Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-wzw2p Total loading time: 0 Render date: 2024-05-01T01:36:52.841Z Has data issue: false hasContentIssue false

Part III - Case Studies

Published online by Cambridge University Press:  19 April 2019

Thomas L. Davis
Affiliation:
Colorado School of Mines
Martin Landrø
Affiliation:
Norwegian University of Science and Technology, Trondheim
Malcolm Wilson
Affiliation:
New World Orange BioFuels
Get access
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Deegan, C. E., and Skull, B. J. (1977). A standard lithostratigraphic nomenclature for the central and northern North Sea. NPD Bulletin, 1, www.npd.no/en/Publications/NPD-bulletins/251-Bulletin-1/Google Scholar
Halland, E., Bjørnestad, A., Magnus, C., et al. (2014). CO2 Storage Atlas- Norwegian Continental Shelf. www.npd.noGoogle Scholar
Isaksen, D., and Tonstad, K. (1989). A revised Cretaceous and Tertiary lithostratigraphic nomenclature for the Norwegian North Sea. NPD Bulletin, 5. www.npd.no/en/Publications/NPDbulletins/255-Bulletin-5/.Google Scholar
NPD (Norwegian Petroleum Directorate). Factpages. http://factpages.npd.noGoogle Scholar
NPD (Norwegian Petroleum Directorate). (1995). Structural elements of the Norwegian continental shelf. Part II: The Norwegian Sea Region. NPD Bulletin, 8. www.npd.no/no/Publikasjoner/NPD-bulletin/258-Bulletin8/Google Scholar
NPD (Norwegian Petroleum Directorate). (1996). Geology and petroleum resources in the Barents Sea: Norwegian Petroleum Directorate (NPD), Stavanger.Google Scholar
Vollset, J., and Doré, A. G., eds. (1984). A revised Triassic and Jurassic lithostratigraphic nomenclature for the Norwegian North Sea. NPD Bulletin, 3. www.npd.no/en/Publications/NPDbulletins/253-Bulletin-3/Google Scholar

