Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-vsgnj Total loading time: 0 Render date: 2024-07-19T08:13:50.930Z Has data issue: false hasContentIssue false

1 - Problem Classification and Examples

Published online by Cambridge University Press:  07 September 2010

Erik D. Demaine
Affiliation:
Massachusetts Institute of Technology
Joseph O'Rourke
Affiliation:
Smith College, Massachusetts
Get access

Summary

Our focus in this first part is on one-dimensional (1D) linkages, and mostly on especially simple linkages we call “chains.” Linkages are useful models for robot arms and for folding proteins; these and other applications will be detailed in Section 1.2. After defining linkages and setting some terminology, we quickly review the contents of this first part.

Linkage definitions. A linkage is a collection of fixed-length 1D segments joined at their endpoints to form a graph. A segment endpoint is also called a vertex. The segments are often called links or bars, and the shared endpoints are called joints or vertices. The bars correspond to graph edges and the joints to graph nodes. Some joints may be pinned to be fixed to specific locations. Although telescoping links and sliding joints are of considerable interest in mechanics, we only explore fixed-length links and joints fixed at endpoints. (We'll use the term mechanism to loosely indicate any collection of rigid bodies connected by joints, hinges, sliders, etc.) An example of a linkage is shown in Figure 1.1.

Overview. After classifying problems in this chapter, we turn to presenting some of the basic upper and lower complexity bounds obtained in the past 20 years in Chapter 2.We then explore in Chapter 3 classical mechanisms, particularly the pursuit of straight-line linkage motion. In contrast to these linkages, whose whole purpose is motion, we next study in Chapter 4 when a linkage is rigid, that is, can move at all. Most of the remainder of Part I concentrates on chains, starting with reconfiguring chains under various constraints in Chapter 5.

Type
Chapter
Information
Geometric Folding Algorithms
Linkages, Origami, Polyhedra
, pp. 9 - 16
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×