Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-swr86 Total loading time: 0 Render date: 2024-07-19T08:13:04.925Z Has data issue: false hasContentIssue false

8 - Joint-Constrained Motion

Published online by Cambridge University Press:  07 September 2010

Erik D. Demaine
Affiliation:
Massachusetts Institute of Technology
Joseph O'Rourke
Affiliation:
Smith College, Massachusetts
Get access

Summary

We now turn to chains—and more generally linkages—that restrict joint motions in someway. Many physical linkages have some type of joint-angle constraint, for example, robot arms (Figure 1.2, p. 12). Among the variety of possible constraints, we concentrate in this section on just two: keeping all angles between incident links fixed, and keeping all angles convex. Both have applications, and both have led to a rich collection of results.

FIXED-ANGLE LINKAGES

Introduction and motivation. This section is concerned with fixed-angle linkages: linkages with a fixed angle assigned between each pair of incident edges. (We'll use the term linkage to include both general and fixed-angle linkages.) Fixed-angle chains are of particular interest, because, as mentioned in Section 1.2.4 (p. 14), they may serve as models for protein backbones: each vertex models an atom, and each link an atom-to atom bond. The backbone of the protein (ignoring the “side chains”) is an open chain. The bond angles are nearly fixed, leaving one degree of spinning motion. As this is the primary motivation for fixed-angle chains, we will disallow self-crossings to match the physical constraints. The folding behavior of fixed-angle chains is of intense current interest, constituting the unsolved “protein folding problem.” We will more directly address protein folding via fixed-angle chains in Section 9.1.

Fixed-angle trees arise in the same protein models, either when the side chains cannot be ignored, or for so-called “star” or “dentritic” polymers (Frank-Kamenetskii 1997; Soteros and Whittington 1988).

Type
Chapter
Information
Geometric Folding Algorithms
Linkages, Origami, Polyhedra
, pp. 131 - 147
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×