References

Alnes, H. (2015). Gravity surveys over time at Sleipner. Presentation at the 10th IEAGHG Monitoring Network Meeting, June 10–12, 2015. http://ieaghg.org/docs/General_Docs/8_Mon/6_Gravity_surveys_over_time_at_SleipnerSEC.pdf Google Scholar
Alnes, H., Eiken, O., and Stenvold, T. (2008). Monitoring gas production and CO2 injection at the Sleipner field using time-lapse gravimetry. Geophysics, 73: WA155W161.CrossRefGoogle Scholar
Alnes, H., Eiken, O., Nooner, S., Stenvold, T., and Zumberge, M. A. (2011). Results from Sleipner gravity monitoring: Updated density and temperature distribution of the CO2 plume. Energy Procedia, 4, 55045511 (10th International Conference on Greenhouse Gas Control Technologies).CrossRefGoogle Scholar
Arts, R., Eiken, O., Chadwick, R. A., Zweigel, P., van der Meer, L., and Zinszner, B. (2004a). Monitoring of CO2 injected at Sleipner using time-lapse seismic data. Energy, 29: 13831393.CrossRefGoogle Scholar
Arts, R., Eiken, O., Chadwick, A., Zweigel, P., Meer, B. v. d., and Kirby, G. (2004b). Seismic monitoring at the Sleipner underground CO2 storage site (North Sea). In Baines, S. J. and Worden, R. H. (eds.), Geological storage of carbon dioxide. Special Publications 233. London: Geological Society, 181191.Google Scholar
Arts, R., Chadwick, A., Eiken, O., Thibeau, S., and Nooner, S. (2008). Ten years’ experience of monitoring CO2 injection in the Utsira Sand at Sleipner, offshore Norway. First Break, 26(January): 6572.CrossRefGoogle Scholar
Arts, R. J., Trani, M., Chadwick, R. A., Eiken, O., Dortland, S., and van der Meer, L. G. H. (2009). Acoustic and elastic modeling of seismic time-lapse data from the Sleipner CO2 storage operation. In Grobe, M., Pashin, J. C., and Dodge, R. L. (eds.), Carbon dioxide sequestration in geological media: State of the science. AAPG Studies in Geology, 59: 391403.Google Scholar
Baklid, A., Korbøl, R., and Owren, G. (1996). Sleipner Vest CO2 disposal, CO2 injection into a shallow underground aquifer. SPE Annual Technical Conference and Exhibition, Denver, CO, SPE paper 36600, 19.CrossRefGoogle Scholar
Bandilla, K. W., Celia, M. A., and Leister, E. (2014). Impact of model complexity on CO2 plume modeling at Sleipner. Energy Procedia, 63: 34053415.CrossRefGoogle Scholar
Bergman, P., and Chadwick, A. (2015). Volumetric bounds on subsurface fluid substitution using 4D seismic time shifts with an application at Sleipner, North Sea. Geophysics, 80(5): B153B165.CrossRefGoogle Scholar
Bickle, M., Chadwick, A., Huppert, H. E., Hallworth, M., and Lyle, S. (2007). Modelling carbon dioxide accumulation at Sleipner: Implications for underground carbon storage. Earth and Planetary Science Letters, 255(1–2): 164176.CrossRefGoogle Scholar
Bitrus, P. R., Iacopini, D., and Bond, C. E. (2016). Defining the 3D geometry of thin shale units in the Sleipner reservoir using seismic attributes. Marine and Petroleum Geology, 78: 405425.CrossRefGoogle Scholar
Boait, F., White, N., Chadwick, A., Noy, D., and Bickle, M. (2011). Layer spreading and dimming within the CO2 plume at the Sleipner Field in the North Sea. Energy Procedia, 4: 32543261.CrossRefGoogle Scholar
Boait, F. C., White, N. J., Bickle, M. J., Chadwick, R. A., Neufeld, J. A., and Huppert, H. E. (2012). Spatial and temporal evolution of injected CO2 at the Sleipner Field, North Sea. Journal of Geophysical Research, 117: B03309.CrossRefGoogle Scholar
Borgos, H. G., Randen, T., and Sonneland, L. (2003). Super-resolution mapping of thin gas pockets. Extended Abstract, Society of Exploration Geophysicists Annual Meeting.Google Scholar
Broto, K., Ricarte, P., Jurado, F., Eitenne, G., and Le Bras, C. (2011). Improving seismic monitoring by 4D prestack traveltime tomography: Application to the Sleipner CO2 storage case. Extended Abstract, EAGE 1st Sustainable Earth Sciences Conference.CrossRefGoogle Scholar
Cavanagh, A. (2013). Benchmark calibration and prediction of the Sleipner CO2 plume from 2006 to 2012. Energy Procedia, 37: 35293545.CrossRefGoogle Scholar
Cavanagh, A. J., and Haszeldine, R. S. (2014). The Sleipner storage site: Capillary flow modelling of a layered CO2 plume requires fractured shale barriers within the Utsira Formation. International Journal of Greenhouse Gas Control, 21: 101112.CrossRefGoogle Scholar
Cavanagh, A., and Nazarian, B. (2014). A new and extended Sleipner Benchmark model for CO2 storage simulations in the Utsira Formation. Energy Procedia, 63: 28312835.CrossRefGoogle Scholar
Cavanagh, A. J., Haszeldine, R. S., and Nazarian, B. (2015). The Sleipner CO2 storage site: Using a basin model to understand reservoir simulations of plume dynamics. First Break, 33(June): 6168.CrossRefGoogle Scholar
Chadwick, R. A., and Eiken, O. (2013). Offshore CO2 storage: Sleipner natural gas field beneath the North Sea. In Gluyas, J. and Mathias, S. (eds.), Geological storage of carbon dioxide (CO2): Geoscience, technologies, environmental aspects and legal frameworks. Sawston, UK: Woodhead Publishing, 227250.CrossRefGoogle Scholar
Chadwick, R. A., and Noy, D. J. (2010). History – matching flow simulations and time-lapse seismic data from the Sleipner CO2 plume. In Vining, B. A. and Pickering, S. C. (eds.), Petroleum geology: From mature basins to new frontiers. Proceedings of the 7th Petroleum Geology Conference. Petroleum Geology Conferences Ltd. London: Geological Society, 11711182.Google Scholar
Chadwick, R. A., and Noy, D. J. (2015). Underground CO2 storage: Demonstrating regulatory conformance by convergence of history-matched modelled and observed CO2 plume behaviour using Sleipner time-lapse seismics. Greenhouse Gas Science Technology, 5: 305322.CrossRefGoogle Scholar
Chadwick, R. A., Zweigel, P., Gregersen, U., Kirby, G. A., Johannessen, P. N., and Holloway, S. (2004a). Characterisation of a CO2 storage site: The Utsira Sand, Sleipner, northern North Sea. Energy, 29: 13711381.CrossRefGoogle Scholar
Chadwick, R. A., Arts, R., Eiken, O., Kirby, G. A., Lindeberg, E., and Zweigel, P. (2004b). 4D seismic imaging of an injected CO2 plume at the Sleipner Field, central North Sea. InCartwright, R. J., Stewart, S. A., Lappin, M., and Underhill, J. R. (eds.), 3D seismic technology: Application to the exploration of sedimentary basins. Geological Society, London, Memoirs. London: Geological Society, 29: 311320.Google Scholar
Chadwick, R. A., Arts, R., and Eiken, O. (2005). 4D seismic quantification of a growing CO2 plume at Sleipner, North Sea. In Doré, A. G. and Vining, B. A. (eds.), Petroleum Geology: North-West Europe and Global Perspectives: Proceedings of the 6th Petroleum Geology Conference, 13851399.Google Scholar
Chadwick, A., Arts, R., Bernstone, C., May, F., Thibeau, S., and Zweigel, P. (2008). Best practice for the storage of CO2 in saline aquifers: Observations and guidelines from the SACS and CO2STORE projects. British Geological Survey Occasional Publication, 14: 1267.Google Scholar
Chadwick, R. A., Noy, D., Arts, R., and Eiken, O. (2009). Latest time-lapse seismic data from Sleipner yield new insights into CO2 plume development. Energy Procedia, 1, 21032110.CrossRefGoogle Scholar
Chadwick, R. A., Williams, G., Delepine, N., et al. (2010). Quantitative analysis of time-lapse seismic monitoring data at the Sleipner CO2 storage operation. Leading Edge, 29, February: 170177.Google Scholar
Chadwick, R. A., Williams, G. A., Williams, J. D. O., and Noy, D. J. (2012). Measuring pressure performance of a large saline aquifer during industrial-scale CO2 injection: The Utsira Sand, Norwegian North Sea. International Journal of Greenhouse Gas Control, 10: 374388.CrossRefGoogle Scholar
Chadwick, R. A., Marchant, B. P., and Williams, G. A. (2014). CO2 storage monitoring: Leakage detection and measurement in subsurface volumes from 3D seismic data at Sleipner. Energy Procedia, 63: 42244239.CrossRefGoogle Scholar
Chadwick, R. A., Williams, G. A., and White, J. C. (2016). High-resolution imaging and characterization of a CO2 layer at the Sleipner CO2 storage operation, North Sea using time-lapse seismics. First Break, 34(February): 7785.CrossRefGoogle Scholar
Chadwick, R. A., Williams, G. A., and Noy, D. J. (2017). CO2 storage: Setting a simple bound on potential leakage through the overburden in the North Sea Basin. Energy Procedia, 114: 44114423.CrossRefGoogle Scholar
Clochard, V., Delépine, N., Labat, K., and Ricarte, P. (2010). CO2 plume imaging using pre-stack stratigraphic inversion: A case study on the Sleipner field. First Break, 28(1): 9196.CrossRefGoogle Scholar
Delepine, K., Clochard, N., Labat, V., and Ricarte, P. (2011). Post-stack stratigraphic inversion workflow applied to carbon dioxide storage: Application to the saline aquifer of Sleipner field. Geophysical Prospecting, 59(1): 132144.CrossRefGoogle Scholar
Dubos-Sallée, N., and Rasolofosaon, P. N. (2011). Estimation of permeability anisotropy using seismic inversion for the CO2 geological storage site of Sleipner (North Sea). Geophysics, 76(3): WA63WA69.CrossRefGoogle Scholar
Dupuy, B., Torres, V. A. C., Ghaderi, A., Querendez, E., and Mezyk, M. (2017a). Constrained AVO for CO2 storage monitoring at Sleipner. Energy Procedia, 114: 39273936.CrossRefGoogle Scholar
Dupuy, B., Romdhane, A., Eliasson, P., Querendez, E., Yan, H., Torres, B., and Ghaderi, A. (2017b). Quantitative seismic characterization of CO2 at the Sleipner storage site, North Sea. Interpretation, 5(4): SS23SS42.CrossRefGoogle Scholar
Eiken, O., Ringrose, P., Hermanrud, C., Nazarian, B., Torp, T. A., and Høier, L. (2011). Lessons learned from 14 years of CCS operations: Sleipner, In Salah and Snøhvit. Energy Procedia, 4: 55415548.CrossRefGoogle Scholar
Eliasson, P., and Romdhane, A. (2017). Uncertainty quantification in waveform-based imaging methods: A Sleipner CO2 monitoring study. Energy Procedia, 114: 39053915.CrossRefGoogle Scholar
Evensen, A. K., and Landrø, M. (2010). Time-lapse tomographic inversion using a Gaussian parameterization of the velocity changes. Geophysics, 75(4): U29U38.CrossRefGoogle Scholar
Falcon-Suarez, I., Papageorgiou, G., Chadwick, A., North, L., Best, A. I., and Chapman, M. (2018). CO2-brine flow-through on an Utsira Sand core sample: Experimental and modelling. Implications for the Sleipner storage field. International Journal of Greenhouse Gas Control, 68: 236246.CrossRefGoogle Scholar
