection in a brine aquifer. Geophysics, 72(5): A57–A61. DOI:10.1190/1.2754716.CrossRefGoogle Scholar
Daley, T. M., Myer, L. R., Peterson, J. E., Majer, E. L., and Hoversten, G. M. (2008). Time-lapse crosswell seismic and VSP monitoring of injected CO2 in a brine aquifer. Environmental Geology, 54: 16571665. DOI:10.1007/s00254-007–0943-z.CrossRefGoogle Scholar
Daley, Thomas M., Ajo-Franklin, J. B., and Doughty, C. (2011). Constraining the reservoir model of an injected CO2 plume with crosswell CASSM at the Frio-II brine pilot. International Journal of Greenhouse Gas Control, 5: 10221030. DOI:10.1016/j.ijggc.2011.03.002.CrossRefGoogle Scholar
Dutta, N. C., and Seriff, A. J. (1979). On White’s model of attenuation in rocks with partial gas saturation. Geophysics, 44: 18061812.CrossRefGoogle Scholar
Dvorkin, J., and Nur, A. (1996). Elasticity of high-porosity sandstones: Theory for two North Sea data sets. Geophysics, 61: 13631370. DOI:10.1190/1 .1444059.CrossRefGoogle Scholar
Gasperikova, E., and Hoversten, G. M. (2008). Gravity monitoring of CO2 movement during sequestration: Model studies. Geophysics, 73(6): WA105WA112. DOI:10.1190/1.2985823.CrossRefGoogle Scholar
Gassmann, F. (1951). On elasticity of porous media. Reprinted in Pelissier, M. A., Hoeber, H., van de Coevering, N., and Jones, I. F. (eds.), Classics of elastic wave theory. Geophysics Reprint Series No. 24, Society of Exploration Geophysicists, 2007.Google Scholar
Guéguen, Y., and Palciauskas, G. (1994). Introduction to the physics of rocks. Princeton, NJ: Princeton University Press.Google Scholar
Hill, R. (1963). Elastic properties of reinforced solids: Some theoretical principles. Journal of the Mechanics and Physics of Solids, 11: 357372.CrossRefGoogle Scholar
Hooke, R. (1678). Potentia Restitutiva, or Spring. Reprinted in Pelissier, M. A., Hoeber, H., van de Coevering, N., and Jones, I. F. (eds.), Classics of elastic wave theory. Geophysics Reprint Series No. 24, Society of Exploration Geophysicists, 2007, 5567.Google Scholar
Hovorka, S. D., Doughty, C., Benson, S. M., et al. (2006). Measuring permanence of CO2 storage in saline formations: The Frio experiment. Environmental Geoscience, 13(2): 105121.CrossRefGoogle Scholar
Hovorka, S. D., Meckel, T., and Treviño, R. H. (2013). Monitoring a large-volume injection at Cranfield, Mississippi–Project design and recommendations. International Journal of Greenhouse Gas Control, 18: 345360.CrossRefGoogle Scholar
IPCC. ( 2005). IPCC Special Report on Carbon Dioxide Capture and Storage. Prepared by Working Group III of the Intergovernmental Panel on Climate Change [Metz, B.,Google ScholarGoogle Scholar
Johnston, D. H. (2013). Practical applications of time-lapse seismic data. Society of Exploration Geophysicists Distinguished Instructor Series No. 16. http://dx.doi.org/10.1190/1.9781560803126CrossRefGoogle Scholar
Landrot, G., Ajo-Franklin, J., Yang, L., Cabrini, S., and Steefel, C. I. (2012). Measurement of accessible reactive surface area in a sandstone, with application to CO2 mineralization. Chemical Geology, 318319: 113125.CrossRefGoogle Scholar
Lebedev, M., Toms-Stewart, J., Clennell, B., et al. (2009). Direct laboratory observation of patchy saturation and its effects on ultrasonic velocities. Leading Edge, 28: 2427.CrossRefGoogle Scholar
Lebedev, M., Wilson, M. E. J., and Mikhaltsevitch, V. (2014). An experimental study of solid matrix weakening in water-saturated Savonnieres limestone. Geophysical Prospecting, 62: 12531265. DOI:10.1111/1365-2478.12168.CrossRefGoogle Scholar
Lemmon, E. W., McLinden, M. O., and Friend, D. G. (2005). Thermophysical properties of fluid systems. In Linstrom, P. J. and Mallard, W. G. (eds.), Chemistry web book. NIST Standard Reference Database Number 69. National Institute of Standards and Technology.Google Scholar
Lesmes, D. P., and Friedman, S. P. (2005). Relationships between the electrical and hydrological properties of rocks and soils. In Rubin, Y. and Hubbard, S. (eds.), Hydrogeophysics. Dordrecht, The Netherlands: Springer.Google Scholar
Mavko, G., Mukerji, T., and Dvorkin, J. (1998). The rock physics handbook: Tools for seismic analysis in porous media. Cambridge: Cambridge University Press.Google Scholar
Müller, T. M., and Gurevich, B. (2004). One‐dimensional random patchy saturation model for velocity and attenuation in porous rocksGeophysics69(5): 11661172. https://doi.org/10.1190/1.1801934CrossRefGoogle Scholar
Müller, T. M.Gurevich, B., and Lebedev, M. (2010). Seismic wave attenuation and dispersion resulting from wave-induced flow in porous rocks: A reviewGeophysics75(5): 75A14775A164. DOI:10.1190/1.3463417.CrossRefGoogle Scholar
Nabighian, M., ed. (1991). Electromagnetic methods in applied geophysics, Vol. 2: Applications. In Society of Exploration Geophysicists Investigations in Geophysics. DOI:10.1190/1.9781560802686.CrossRefGoogle Scholar