Furre, A.-K., and Eiken, O. (2014). Dual sensor streamer technology used in Sleipner CO2 injection monitoring. Geophysical Prospecting, 62(5): 10751088.CrossRefGoogle Scholar
Furre, A. K., Ringrose, P., Cavanagh, A., Janbu, A. D., and Hagen, S. (2014). Characterization of a submarine glacial channel and related linear features. Extended Abstract, EAGE Near Surface Geoscience.Google Scholar
Furre, A.-K., Kiær, A., and Eiken, O. (2015). CO2-induced seismic time shifts at Sleipner. Interpretation, 3(3): SS23SS35.CrossRefGoogle Scholar
Furre, A.-K., Eiken, O., Alnes, H., Vevatne, J. N., and Kiær, A. F. (2017). 20 years of monitoring CO2-injection at Sleipner. Energy Procedia, 114: 39163926.CrossRefGoogle Scholar
Ghaderi, A., and Landrø, M. (2009). Estimation of thickness and velocity changes of injected carbon dioxide layers from prestack time-lapse seismic data. Geophysics, 74(2): O17O28.CrossRefGoogle Scholar
Ghosh, R., Sen, M. K., and Vedanti, N. (2015). Quantitative interpretation of CO2 plume from Sleipner (North Sea), using post-stack inversion and rock physics modelling. International Journal of Greenhouse Gas Control, 32: 147158.CrossRefGoogle Scholar
Gregersen, U., ed. (1998). Saline aquifer CO2 storage phase zero geological survey of Denmark and Greenland. GEUS.Google Scholar
Gregersen, U., Michelsen, O., and Sorensen, J. C. (1997). Stratigraphy and facies distribution of the Utsira Formation and the Pliocene sequences in the northern North Sea. Marine and Petroleum Geology, 14: 893914.CrossRefGoogle Scholar
Haffinger, P., Eyvazi, F. J., Doulgeris, P., Steeghs, P., Gisolf, D., and Verschuur, E. (2017). Quantitative prediction of injected CO2 at Sleipner using wave-equation based AVO. First Break, 35: 6570.CrossRefGoogle Scholar
Hansen, H., Eiken, O., and Aasum, T. O. (2005). Tracing the path of carbon dioxide from a gas-condensate reservoir, through an amine plant and back into a subsurface acquifer. Case study: The Sleipner area, Norwegian North Sea. Aberdeen, UK: SPE Offshore Europe.Google Scholar
Harrington, J. F., Noy., D. J., Horseman, S. T., Birchall, D. J., and Chadwick, R. A. (2010). Laboratory study of gas and water flow in the Nordland Shale, Sleipner, North Sea. In Grobe, M., Pashin, J. and Dodge, R. (eds.), Carbon dioxide sequestration in geological media: State of the science. AAPG Studies in Geology, 59: 521543.Google Scholar
Hauge, V. L., and Kobjørnsen, O. (2015). Bayesian inversion of gravimetric data and assessment of CO2 dissolution in the Utsira Formation. Interpretation, 3(2): sp1sp10.CrossRefGoogle Scholar
Haukaas, J., Nickel, M., and Sonneland, L. (2013). Successful 4D history matching of the Sleipner CO2 plume. Extended Abstract, EAGE Conference.CrossRefGoogle Scholar
Hermanrud, C., Andersen, T., Eiken, O., et al. (2009). Storage of CO2 in saline aquifers: Lessons learned from 10 years of injection into the Utsira Formation in the Sleipner area. Energy Procedia, 1: 19972004.CrossRefGoogle Scholar
Hofmann, R. (2006). Frequency dependent elastic and inelastic properties of clastic rocks. PhD thesis, Colorado School of Mines.Google Scholar
Jullum, M., and Kolbjørnsen, O. (2016). A Gaussian-based framework for local Bayesian inversion of geophysical data to rock properties. Geophysics, 81(3): R75R87.CrossRefGoogle Scholar
Kiær, A. (2011). Trykkutvikling under CO2-lagring. Master’s thesis, NTNU (in Norwegian).Google Scholar
Kiær, A. F. (2015). Fitting top seal topography and CO2 layer thickness to time-lapse seismic amplitude maps at Sleipner. Interpretation, 3(2): SM47SM55.CrossRefGoogle Scholar
Kiær, A. F., Eiken, O., and Landrø, M. (2015a). Time lapse seismic amplitudes close to the rim of Sleipner CO2 layers. In Kiær, A. F., CO2 fluid flow information from quantitative time-lapse seismic analysis. PhD thesis, Norwegian University of Science and Technology, 5772.Google Scholar
Kiær, A., Eiken, O., and Landrø, M. (2015b). Calendar time interpolation of amplitude maps from 4D seismic data. Geophysical Prospecting, 64(2): 421430.CrossRefGoogle Scholar
Labat, K., Delépine, N., Clochard, V., and Ricarte, P. (2012). 4D joint stratigraphic inversion of prestack seismic data: Application to the CO2 storage reservoir (Utsira sand formation) at Sleipner site. Oil & Gas Science and Technology, 67(2): 329340.CrossRefGoogle Scholar
Landrø, M., and Zumberge, M. (2017). Estimating saturation and density changes caused by CO2 injection at Sleipner: Using time-lapse seismic amplitude-variation-with-offset and time-lapse gravity. Interpretation, T243T257.CrossRefGoogle Scholar
Lindeberg, E. (2010). Modelling pressure and temperature profile in a CO2 injection well. Energy Procedia, 4, 39353941.CrossRefGoogle Scholar
Lindeberg, E., Zweigel, P., Bergmo, P., Ghaderi, A., and Lothe, A. (2000). Prediction of CO2 distribution pattern improved by geology and reservoir simulation and verified by time lapse seismic. Expanded Abstract, 5th GHGT Conference.Google Scholar
Monastersky, R. (2013). Seabed scars raise questions over carbon-storage plan. Nature, 504 (December 19/26): 339340.CrossRefGoogle ScholarPubMed
Neele, F. P., and Arts, R. J. (2010). Time-lapse seismic AVP analysis on the Sleipner CO2 storage monitoring data using CFP processing. Extended Abstract, 72nd EAGE Conference.Google Scholar
Nilsen, H. M., Krogstad, S., Andersen, O., Allen, R., and Lie, K.-A. (2017). Using sensitivities and vertical-equilibrium models for parameter estimation of CO2 injection models with application to Sleipner data. Energy Procedia, 114: 34763495.Google Scholar
Nooner, S. L., Eiken, O., Hermanrud, C., Sasagawa, G. S., Stenvold, T., and Zumberge, M. A. (2007). Constraints on the in situ density of CO2 within the Utsira formation from time-lapse seafloor gravity measurements. International Journal of Greenhouse Gas Control, 1: 198214.CrossRefGoogle Scholar
Park, J., Sauvin, G., and Vöge, M. (2017). 2.5D inversion and joint interpretation of CSEM data at Sleipner CO2 storage. Energy Procedia, 114: 39893996.CrossRefGoogle Scholar
Pedersen, R. B. (2011). Annual Report 2011. Center for Geobiology, University of Bergen.Google Scholar
Queißer, M., and Singh, S. C. (2013a). Full waveform inversion in the time lapse mode applied to CO2 storage at Sleipner. Geophysical Prospecting, 61(3): 537555.CrossRefGoogle Scholar
Queisser, M., and Singh, S. C., (2013b). Localizing CO2 at Sleipner:Seismic images versus P-wave velocities from waveform inversion. Geophysics, 78(3): B131B146.Google Scholar
Rabben, T. E., and Ursin, B. (2011). AVA inversion of the top Utsira Sand reflection at the Sleipner field. Geophysics, 76(3): C53C63.CrossRefGoogle Scholar
Raknes, E. B., Weibull, W., and Arntsen, B. (2015). Three-dimensional elastic full waveform inversion using seismic data from the Sleipner area. Geophysical Journal International, 202(3): 18771894.CrossRefGoogle Scholar
Romdhane, A., and Querendez, E. (2014). CO2 characterization at the Sleipner field with full waveform inversion: Application to synthetic and real data. Energy Procedia, 63: 43584365.CrossRefGoogle Scholar
Rossi, G., Chadwick, R. A., and Williams, G. A. (2011). Traveltime and attenuation tomography of CO2 plume at Sleipner. Extended Abstract, 73rd EAGE Conference & Exhibition.CrossRefGoogle Scholar
Rubino, J. G., and Velis, D. R. (2011). Seismic characterization of thin beds containing patchy carbon dioxide-brine distributions: A study based on numerical simulations. Geophysics, 76: R57R67.CrossRefGoogle Scholar
Rubino, J. G., Velis, D. R., and Sacchi, M. D. (2011). Numerical analysis of wave-induced fluid flow effects on seismic data: Application to monitoring of CO2 at the Sleipner field. Journal of Geophysical Research, 116: B03 306.CrossRefGoogle Scholar
Singh, V., Cavanagh, A., Hansen, H., Nazarian, B., Iding, M., and Ringrose, P. (2010). Reservoir modeling of CO2 plume behavior calibrated against monitoring data from Sleipner, Norway. SPE, 134891: 118.Google Scholar
White, J. C., Williams, G. A., and Chadwick, R. A. (2013). Thin layer detectability in a growing CO2 plume: Testing the limits of time-lapse seismic resolution. Energy Procedia, 37: 43564365.CrossRefGoogle Scholar
Williams, G., and Chadwick, A. (2012). Quantitative seismic analysis of a thin layer of CO2 in the Sleipner injection plume. Geophysics, 77(6): R245R256.CrossRefGoogle Scholar
Williams, G., and Chadwick, R. A. (2017). An improved history-match for layer spreading within the Sleipner plume including thermal propagation effects. Energy Procedia, 114: 28562870.CrossRefGoogle Scholar
Williams, G. A., Chadwick, R. A., and Vosper, H. (2018). Some thoughts on Darcy-type flow simulation for modelling underground CO2 storage based on the Sleipner CO2 storage operation. International Journal of Greenhouse Gas Control, 68: 164175.CrossRefGoogle Scholar
Zhang, G., Lu, P., and Zhu, C. (2014). Model predictions via history matching of CO2 plume migration at the Sleipner Project, Norwegian North Sea. Energy Procedia, 63: 30003011.CrossRefGoogle Scholar
Zhang, G., Lu, P., Ji, X., and Zhu, C. (2017). CO2 plume migration and fate at Sleipner, Norway: Calibration of numerical models, uncertainty analysis, and reactive transport modelling of CO2 trapping to 10,000 years. Energy Procedia, 114: 28802895.CrossRefGoogle Scholar
Zhu, C., Zhang, G., Lu, P., Meng, L., and Ji, X. (2015). Benchmark modeling of the Sleipner CO2 plume: Calibration to seismic data for the uppermost layer and model sensitivity analysis. International Journal of Greenhouse Gas Control, 43, 233246.CrossRefGoogle Scholar
Zweigel, P., Hamborg, M., Arts, R., Lothe, A. E., Sylta, O., and Tommeras, A. (2001). Prediction of migration of CO2 injected into an underground depository: Reservoir geology and migration modelling in the Sleipner case (North Sea). In Williams, D., Durie, I., McMullan, P., Paulson, C., and Smith, A. (eds.), Greenhouse Gas Control Technologies, Proceedings of the 5th International Conference on Greenhouse Gas Control Technologies, 360365.Google Scholar
Zweigel, P., Arts, R., Lothe, A. E., and Lindeberg, E. (2004). Reservoir geology of the Utsira Formation at the first industrial-scale underground CO2 storage site (Sleipner area, North Sea). In Baines, S., Gale, J., and Worden, R. (eds.), Geological storage of carbon dioxide for emissions reduction. London: Geological Society, 165180.Google Scholar

References

Bishop, J. E., and Davis, T. L. (2014). Multicomponent seismic monitoring of CO2 injection at Delhi Field, Louisiana. First Break, 32(5): 4348.CrossRefGoogle Scholar
Carvajal, C., Putri, I., and Davis, T. (2014). Dynamic reservoir characterization using 4-D multicomponent seismic data and rock physics modelling in Delhi Field, Louisiana. First Break, 32(2): 6369.CrossRefGoogle Scholar
Chen, T., Kazemi, H., and Davis, T. L. (2014). Integration of reservoir simulation and time-lapse seismic in Delhi Field: A continuous CO2 injection EOR project. SPE 169049.CrossRefGoogle Scholar
Heris, A. E., Wandler, A., Kazemi, H., and Davis, T. L. (2011). Quantitative integration of flow simulation and 4-D multicomponent seismic in a CO2 WAG EOR project. SPE 146960.Google Scholar
O’Brien, S., and Davis, T. (2013). Time-lapse shear wave splitting analysis to monitor caprock integrity at Delhi Field, Louisiana. First Break, 31(5): 7581.CrossRefGoogle Scholar

References

Alnes, H., Eiken, O., and Stenvold, T. (2008). Monitoring gas production and CO2 injection at the Sleipner field using time-lapse gravimetry. Geophysics, 73(6): 155161.CrossRefGoogle Scholar
Bachu, S., and Hitchon, B. (1996). Regional-scale flow of formation waters in the Williston Basin. AAPG Bulletin, 80(2): 248264.Google Scholar
Black, A., Hare, J., and MacQueen, J. (2016). Borehole gravity monitoring in the Aquistore Boundary Dam CO2 sequestration well. Expanded Abstract, Society of Exploration Geophysicists.Google Scholar
Boullenger, B., Verdel, A., Paap, B., Thorbecke, J., and Draganov, D. (2015). Studying CO2 storage with ambient-noise seismic interferometry: A combined numerical feasibility study and field-data example for Ketzin, Germany. Geophysics, 80(1): Q1Q13.CrossRefGoogle Scholar
Brady, J. L., Hare, J. L., Ferguson, J. F., et al. (2006). Results of the world’s first 4D microgravity surveillance of a waterflood – Prudhoe Bay, Alaska. SPE Paper 101762, 2006 SPE Annual Technical Conference and Exhibition.CrossRefGoogle Scholar
Brunskill, B. (2004). CO2 disposal potential in the deep subsurface of southeast Saskatchewan. Internal report, prepared for the University of Regina and Saskatchewan Power Corporation.Google Scholar
Cheraghi, S., White, D. J., Draganov, D., Bellefleur, G., Craven, J. A., and Roberts, B. (2017). Passive seismic reflection interferometry: A case study from the Aquistore CO2 storage site, Saskatchewan, Canada. Geophysics, 82(3): B79B93.CrossRefGoogle Scholar
Craymer, M., Henton, J., Piraszewski, M., and Lapelle, E. (2011). An updated velocity field for Canada. Eos Transactions, AGU, 92(51), Fall Meeting Supplement, Abstract G21A-0793.Google Scholar
Craymer, M., White, D., Piraszewksi, M., Zhao, Y., Henton, J., Silliker, J., and Samsonov, S. (2015). First results of geodetic deformation monitoring after commencement of CO2 injection at the Aquistore underground CO2 storage site. Eos Transactions, American Geophysical Fall Meeting, Paper G33A-1132.Google Scholar
Czarnogorska, M., Samsonov, S., and White, D. (2016). Airborne and spaceborne remote sensing for Aquistore carbon capture and storage site characterization. Canadian Journal of Remote Sensing, 42(3): 274290. DOI:10.1080/07038992.2016.1171131.CrossRefGoogle Scholar
Daley, T. M., Smithy, J. T., Beyer, J. H., and LaBrecque, D. (2015). Borehole EM monitoring at Aquistore with a downhole source. In Gerdes, K. F. (ed.), Carbon dioxide capture for storage in deep geological formations: Results from the CO2 Capture Project, Vol. 4. Thatcham, Berks, UK: CPL Press, 733758.Google Scholar
Dodds, K., Krahenbuhl, R., Reitz, A., Li, Y., and Hovorka, S. (2015). Evaluating time-lapse borehole gravity for CO2 plume detection at SECARB Cranfield. In Gerdes, K. F. (ed.), Carbon dioxide capture for storage in deep geological formations: Results from the CO2 Capture Project, Vol. 4. Thatcham, Berks, UK: CPL Press, 651664.Google Scholar
Energy and Environmental Research Center. (2014). Geologic modeling and simulation report for the Aquistore Project: University of North Dakota & U.S. Department of Energy National Energy Technology Laboratory.Google Scholar
Gasperikova, E., and Hoversten, G. M. (2006). A feasibility study of nonseismic geophysical methods for monitoring geologic CO2 sequestration. Leading Edge, 25, 12821288. DOI:10.1190/1.2360621.CrossRefGoogle Scholar
Gasperikova, E., and Hoversten, G. M. (2008). Gravity monitoring of CO2 movement during sequestration: Model studies. Geophysics, 73(6): WA105WA112.CrossRefGoogle Scholar
Gassenmeier, M., Sens-Schönfelder, C., Delatre, M., and Korn, M. (2015). Monitoring of environmental influences on seismic velocity at the geological storage site for CO2 in Ketzin (Germany) with ambient seismic noise. Geophysical Journal International, 200: 524533.CrossRefGoogle Scholar
Gowan, E. J., Ferguson, I. J., Jones, A. G., and Craven, J. A. (2009). Geoelectric structure of the northeastern Williston basin and underlying Precambrian lithosphere. Canadian Journal of Earth Sciences, 46: 441464.CrossRefGoogle Scholar
Hardage, B. A. (2000). Vertical seismic profiling: Principles. Oxford: Elsevier Science.Google Scholar
Harris, K., White, D., Samson, C., Daley, T., and Miller, D. (2015). Evaluation of distributed acoustic sensing for 3D time-lapse VSP monitoring of the Aquistore CO2 storage site, GeoConvention, May 4–8, Calgary, Expanded Abstract.Google Scholar
Harris, K., White, D., Melanson, D., Samson, C. and Daley, T. (2016). Feasibility of time-lapse VSP monitoring at the Aquistore CO2 storage site using a distributed acoustic sensing system. International Journal of Greenhouse Gas Control, 50: 248260. http://dx.doi.org/10.1016/j.ijggc.2016.04.016.CrossRefGoogle Scholar
Harris, K., White, D., Samson, C. (2017). 4D VSP monitoring at the Aquistore CO2 storage site. Geophysics , 82(6), M81–M96.Google Scholar
Hibbs, A. D. (2015). Test of a new BSEM configuration at Aquistore, and its application to mapping injected CO2. In Gerdes, K. F. (ed.), Carbon dioxide capture for storage in deep geological formations: Results from the CO2 Capture Project, Vol. 4. Thatcham, Berks, UK: CPL Press, 759776.Google Scholar
Jiang, T., Pekot, L. J., Jin, L., et al. (2016). Numerical modelling of the Aquistore CO2 Project: GHGT-13 Proceedings. Energy Procedia, 114.Google Scholar
Kaven, J. O., Hickman, S. H., McGarr, A. F., and Ellsworth, W. L. (2015). Surface monitoring of microseismicity at the Decatur, Illinois, CO2 sequestration demonstration site. Seismological Research Letters, 86(4): 16. DOI:10.1785é0220150062.CrossRefGoogle Scholar
Kent, D. M., and Christopher, J. E. (1994). Geological history of the Williston Basin and Sweetgrass River Arch. In G. D. Mossop and I. Shetsen (comp.), Geological atlas of the Western Canada sedimentary basin. Canadian Society of Petroleum Geologists and Alberta Research Council, 421–430.Google Scholar
Khan, D. K., and Rostron, B. J. (2005). Regional hydrogeological investigation around the IEAWeyburn CO2 Monitoring and Storage Project Site. In Rubin, E. S., Keith, D. W., and Gilboy, C. F. (eds.), Proceedings of the 7th International Conference on Greenhouse Gas Control Technologies, September 5–9, 2004, Vancouver, Canada, Vol. 1: Peer Reviewed Papers and Overviews, 741750.Google Scholar
Kuzmiski, L., Charters, B., and Galbraith, M. (2009). Processing considerations for 3D VSP: CSEG Recorder, 34(4). https://csegrecorder.com/articles/view/processing-considerations-for-3d-vspGoogle Scholar
Liard, J., Huang, J., Silliker, J., Jobin, D., Wand, S. and Doherty, , A. (2011). Detecting groundwater storage change using micro-gravity survey in Waterloo Moraine, Proceeding. Geohydro.Google Scholar
Marsh, A., and Love, M. (2014). Middle Devonian prairie evaporite: Isopach map, map 132. In Regional Stratigraphic Framework of the Phanerozoic in Saskatchewan, Saskatchewan Phanerozoic Fluids and Petroleum Systems Project, Saskatchewan Ministry of the Economy, Saskatchewan Geological Survey, Open File 2014–1, set of 156 maps.Google Scholar
Mathias, S., Hardisty, P., Trudell, M., and Zimmerman, R. (2009). Approximate solutions for pressure buildup during CO2injection in brine aquifers. Transport in Porous Media, 79: 265284.CrossRefGoogle Scholar
McLeod, J. (2016). Magnetotelluric and controlled-source electromagnetic pre-injection study of Aquistore CO2 sequestration site, near Estevan, Saskatchewan, Canada. M.Sc. thesis, University of Manitoba.Google Scholar