Nakatsuka, Y., Xue, Z., Garcia, H., and Matsuoka, T. (2010). Experimental study on monitoring and quantification of stored CO2 in saline formation using resistivity measurements. International Journal of Greenhouse Gas Control, 4: 209216. http://dx.doi.org/10.1016/j.ijggc.2010.01.001CrossRefGoogle Scholar
Pride, S. R. (2005). Relationships between seismic and hydrological properties. In Rubin, Y. and Hubbard, S. S. (eds.), Hydrogeophysics. Water Science and Technology Library, Vol. 50. Dordrecht: Springer, 253290. DOI:10.1007/1-4020-3102-5_9.CrossRefGoogle Scholar
Pride, S. R., Berryman, J. G., and Harris, J. M. (2004). Seismic attenuation due to wave-induced flow. Journal of Geophysical Research, 109: B01201. DOI : 10.1029/2003JB002639.CrossRefGoogle Scholar
Pride, S. R., Berryman, J. G., Commer, M., Nakagawa, S., Newman, G. A., and Vasco, D. W. (2016). Changes in geophysical properties caused by fluid injection into porous rocks: Analytical models. Geophysical Prospecting, 65(3). DOI:10.1111/1365–2478.12435.CrossRefGoogle Scholar
Rubin, Y., and Hubbard, S., eds. (2005). Hydrogeophysics, Water Science and Technology Library, Vol. 50. Dordrecht, The Netherlands: Springer.Google Scholar
Rutqvist, J. (2012). The geomechanics of CO2 storage in deep sedimentary formations. Geotechnical and Geological Engineering, 30(3): 525551. DOI:10.1007/s10706-011–9491-0.CrossRefGoogle Scholar
Saito, H., Nobuoka, D., Azuma, H., Xue, Z., and Tanase, D. (2006). Time-lapse crosswell seismic tomography for monitoring injected CO2 in an onshore aquifer, Nagaoka, Japan. Exploration Geophysics, 37: 3036.CrossRefGoogle Scholar
Sen, P. N., Scala, C., and Cohen, M. H. (1981). A self-similar model for sedimentary rocks with application to the dielectric constant of fused glass beads. Geophysics, 46: 781795.CrossRefGoogle Scholar
Sen, P. N., Goode, P. A., and Sibbit, A. (1988). Electrical conduction in clay bearing sandstones at low and high salinities. Journal of Applied Physics, 63: 48324840.CrossRefGoogle Scholar
Sethian, J. A., and Popovici, A. M. (1999). 3-D traveltime computation using the fast marching method. Geophysics, 64(2): 516523.CrossRefGoogle Scholar
Smith, T. M., Sondergeld, C. H., and Rai, C. S. (2003). Gassmann fluid substitutions: A tutorial. Geophysics, 68: 430440.CrossRefGoogle Scholar
Stokes, G. G. (1845). On the theories of the internal friction of fluids in motion, and of the equilibrium and motion of elastic solids. Reprinted in Pelissier, M. A., Hoeber, H., van de Coevering, N., and Jones, I. F. (eds.), Classics of elastic wave theory. Geophysics Reprint Series No. 24. Society of Exploration Geophysicists, 2007. 125161.Google Scholar
Toms, J., Müller, T. M., and Gurevich, B. (2007). Seismic attenuation in porous rocks with random patchy saturation. Geophysical Prospecting, 55(5): 671678.  DOI: 10.1111/j.1365-2478.2007.00644.x.CrossRefGoogle Scholar
Vanorio, T. (2015). Recent advances in time-lapse, laboratory rock physics for the characterization and monitoring of fluid-rock interactions. Geophysics, 80(2): WA49WA59. DOI:10.1190/geo2014-0202.1.CrossRefGoogle Scholar
Vanorio, T., Mavko, G., Vialle, S., and Spratt, K. (2010). The rock physics basis for 4D seismic monitoring of CO2 fate: Are we there yet? Leading Edge, 29: 156162.CrossRefGoogle Scholar
Vanorio, T., Nur, A., and Ebert, Y. (2011). Rock physics analysis and time-lapse rock imaging of geochemical effects due to the injection of CO2 into reservoir rocks. Geophysics, 76(5): 2333. DOI:10.1190/ geo2010-0390.1.CrossRefGoogle Scholar
Vialle, S., and Vanorio, T. (2011). Laboratory measurements of elastic properties of carbonate rocks during injection of reactive CO2‐saturated water. Geophysical Research Letters, 38: L01302. DOI:10.1029/2010GL045606.CrossRefGoogle Scholar
Wang, Z. (2001). Fundamentals of seismic rock physics. Geophysics, 66: 398412.CrossRefGoogle Scholar
Wang, Z., Cates, M. E., and Langan, R. T. (1998). Seismic monitoring of a CO2 flood in carbonate reservoir: A rock physics study. Geophysics, 63: 16041617.CrossRefGoogle Scholar
Waxman, M. H., and Smits, L. J. M. (1968). Electrical conductivities in oil-bearing shaly sands. Society of Petroleum Engineers Journal, 8: 107122.CrossRefGoogle Scholar
White, J. E. (1975). Computed seismic speeds and attenuation in rocks with partial gas saturation. Geophysics, 40: 224232.CrossRefGoogle Scholar
Worthington, P. F. (1985). The evolution of shaly-sand concepts in reservoir evaluation. Log Analyst, 26: 2340, SPWLA-1985-vXXVIn1a2.Google Scholar
Xue, Z., Tanase, D., and Watanabe, J. (2006). Estimation of CO2 saturation from time-lapse CO2 well logging in an onshore aquifer, Nagaoka, Japan. Exploration Geophysics, 37: 1929.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×