McLeod, J., Craven, J. A., Ferguson, I. J., Roberts, B. J., Bancroft, B., and Liveda, T (2014). Overview of the 2013 baseline magnetotelluric and controlled-source electromagnetic geophysical study of CO2 sequestration at the Aquistore site near Estevan, Saskatchewan. Geological Survey of Canada, Open File 7617. DOI:10.4095/293921.CrossRefGoogle Scholar
McLeod, J., Craven, J. A., Ferguson, I. J., and Roberts, B. J. (2016). Overview of the 2013 and 2014 baseline magnetotelluric and controlled-source electromagnetic studies of CO2 sequestration at the Aquistore site near Estevan, Saskatchewan. Geological Survey of Canada, Open File 8101.CrossRefGoogle Scholar
Mestayer, J., Cox, B., Wills, P. (2011). Field trials of distributed acousticsensing for geophysical monitoring. In 81st Annual International Meeting of the Society of Exploration Geophysics, Expanded Abstract, 4253–4257.Google Scholar
Miller, D. E., Daley, T. M., White, D., et al. (2016). Simultaneous acquisition of distributed acoustic sensing VSP with multi-mode and singlemode fibre optic cables and 3 C-geophones at the Aquistore CO2 storage site. CSEG Recorder, 2833.Google Scholar
Nixon, C. G., Schmitt, D. R., Kofman, R. S., et al. (2017). Experiences in deep downhole digital micro-seismic monitoring near 3 km at the PTRC Aquistore CO2 Sequestration Project, 2017 Geoconvention, Expanded Abstract.CrossRefGoogle Scholar
O’Brien, J., Kilbride, F., and Lim, F. (2004). Time-lapse VSP reservoir monitoring. Geophysics, 23(11), 11781184.Google Scholar
Palombi, D. D. (2008). Regional hydrogeological characterization of the northeastern margin in the Williston Basin. M.Sc. thesis, University of Alberta, Edmonton, Alberta.Google Scholar
Roach, L. A. N., White, D. J., and Roberts, B. (2015). Assessment of 4D seismic repeatability and CO2 detection limits using a sparse permanent land array at the Aquistore CO2 storage site. Geophysics, 80(2): WA1WA13.CrossRefGoogle Scholar
Roach, L. A. N., White, D. J., Roberts, B., and Angus, D. (2017). Initial 4D seismic results after CO2 injection start-up at the Aquistore storage site. Geophysics, 82(3). http://dx.doi.org/10.1190/geo2016-0488.1CrossRefGoogle Scholar
Rostron, B., White, D., Hawkes, C., and Chalaturnyk, R. (2014). Characterization of the Aquistore CO2 Project storage site, Saskatchewan, Canada. In 12th International Conference on Greenhouse Gas Control Technologies, GHGT-12. Energy Procedia, 63: 29772984, DOI:10.1016/j.egypro.2014.11.320.CrossRefGoogle Scholar
RPS Boyd PetroSearch. (2011). Interpretation of 2D seismic data for the Aquistore Project near Estevan, Saskatchewan: Internal Report for Petroleum Technology Research Centre, Regina, 54.Google Scholar
Rutqvist, J., Vasco, D., and Myer, L. (2010). Coupled reservoir geomechanical analysis of CO2 injection and ground deformation at In Salah, Algeria. International Journal of Greenhouse Gas Control, 4(2): 225230.CrossRefGoogle Scholar
Samsonov, S., Czarnogorska, M., and White, D. (2015). Satellite interferometry for high-precision detection of ground deformation at a carbon dioxide storage site. International Journal of Greenhouse Gas Control, 42: 188–199, DOI:10.1016/j.ijggc.2015.07.034.CrossRefGoogle Scholar
Sato, K., Mito, S., Horie, T., et al. (2011). Monitoring and simulation studies for assessing macro- and meso-scale migration of CO2 sequestered in an onshore aquifer: Experiences from the Nagaoka pilot site, Japan. International Journal of Greenhouse Gas Control, 5: 125137, DOI:10.1016/j.ijggc.2010.03.003.CrossRefGoogle Scholar
Schenkel, C. J., and Morrison, H. F. (1994). Electrical resistivity measurement through metal casing. Geophysics, 59(7): 10721082.CrossRefGoogle Scholar
Sherlock, D. A., Toomey, A., Hoversten, M., Gasperikova, E., and Dodds, K. (2006). Gravity monitoring of CO2 storage in a depleted gas field: A sensitivity study. Exploration Geophysics, 37: 3743.CrossRefGoogle Scholar
Stork, A. L, Nixon, C., Schmitt, D. R., White, D. J., Kendall, J.-M., and Worth, K. (2016). The seismic response at the Aquistore CO2 injection project, Saskatchewan, Canada. Seismological Research Letters, 87(2B): 477. DOI:10.1785/0220160046.Google Scholar
Streich, R. (2016). Controlled-source electromagnetic approaches for hydrocarbon exploration and monitoring on land. Surveys in Geophysics, 37: 4780.CrossRefGoogle Scholar
Vasco, D., Rucci, A., Ferretti, A., et al. (2010). Satellite-based measurements of surface deformation revealfluid flow associated with the geological storage of carbon dioxide. Geophysics Research Letters, 37(3): L03303, 15.CrossRefGoogle Scholar
Vasco, D. W., Ferretti, A., Rucci, A., et al. (2016). Geodetic monitoring of the geological storage of greenhouse gas emissions. Submitted to AGU books.Google Scholar
Verdon, J. P., Kendall, J.-M., Horleston, A. C., and Stork, A. (2016). Subsurface fluid injection and induced seismicity in southeast Saskatchewan. International Journal of Greenhouse Gas Control (in press).CrossRefGoogle Scholar
Vigrass, L., Jessop, A., and Brunskill, B. (2007). Regina Geothermal Project. In Summary of Investigations 2007, Vol. 1, Saskatchewan Geological Survey, Saskatchewan Industry Resources, Misc. Rep. 2007–4.1, CD-ROM, Paper A-2.Google Scholar
Vozoff, K. (1991). The magnetotelluric method. In Nabighian, M. N., (ed.), Electromagnetic methods in applied geophysics, Vol. 2: Applications. Tulsa, OK: Society of Exploration Geophysicists, 641711.CrossRefGoogle Scholar
Wang, Y. (2015). Design, deployment, performance and baseline data assessment of surface tiltmeter array technology in Aquistore geologic CO2 storage project. M.Sc. thesis, University of Alberta.Google Scholar
Washbourne, J. K., Rector, J. W., and Bube, K. P. (2002). Crosswell traveltime tomography in three dimensions. Geophysics, 67(3) (May–June): 853871, DOI 10.1190/1.1484529.CrossRefGoogle Scholar
White, D. (2012). Geophysical monitoring. In Hitchon, B. (ed.), Best practices for validating CO2 geological storage. Sherwood Park, AB: Geoscience Publishing, 155210.Google Scholar
White, D. J. (2013a). Seismic characterization and time-lapse imaging during seven years of CO2 flood in the Weyburn Field, Saskatchewan, Canada. International Journal of Greenhouse Gas Control, 16S: S78S94.CrossRefGoogle Scholar
White, D. J. (2013b). Toward quantitative CO2 storage estimates from time-lapse 3D seismic travel times: An example from the IEA GHG Weyburn–Midale CO2 monitoring and storage project. International Journal of Greenhouse Gas Control, 16S: S95S102.CrossRefGoogle Scholar
White, D., Roach, L. A. N., Roberts, B., and Daley, T. M. (2014). Initial results from seismic monitoring at the Aquistore CO2 storage site, Saskatchewan, Canada. Energy Procedia, 63: 44184423. DOI:10.1016/j.egypro.2014.11.477.CrossRefGoogle Scholar
White, D. J., Roach, L. A. N., and Roberts, B. (2015). Time-lapse seismic performance of a sparse permanent array: Experience from the Aquistore CO2 storage site. Geophysics, 80(2): WA35–WA48.CrossRefGoogle Scholar
White, D. J., Hawkes, C. D., and Rostron, B. J. (2016). Geological characterization of the Aquistore CO2 storage site from 3D seismic data. International Journal of Greenhouse Gas Control, 54(1), 330–344.CrossRefGoogle Scholar
White, D., Harris, K., Roach, L., et al. (2017). Monitoring results after 36 ktonnes of deep CO2 injection at the Aquistore CO2 storage site, Saskatchewan, Canada. In 13th International Conference on Greenhouse Gas Control Technologies, GHGT-13. Energy Procedia, 114.CrossRefGoogle Scholar
Whittaker, S., and Worth, K. (2011). Aquistore: A fully integrated demonstration of the capture, transportation and geologic storage of CO2. Energy Procedia, 4: 56075614.CrossRefGoogle Scholar
Whittaker, S., Rostron, B., Khan, D., et al. (2004). Theme 1: Geological characterization. In Wilson, M. and Monea, M. (eds.), IEA GHG Weyburn CO2 Monitoring and Storage Project summary report 2000–2004, from the Proceedings of the 7th International Conference on Greenhouse Gas Control Technologies. Regina: Petroleum Technology Research Centre, 1–72.Google Scholar
Worth, K., White, D., Chalaturnyk, R., et al. (2014). Aquistore Project measurement, monitoring and verification: From concept to CO2 injection. In 12th International Conference on Greenhouse Gas Control Technologies, GHGT-12. Energy Procedia, 63: 32023208. DOI:10.1016/j.egypro.2014.11.345.CrossRefGoogle Scholar
Xu, Z., Fang, Y., Scheibe, T., and Bonneville, A. (2012a). A fluid pressure and deformation analysis for geological sequestration of carbon dioxide. Computational Geosciences, 46: 3137.CrossRefGoogle Scholar
Xu, Z., Juhlin, C., Gudmundsson, O., et al. (2012b). Reconstruction of subsurface structure from ambient seismic noise: An example from Ketzin, Germany. Geophysical Journal International, 189: 10851102.CrossRefGoogle Scholar

References

Bachu, S., and Bennion, B. (2008). Effects of in-situ conditions on relative permeability characteristics of CO2-brine systems. Environmental Geology, 54(8): 17071722.CrossRefGoogle Scholar
Beaton, A. (2003). Production potential of coalbed methane resources in Alberta. Alberta Energy and Utilities Board, EUB/AGS Earth Sciences Report 2003–03.Google Scholar
Brooks, R. H., and Corey, T. (1964). Hydraulic properties of porous media. Colorado State University, Hydrology Papers, 3, 1–24.Google Scholar
Chadwick, R. A., Zweigel, P., Gregerson, U., Kirby, G.A., Holloway, S., and Johannessen., P. N. (2004). Geological reservoir characterization of a CO2 storage site: The Utsira Sand, Sleipner, northern North Sea. Energy, 29: 13711381.CrossRefGoogle Scholar
Coates, G. R., and Dumanoir, J. L. (1974). A new approach to improved log-derived permeability. Log Analyst, January–February: 17.Google Scholar
Eisinger, C. L., and Jensen, J. L. (2009). Data integration, petrophysics, and geomodelling: Wabamun Area CO2 Sequestration Project (WASP). Energy and Environmental Systems Group, Institute for Sustainable Energy, Environment and Economy, University of Calgary.Google Scholar
Fenton, M. M., Schreiner, B. T., Nielsen, E., and Pawlowicz, J. G. (1994). Quaternary geology of the Western Plains. In G. D. Mossop and I. Shetsen (comp.), Geological Atlas of the Western Canada Sedimentary Basin. Canadian Society of Petroleum Geologists and Alberta Research Council, Calgary, 413420.Google Scholar
Gassmann, F. (1951). Über die Elastizität poröser Medien. Viertel. Naturforschenden Gesellschaft Zürich, 96: 123.Google Scholar
Gibson-Poole, C. M., Svendsen, L., Underschultz, L., et al. (2008). Site characterization of a basin-scale CO2 geological storage system: Gippsland Basin, southeast Australia. Environmental Geology, 54: 15831606.CrossRefGoogle Scholar
Glombick, P. M. (2010a). Top of the Belly River Gp. in the Alberta Plains: Subsurface stratigraphic picks and modelled surface. Alberta Energy Regulator Alberta Geological Survey, Open File Report 2010–10.Google Scholar
Glombick, P. M. (2010b). Top of the Belly River Gp. in the Alberta Plains: Subsurface stratigraphic picks and modelled surface. Alberta Energy Regulator Alberta Geological Survey Digital InFm. Series DIG 2010–0022.Google Scholar
Glombick, P. M. (2011a). Subsurface stratigraphic picks for the top of the Oldman Fm. (Base of Dinosaur Park Fm.), Alberta Plains. Alberta Energy Regulator Alberta Geological Survey, Open File Report 2011–13.Google Scholar
Glombick, P. M. (2011b). Subsurface stratigraphic picks for the top of the Oldman Fm. (Base of Dinosaur Park Fm.), Alberta Plains. Alberta Energy Regulator Alberta Geological Survey, Digital InFm. Series DIG 2011–0006 (tabular data, tab-delimited format, to accompany Open File Report 2011–13.Google Scholar
Glombick, P. M. (2014a). Subsurface stratigraphic picks for the Belly River Gp./Lea Park Fm. Transition in East-Central Alberta. Alberta Energy Regulator Alberta Geological Survey, Digital InFm. Series DIG 2013–0031.Google Scholar
Glombick, P. M. (2014b). Subsurface stratigraphic picks for the top of the Foremost Fm. (Belly River Gp.), Alberta Plains. Alberta Energy Regulator Alberta Geological Survey, Digital InFm. Series DIG 2013–0030.Google Scholar
Glombick, P. M., and Mumpy, A. J. (2014a). Subsurface stratigraphic picks for the top of the Milk River ‘shoulder’, Alberta Plains. Alberta Energy Regulator Alberta Geological Survey, Digital InFm. Series DIG 2013–0025.Google Scholar
Glombick, P. M., and Mumpy, A. J. (2014b). Subsurface stratigraphic picks for the Milk River ‘shoulder’, Alberta Plains: Including tops for the Milk River Fm. and Alderson Mbr. of the Lea Park Fm: Alberta Energy Regulator Alberta Geological Survey, Open File Report 2013–17.Google Scholar
Hamblin, A. P., and Abrahamson, B. W. (1996) Stratigraphic architecture of “Basal Belly River” cycles, Foremost Formation, Belly River Group, subsurface of southern Alberta and southwestern Saskatchewan. Bulletin of Canadian Petroleum Geology, 44(4): 654673.Google Scholar
Kim, Ah-Ram, Cho, Gye-Chun, and Kwon, Tae-Hyuk. (2014). Site characterization and geotechnical aspects on geological storage of CO2 in Korea. Geosciences Journal, 18(2): 167179.CrossRefGoogle Scholar
Li, K., and Horne, R. N. (2006). Comparison of methods to calculate relative permeability from capillary pressure in consolidated water-wet porous media. American Geophysical Union, Water Resources Research, 42: W06405. DOI:1029/2005WR004482.Google Scholar
Rock, L., Brydie, J., Jones, D., Jones, J.-P., Perkins, E., and Taylor, E. (2015). Methodology to assess groundwater quality during CO2 injection at the Quest CCS project. Geoconvention 2015, Geoscience New Horizons.Google Scholar
Rostron, B., White, D., Hawkes, C., and Chalaturnyk, R. (2014). Characterization of the Aquistore CO2 project storage site, Saskatchewan, Canada. Energy Procedia, 63: 29772984.CrossRefGoogle Scholar
Smith, T., Sondergeld, C., and Rai, C. (2003). Gassmann fluid substitutions: A tutorial. Geophysics, 68, 430440.CrossRefGoogle Scholar
Timur, A. (1968). An investigation of permeability, porosity, and residual water saturation relationship for sandstone reservoirs. Log Analyst, 9(4): 8.Google Scholar
Wright, G. N., McMechan, M. E., Potter, D. E. G., and Holter, M. E. (1994). Structure and architecture of the Western Canada Sedimentary Basin. In G. D. Mossop and I. Shetsen (comp), Geological atlas of the Western Canada Sedimentary Basin. Canadian Society of Petroleum Geologists and Alberta Research Council, Calgary, 25–40.Google Scholar

References

Alemu, B. L., Aker, E., Soldal, M., Johnsen, Ø., and Aagaard, P. (2013). Effect of sub‐core scale heterogeneities on acoustic and electrical properties of a reservoir rock: A CO2 flooding experiment of brine saturated sandstone in a computed tomography scanner. Geophysical Prospecting, 61(1): 235250.CrossRefGoogle Scholar
Asveth, P. (2009). Exploration rock physics. In Bjørlykke, K. (ed.), Petroleum geoscience: From sedimentary environments to rock physics, Berlin/Heidelberg: Springer-Verlag.Google Scholar
Baumann, G., Henninges, J., and Lucia, M. D. (2014). Monitoring of saturation changes and salt precipitation during CO2 injection using pulsed neutron-gamma logging at the Ketzin pilot site. International Journal of Greenhouse Gas Control, 28: 134146.CrossRefGoogle Scholar
Bergmann, P., and Chadwick, A. (2015). Volumetric bounds on subsurface fluid substitution using 4D seismic time shifts with an application at Sleipner, North Sea. Geophysics, 80: B153B165.CrossRefGoogle Scholar
Bergmann, P., Schmidt-Hattenberger, C., Kiessling, D., et al. (2012). Surface-downhole electrical resistivity tomography applied to monitoring of CO2 storage at Ketzin, Germany. Geophysics, 77: B253B267.CrossRefGoogle Scholar
Bergmann, P., Ivandic, M., Norden, B., et al. (2014a). Combination of seismic reflection and constrained resistivity inversion with an application to 4D imaging of the CO2 storage site, Ketzin, Germany. Geophysics, 79(2): B37B50.CrossRefGoogle Scholar
Bergmann, P., Kashubin, A., Ivandic, M., Lüth, S., and Juhlin, C. (2014b). Time-lapse difference static correction using prestack crosscorrelations: 4D seismic image enhancement case from Ketzin. Geophysics, 79: B243B252.CrossRefGoogle Scholar
Bergmann, P., Diersch, M., Götz, J., et al. (2016). Review on geophysical monitoring of CO2 injection at Ketzin, Germany. Journal of Petroleum Science and Engineering, 139: 112136.CrossRefGoogle Scholar
Bergmann, P., Schmidt-Hattenberger, C., Labitzke, T., et al. (2017). Fluid injection monitoring using electrical resistivity tomography: Five years of CO2 injection at Ketzin, Germany. Geophysical Prospecting, 65(3): 859875.CrossRefGoogle Scholar
Berryman, J., and Milton, G. (1991). Exact results for generalized Gassmann’s equations in composite porous media with two constituents. Geophysics, 56: 1950–1960.CrossRefGoogle Scholar
Chadwick, R. A., and Noy, D. J. (2015). Underground CO2 storage: demonstrating regulatory conformance by convergence of history‐matched modeled and observed CO2 plume behavior using Sleipner time‐lapse seismics. Greenhouse Gas Science and Technology, 5: 305322. DOI:10.1002/ghg.1488.CrossRefGoogle Scholar
Chadwick, R. A., Arts, R., and Eiken, O. (2005). 4D seismic quantification of a growing CO2 plume at Sleipner, North Sea. Geological Society, London, Petroleum Geology Conference series, 6, 1385-1399. https://doi.org/10.1144/0061385CrossRefGoogle Scholar
Dvorkin, J., and Nur, A. (1998). Acoustic signatures of patchy saturation. International Journal of Solids and Structures, 35(34): 48034810.CrossRefGoogle Scholar
Eid, R., Ziolkowski, A., Naylor, M., and Pickup, G. (2015). Seismic monitoring of CO2 plume growth, evolution and migration in a heterogeneous reservoir: Role, impact and importance of patchy saturation. International Journal of Greenhouse Gas Control, 43: 7081.CrossRefGoogle Scholar
Ellis, R., and Oldenburg, D. (1994). Applied geophysical inversion. Geophysical Journal International, 116: 511.CrossRefGoogle Scholar
Förster, A., Norden, B., Zinck-Jørgensen, K., et al. (2006). Baseline characterization of the CO2 SINK geological storage site at Ketzin, Germany. Environmental Geosciences, 13: 145161.CrossRefGoogle Scholar
Förster, A., Schöner, R., Förster, H., et al. (2010). Reservoir characterization of a CO2 storage aquifer: The upper triassic Stuttgart Formation in the Northeast German Basin. Marine and Petroleum Geology, 27(10): 21562172.CrossRefGoogle Scholar
Gassmann, F. (1951). Über die Elastizitgät poröser Medien. Vierteljahresschrift der Naturforschenden Gesellschaft Zürich, 96: 124.Google Scholar
Günther, T., Rücker, C., and Spitzer, K. (2006). Three-dimensional modelling and inversion of DC resistivity data incorporating topography II: Inversion. Geophysical Journal International, 166: 506517.CrossRefGoogle Scholar
Hill, R. (1963). Elastic properties of reinforced solids: Some theoretical principles. Journal of the Mechanics and Physics of Solids, 11: 357372.CrossRefGoogle Scholar
Huang, F., Juhlin, C., Kempka, T., Norden, B., and Zhang, F. (2015). Modeling 3D time-lapse seismic response induced by CO2 by integrating borehole and 3D seismic data: A case study at the Ketzin pilot site, Germany. International Journal of Greenhouse Gas Control, 36: 6677.CrossRefGoogle Scholar
Huang, F., Bergmann, P., Juhlin, C., et al. (2017). The first post-injection seismic monitor Survey at the Ketzin pilot CO2 storage site: Results from time-lapse analysis. Geophysical Prospecting, 66(1): 6284.CrossRefGoogle Scholar
Ivandic, M., Yang, C., Lüth, S., Cosma, C., and Juhlin, C. (2012). Time-lapse analysis of sparse 3D seismic data from the CO2 storage pilot site at Ketzin, Germany. Journal of Applied Geophysics, 84: 1428.CrossRefGoogle Scholar
Ivandic, M., Juhlin, C., Lüth, S., et al. (2015). Geophysical monitoring at the Ketzin pilot site for CO2 storage: New insights into the plume evolution. International Journal of Greenhouse Gas Control, 32: 90105.CrossRefGoogle Scholar
Ivanova, A., Kashubin, A., Juhojuntti, N., et al. (2012). Monitoring and volumetric estimation of injected CO2 using 4D seismic, petrophysical data, core measurements and well logging: a case study at Ketzin, Germany. Geophysical Prospecting, 60(5): 957973, http://dx.doi.org/10.1111/j.1365–2478.2012.01045.xCrossRefGoogle Scholar
Juhlin, C., Giese, R., Zinck-Jørgensen, K., et al. (2007). 3D baseline seismics at Ketzin, Germany: The CO2 SINK project. Geophysics, 72: B121B132.CrossRefGoogle Scholar
Kashubin, A., Juhlin, C., Malehmir, A., Lüth, S., Ivanova, A., and Juhojuntti, N. (2011). A footprint of rainfall on land seismic data repeatability at the CO2 storage pilot site, Ketzin, Germany. In 81st Annual International Meeting, Expanded Abstracts, Society of Exploration Geophysicists.Google Scholar
Kazemeini, S. H., Juhlin, C., and Fomel, S. (2010). Monitoring CO2 response on surface seismic data: A rock physics and seismic modeling feasibility study at the CO2 sequestration site, Ketzin, Germany. Journal of Applied Geophysics, 71(4): 109124.CrossRefGoogle Scholar
Kiessling, D., Schmidt-Hattenberger, C., Schütt, H., et al. and the CO2SINK Group. (2010). Geoelectrical methods for monitoring geological CO2 storage: First results from cross-hole and surface-downhole measurements from the CO2SINK test site at Ketzin (Germany). International Journal of Greenhouse Gas Control, 4: 816826. DOI:10.1016/j.ijggc.2012.05.001.CrossRefGoogle Scholar
Kossow, D., Krawczyk, C., McCann, T., Strecker, M., and Negendank, J. F. W. (2000). Style and evolution of salt pillows and related structures in the northern part of the Northeast German Basin. International Journal of Earth Science, 89: 652664.CrossRefGoogle Scholar
Kummerow, J., and Spangenberg, E. (2011). Experimental evaluation of the impact of the interactions of CO2–SO2, brine, and reservoir rock on petrophysical properties: A case study from the Ketzin test site, Germany. Geochemistry Geophysics Geosystems, 12: Q05Q010.CrossRefGoogle Scholar
Labitzke, T., Bergmann, P., Kiessling, D., and Schmidt-Hattenberger, C. (2012). 3D Surface-downhole electrical resistivity tomography data sets of the Ketzin CO2 storage pilot from the CO2 SINK project phase. GFZ Scientific Technical Report, 10(5) (available online).Google Scholar
Lange, W. (1966). Geologisch-lagerstättenphysikalische und förder-technische Fragen bei der Erkundung des Untergrundspeichers Ketzin. Zeitschrift für Angewandte Geologie, 12(1): 2734.Google Scholar
Martens, S., Liebscher, A., Möller, F., Würdemann, H., Schilling, F., and Kühn, M. (2011). Progress report on the first European on-shore CO2 storage site at Ketzin (Germany): Second year of injection. Energy Procedia, 4: 32463253.CrossRefGoogle Scholar
Martens, S., Möller, F., Streibel, M., Liebscher, A., and the Ketzin Group. (2014). Completion of five years of safe CO2 injection and transition to the post-closure phase at the Ketzin pilot site. Energy Procedia, 59: 190197. DOI:10.1016/j.egypro.2014.10.366.CrossRefGoogle Scholar
Martens, S., Kempka, T., Liebscher, A., et al. (2015). Field experiment on CO2 back-production at the Ketzin pilot site. Energy Procedia, 76: 519527. DOI:10.1016/j.egypro.2015.07.902.CrossRefGoogle Scholar
Mavko, G., Mukerji, T., and Dvorkin, J. (2003). The rock physics handbook: Tools for seismic analysis of porous media. Cambridge: Cambridge University Press.Google Scholar
Möller, F., Liebscher, A., Martens, S., Schmidt-Hattenberger, C., and Streibel, M. (2014). Injection of CO2 at ambient temperature conditions: Pressure and temperature results of the “cold injection” experiment at the Ketzin pilot site. Energy Procedia, 63: 62896297.CrossRefGoogle Scholar
Möller, F., Liebscher, A., and Schmidt-Hattenberger, C. (2016). Report on the dataset of the Brine Injection at the CO2 Storage Pilot Site Ketzin, Germany: Scientific Technical Report STR; 16/05, Potsdam: GFZ German Research Centre for Geosciences. DOI:10.2312/GFZ.b103-16059.CrossRefGoogle Scholar
Nakagawa, S., Kneafsey, T. J., Daley, T. M., Freifeld, B. M., and Rees, E. V. (2013). Laboratory seismic monitoring of supercritical CO2 flooding in sandstone cores using the Split Hopkinson Resonant Bar technique with concurrent x‐ray computed tomography imaging. Geophysical Prospecting, 61(2): 254269.CrossRefGoogle Scholar
Natatsuka, Y., Xue, Z., Garcia, H., and Matsuoka, T. (2010). Experimental study on CO2 monitoring and quantification of stored CO2 in saline formations using resistivity measurements. International Journal of Greenhouse Gas Control, 4(2): 209216.CrossRefGoogle Scholar
Norden, B., and Frykman, P. (2013). Geological modelling of the Triassic Stuttgart Formation at the Ketzin CO2 storage site, Germany. International Journal of Greenhouse Gas Control, 19. DOI:10.1016/j.ijggc.2013.04.019.CrossRefGoogle Scholar
Prevedel, B., Wohlgemuth, L., Henninges, J., Krüger, K., Norden, B., and Förster, A. (2008). The CO2SINK boreholes for geological storage testing. Scientific Drilling, 6: 3237.CrossRefGoogle Scholar
Rücker, C., Günther, T., and Spitzer, K. (2006). Three-dimensional modelling and inversion of DC resistivity data incorporating topography I: Modelling. Geophysical Journal International, 166(2): 495505.CrossRefGoogle Scholar
Schmidt-Hattenberger, C., Bergmann, P., Kießling, D., Krüger, K., Rücker, C., and Schütt, H. (2011). Application of a vertical electrical resistivity array (VERA) for monitoring CO2 migration at the Ketzin site: First performance evaluation. Energy Procedia, 4: 33633370.CrossRefGoogle Scholar
Schmidt-Hattenberger, C., Bergmann, P., Labitzke, T., et al. (2012). A modular geoelectrical monitoring system as part of the surveillance concept in CO2 storage projects. Energy Procedia, 23: 400407.CrossRefGoogle Scholar
Schmidt-Hattenberger, C., Bergmann, P., Labitzke, T., and Wagner, F. (2014). CO2 migration monitoring by means of electrical resistivity tomography (ERT): Review on five years of operation of a permanent ERT system at the Ketzin pilot site. Energy Procedia, 63: 43664373.CrossRefGoogle Scholar
Schmidt-Hattenberger, C., Bergmann, P., Labitzke, T., Wagner, F., and Rippe, D. (2016). Permanent crosshole electrical resistivity tomography (ERT) as an established method for the long-term CO2 monitoring at the Ketzin pilot site. International Journal of Greenhouse Gas Control, 52: 432448.CrossRefGoogle Scholar
Shi, J., Xue, Z., and Durucan, S. (2011). Supercritical CO2 core flooding and imbibition in Tako sandstone: Influence of sub-core scale heterogeneity. International Journal of Greenhouse Gas Control, 5(1): 7587.CrossRefGoogle Scholar
Sopher, D., Juhlin, C., Huang, F., Ivandic, M., and Lüth, S. (2014). Quantitative assessment of seismic source performance: Feasibility of small and affordable seismic sources for long term monitoring at the Ketzin CO2 storage site, Germany. Journal of Applied Geophysics, 107: 171–186.CrossRefGoogle Scholar
Stackebrandt, W., and Lippstreu, L. (2002). Zur geologischen Entwicklung Brandenburgs. In Stackebrandt, W. and Manhenke, V. (eds.), Atlas zur Geologie von Brandenburg im Maßstab 1:1,000 000. Kleinmachnow, Germany: Landesamt für Geowissenschaften und Rohstoffe Brandenburg, 1318.Google Scholar
Torp, T., and Gale, J. (2004). Demonstrating storage of CO2 in geological reservoirs: The Sleipner and SACS projects. Energy, 29(9–10): 13611369.CrossRefGoogle Scholar
Whitman, W., and Towle, G. (1992). The influence of elastic and density properties on the behavior of the Gassmann relation. Log Analyst, 33(6): 500506.Google Scholar
Wipki, M., Ivanova, A., Liebscher, A., et al. (2016). Monitoring Concept for CO2 storage at the Ketzin pilot site, Germany: Post-injection continuation towards transfer of liability. Energy Procedia, 97: 348355.CrossRefGoogle Scholar
Yang, C., Juhlin, C., Enescu, N., Cosma, C., and Lüth, S. (2010). Moving source pro-file data processing, modelling and comparison with 3D surface seismic data at the CO2SINK project site, Ketzin, Germany. Near Surface Geophysics, 8: 601610.CrossRefGoogle Scholar
Zhang, F., Juhlin, C., Cosma, C., Tryggvason, A., and Pratt, R. G. (2012). Cross-well seismic waveform tomography for monitoring CO2 injection: A case study from the Ketzin Site, Germany. Geophysical Journal International, 189: 629646, http://dx.doi.org/10.1111/j.1365-246X.2012.05375.xCrossRefGoogle Scholar
Zimmer, M., Erzinger, J., and, Kujawa, C. (2011). The gas membrane sensor (GMS): A new method for gas measurements in deep boreholes applied at the CO2 SINK site. International Journal of Greenhouse Gas Control, 5(4): 9951001.CrossRefGoogle Scholar

References

Bacci, G., Korre, A., and Durucan, S. (2011). An experimental and numerical investigation into the impact of dissolution/precipitation mechanisms on CO2 injectivityin the wellbore and far field regions. International Journal of Greenhouse Gas Control, 5: 579588.CrossRefGoogle Scholar
Bachu, S., Bonijoly, D., Bradshaw, J., et al. (2007). CO2 storage capacity estimation: Methodology and gaps. International Journal of Greenhouse Gas Control, 1: 430443.CrossRefGoogle Scholar
Batzle, M., and Wang, Z. (1992). Seismic properties of pore fluids. Geophyics, 57: 13961408.Google Scholar
Bennion, D. B., and Bachu, S. (2008). Drainage and imbibition relative permeability relationships for supercriticalCO2/brine and H2S/brine systems in intergranular sandstone, carbonate, shale, and anhydrite rocks. SPE Reservoir Evaluation & Engineering, 11: 487496.CrossRefGoogle Scholar
Benson, S. M., Cook, P., Anderson, J., et al. (2005). Underground geological storage. IPCC Special Report on Carbon Dioxide Capture and Storage, Chapter 5: Intergovernmental Panel on Climate Change.Google Scholar
Bourdarot, G. (1998). Well resting: Interpretation methods. Paris: Technip Publications.Google Scholar
Brie, A., Pampuri, F., Marsala, A. F., and Meazza, O. (1995). Shear sonic interpretation in gas-bearing sands. SPE, 30595: 701710.Google Scholar
Bryant, S. L., Lakshminarasimhan, S., and Pope, G. A. (2008). Buoyancy-dominated multiphase flow and its effect on geological sequestration of CO2. SPE Journal, 13: 447454.CrossRefGoogle Scholar
Caspari, E., Müller, T. M., and Gurevich, B. (2011). Time-lapse sonic logsreveal patchy CO2 saturationin-situ. Geophysical Research Letters, 38: L13301.Google Scholar
Class, H., Ebigbo, A., Helmig, R., et al. (2009). A benchmark study on problems related to CO2 storage in geologic formations. Computational Geosciences, 13: 409434.CrossRefGoogle Scholar
Cooper, C. (2009). A technical basis for carbon dioxide storage. Energy Procedia, 1: 17271733.CrossRefGoogle Scholar
Duffaut, K., and Landrø, M. (2007). Vp/Vs ratio versus differential stress and rock consolidation: A comparison between rock models and time-lapse AVOdata. Geophysics, 72: C81C94.CrossRefGoogle Scholar
Eiken, O., Ringrose, P., Hermanrud, C., Nazarian, B., Torp, T. A., and Høier, L. (2011). Lessons learned from 14 years of CCS operations: Sleipner, In Salahand Snøhvit. Energy Procedia, 4: 55415548.CrossRefGoogle Scholar
Gassmann, F. (1951). Uber die Elastizitat poroser Medien. Vierteljahrsschrift der Naturforschenden Gesselschaft, 96: 123.Google Scholar
Grude, S., Clark, A., Vanorio, T., and Landrø, M. (2013a). Changes in the rock properties and injectivity due to salt precipitation on the Snøhvit CO2 injection site. Trondheim CCS Conference, June 4–6, Trondheim.Google Scholar
Grude, S., Dvorkin, J., Clark, A., Vanorio, T., and Landrø, M. (2013b). Pressure effects caused by CO2 injection in the Snøhvit Field. First Break, 31: 3.CrossRefGoogle Scholar
Grude, S., Landrø, M., and Osdal, B. (2013c). Time-lapse pressure–saturation discrimination for CO2 storage at the Snøhvit field. International Journal of Greenhouse Gas Control, 19: 369378.CrossRefGoogle Scholar
Hansen, O., Eiken, O., Østmo, S., Johansen, R. I., and Smith, A. (2011). Monitoring CO2 injection into a fluvial brine‐filled sandstone formation at the Snøhvit field, Barents Sea. In 81th Annual International Meeting. Expanded Abstracts, Society of Exploration Geophysicists, 40924096.Google Scholar
Hansen, O., Gilding, D., Nazarian, B., et al. (2013). Snøhvit: The history of injecting and storing 1 Mt CO2 in the fluvial Tubåen Fm. Energy Procedia, 37: 35653573.CrossRefGoogle Scholar
Hurst, W., Clark, J. D., and Brauer, B. (1969). The skin effect in producing wells. Journal of Petroleum Technology, 21: 7.CrossRefGoogle Scholar
IPCC. (2005). Special report on CO2 capture and storage. Cambridge: Cambridge University Press.Google Scholar
Johnson, K., and Lopez, S. (2003). The nuts and bolts of falloff testing. Washington, DC: United States Environmental Protection Agency.Google Scholar
Kestin, J., Khalifa, H. E., Abe, Y., Grimes, C. E., Sookiazian, H., and Wakeham, W. A. (1978). Effect of pressure on the viscosity of aqueous sodium chloride solutions in the temperature range 20–150 degree C. Journal of Chemical & Engineering Data, 23: 328336.CrossRefGoogle Scholar
Konishi, C., Azuma, H., Nobuoska, D., Xue, Z., and Watanabe, J. (2008). Estimation of CO2 saturation considering patchy saturation at Nagaoka. In 70th Conference & Exhibition, EAGE, Extended Abstract, I018.CrossRefGoogle Scholar
Landrø, M. (2001). Discrimination between pressure and fluid saturation changes from time-lapse seismicdata. Geophysics, 66: 836844.CrossRefGoogle Scholar
Landrø, M. (2002). Uncertainties in quantitative time-lapse seismicanalysis. Geophysical Prospecting, 50: 112.CrossRefGoogle Scholar
Lin, T. L., and Phair, R. (1993). AVO tuning. In 63th Annual International Meeting, Society of Exploration Geophysicists, Expanded Abstracts, 727730.CrossRefGoogle Scholar
Lindeberg, E., and Wessel-Berg, D. (1997). Vertical convection in an aquifercolumn under a gas cap of CO2. Energy Conversion and Management, 38 (Supplement), S229S234.CrossRefGoogle Scholar
Mavko, G., Mukerji, T., and Dvorkin, J. (2009). The rock physics handbook: Tools for seismic analysis of porous media. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Meadows, M. A. (2001). Enhancements to Landro’s method for separating time‐lapse pressure and saturation changes. In 71th Annual International Meeting, Society of Exploration Geophysicists, Expanded Abstracts, 16521655.CrossRefGoogle Scholar
Mindlin, R. D. (1949). Compliance of elastic bodies in contact. ASME Journal of Applied Mechanics, 16: 259268.CrossRefGoogle Scholar
Nordbotten, J. M., and Celia, M. A. (2006). Similarity solutions for fluid injection into confined aquifers. Journal of Fluid Mechanics, 561: 20.CrossRefGoogle Scholar
Nordbotten, J., Celia, M., and Bachu, S. (2005). Injection and storage of CO2 in deep saline aquifers: Analytical solution for CO2 plume evolution during injection. Transport in Porous Media, 58: 339360.CrossRefGoogle Scholar
Okwen, R. T., Stewart, M. T., and Cunningham, J. A. (2010). Analytical solution for estimating storage efficiency of geologic sequestration of CO2. International Journal of Greenhouse Gas Control, 4: 102107.CrossRefGoogle Scholar
Pruess, K., and Müller, N. (2009). Formation dry-out from CO2 injection into saline aquifers. 1.Effects of solids precipitation and their mitigation. Water Resources Research, 45: W03402.Google Scholar
Saul, M. J., and Lumley, D. E. (2013). A new velocity–pressure–compaction model for uncemented sediments. Geophysical Journal International. DOI:10.1093.Google Scholar
Scalabrin, G., Marchi, P., Finezzo, F., and Span, R. (2006). A reference multiparameter thermal conductivity equation for carbon dioxide with an optimized functional form. Journal of Physical and Chemical Reference Data, 35: 15491575.CrossRefGoogle Scholar
Sen, A., and Dvorkin, J. (2011). Fluid substitution in gas/water systems: Revisiting patchy saturation. In 81th Annual International Meeting, Society of Exploration Geophysicists, Expanded Abstracts, 21612165.CrossRefGoogle Scholar
Sengupta, M. (2000). Integrating rock physics and flow simulation to reduce uncertainties in seismic reservoir monitoring. PhD thesis, Stanford University.Google Scholar
Shahraeeni, M. S. (2012). Effect of lithological uncertainty on the timelapse pressure-saturation inversion. In 74th Conference & Exhibition Incorporating SPE EUROPEC EAGE, Extended Abstract, Y045.Google Scholar
Smith, G., and Gidlow, P. M. (1987). Weighted stacking for rock property estimation and detection of gas. Geophysical Prospecting, 35: 9931014.CrossRefGoogle Scholar
Span, R., and Wagner, W. (1996). A new equation of state for carbon dioxide covering the fluid region from the triple‐point temperature to 1100 K at pressures up to 800 MPa. Journal of Physical and Chemical Reference Data, 25: 15091596.CrossRefGoogle Scholar
Trani, M., Arts, R., Leeuwenburgh, O., and Brouwer, J. (2011). Estimation of changes in saturation and pressure from 4D seismic AVO and time-shift analysis. Geophysics, 76: C1C17.CrossRefGoogle Scholar

References

Baig, A. M., Urbancic, T., and Viegas, G. (2012). Do hydraulic fractures induce events large enough to be felt on surface? CSEG Recorder, 10(October 2012): 4046.Google Scholar
Batzle, M., and Wang, Z. (1992). Seismic properties of pore fluids. Geophysics, 57: 13961408.CrossRefGoogle Scholar
Bauer, R. A., Carney, M., and Finley, R. J. (2016). Overview of microseismic response to CO2 injection into the Mt. Simon saline reservoir at the Illinois Basin-Decatur Project. International Journal of Greenhouse Gas Control, 54(1): 378388.CrossRefGoogle Scholar
Couëslan, M. L., Leetaru, H. E., Brice, T., Leaney, W. S., and McBride, J. H. (2009). Designing a seismic program for an industrial CCS site: Trials and tribulations. Energy Procedia, 1(1): 21932200.CrossRefGoogle Scholar
Couëslan, M. L., Ali, S., Campbell, A., et al. (2013). Monitoring CO2 injection for carbon capture and storage using time-lapse 3D VSPs. Leading Edge, 32(10): 12681276.CrossRefGoogle Scholar
Couëslan, M. L., Butsch, R., Will, R., and Locke, R. A. II (2014). Integrated reservoir monitoring at the Illinois Basin-Decatur Project. Energy Procedia, 63: 28362847.CrossRefGoogle Scholar
Freiburg, J. T., Morse, D. G., Leetaru, H. E., Hoss, R. P., and Yan, Q. (2014). A depositional and diagenetic characterization of the Mt. Simon Sandstone at the Illinois Basin-Decatur Project carbon capture and storage site, Decatur, Illinois, USA, Illinois State Geological Survey Circular 583.Google Scholar
Greenberg, S. G., Bauer, R., Will, R., et al. (2017). Geologic carbon storage at a one million tonne demonstration project: Lessons learned from the Illinois Basin–Decatur Project. Energy Procedia, 114: 55295539.CrossRefGoogle Scholar
Gutenberg, B., and Richter, C. F. (1956). Magnitude and energy of earthquakes. Annals of Geophysics, 9(1): 115.Google Scholar
Haimson, B. Z., and Doe, T. W. (1983). State of stress, permeability, and fractures in the Precambrian granite of Northern Illinois. Journal of Geophysical Research, 88(B9): 73557371.CrossRefGoogle Scholar
Leetaru, H. E., and Freiburg, J. T. (2014). Litho‐facies and reservoir characterization of the Mt Simon Sandstone at the Illinois Basin–Decatur Project. Greenhouse Gases: Science and Technology, 4(5): 580595.CrossRefGoogle Scholar
Leetaru, H. E., and McBride, J. H. (2009). Reservoir uncertainty, Precambrian topography, and carbon sequestration in the Mt. Simon Sandstone, Illinois Basin. Environmental Geosciences, 16(4): 235243.CrossRefGoogle Scholar
Palkovic, M. (2015). Depositional characterization of the Eau Claire Formation at the Illinois Basin–Decatur Project: Facies, mineralogy and geochemistry. M.S. thesis, University of Illinois at Urbana-Champaign.Google Scholar
Pearson, C. (1981). The relationship between microseismicity and high pore pressures during hydraulic stimulation experiments in low permeability granitic rocks. Journal of Geophysical Research, 86: 78557864.CrossRefGoogle Scholar
Rutledge, J. T., and Phillips, W. S. (2003). Hydraulic stimulation of natural fractures as revealed by induced mircroearthquakes, Carthage Cotton Valley gas field, east Texas. Geophysics, 86(2): 441452.CrossRefGoogle Scholar
Senel, O., Will, R. and Butsch, R. J. (2014). Integrated reservoir modeling at the Illinois Basin–Decatur Project. Greenhouse Gases: Science and Technology, 4(5): 662684.CrossRefGoogle Scholar
Shapiro, S. A., Dinske, C., and Rothert, E. (2006). Hydraulic-fracturing controlled dynamics of microseismic clouds. Geophysical Research Letters, 33: L14312.CrossRefGoogle Scholar
Smith, V., and Jaques, P. (2016). Illinois Basin–Decatur Project pre-injection microseismic analysis. International Journal of Greenhouse Gas Control, 54(1): 362377.CrossRefGoogle Scholar
Will, R., El-Kaseeh, G., Jaques, P., Carney, M., Greenberg, S., and Finley, R. (2016a). Microseismic data acquisition, processing, and event characterization at the Illinois Basin–Decatur Project. International Journal of Greenhouse Gas Control, 54(1): 404420.CrossRefGoogle Scholar
Will, R., Smith, V., Lee, D., and Senel, O. (2016b). Data integration, reservoir response, and application. International Journal of Greenhouse Gas Control, 54(1): 389403.CrossRefGoogle Scholar
Will, R., El-Kaseeh, G., Leetaru, H., Greenberg, S., Zaluski, W., and Lee, S.-Y. (2017). Quantitative integration of time lapse seismic data for reservoir simulator calibration: Illinois Basin–Decatur Project. Carbon Capture, Utilization & Storage Conference, Chicago, IL, April 10–13.Google Scholar
Yang, Y., Zoback, M., Simon, M., and Dohmen, T. (2013). An integrated geomechanical and microseismic study of multi-well hydraulic fracture stimulation in the Bakken Formation. SPE paper 168778 presented at the Unconventional Resources Technology Conference, Denver, CO, August 12–14.CrossRefGoogle Scholar
Zoback, M. D., and Gorelick, S. M. (2012). Earthquake triggering and large-scale geologic storage of carbon dioxide. Proceedings of the National Academy of Sciences of the USA, 109(26): 10,16410,168.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×