Skip to main content Accessibility help
×
Home
  • Print publication year: 2013
  • Online publication date: May 2013

2 - Differential geometry of holomorphic vector bundles on a curve

Related content

Powered by UNSILO
References
[AB83] M. F., Atiyah and R., Bott. The Yang–Mills equations over Riemann surfaces. Phil. Trans. R. Soc. Lond.A 308 (1505): 523–615, 1983.
[Ati57] M. F., Atiyah. Vector bundles over an elliptic curve. Proc. Lond. Math. Soc. 7 (3): 414–452, 1957.
[BT82] Raoul, Bott and Loring W., Tu. Differential forms in algebraic topology, Graduate Texts in Mathematics 82. New York: Springer-Verlag, 1982.
[DK90] S. K., Donaldson and P. B., Kronheimer. The geometry of four-manifolds. Oxford Mathematical Monographs. Oxford: Clarendon Press; New York: Oxford University Press, 1990. Oxford Science Publications.
[Don83] S. K., Donaldson. A new proof of a theorem of Narasimhan and Seshadri. J. Diff. Geom. 18 (2): 269–277, 1983.
[For91] Otto, Forster. Lectures on Riemann surfaces, Graduate Texts in Mathematics 81. New York: Springer-Verlag, 1991. Translated from the 1977 German original by Bruce, Gilligan. Reprint of the 1981 English translation.
[Gó1] Tomás L., Gómez. Algebraic stacks. Proc. Indian Acad. Sci., Math. Sci., 111 (1): 1–31, 2001.
[Gro57] A., Grothendieck. Sur la classification des fibres holomorphes sur la sphère de Riemann. Am. J. Math. 79 : 121–138, 1957.
[Gun66] R. C., Gunning. Lectures on Riemann surfaces. Princeton, NJ: Princeton University Press, 1966.
[Hat02] Allen, Hatcher. Algebraic topology. Cambridge: Cambridge University Press, 2002.
[Hus93] Dale H., Husemoller. Fibre bundles, 3rd edn. Berlin: Springer-Verlag, 1993.
[KN96] Shoshichi, Kobayashi and Katsumi, Nomizu. Foundations of differential geometry, Vol. I. Wiley Classics Library. New York: John Wiley & Sons Inc., 1996. Reprint of the 1963 original.
[Kob87] Shoshichi, Kobayashi. Differential geometry of complex vector bundles. Princeton, NJ: Princeton University Press; Tokyo: Iwanami Shoten Publishers, 1987.
[LPV85] J., Le Potier and J. L., Verdier. Variété de modules de fibres stables sur une surface de Riemann: résultats d'Atiyah et Bott. In Moduli of stable bundles over algebraic curves (Paris, 1983), Progress in Mathematics 5. Boston, MA: Birkhäuser Boston, 1985, pp. 5–28.
[MFK93] D., Mumford, J., Fogarty, and F., Kirwan. Geometric invariant theory, 3rd enl. ed.Berlin: Springer-Verlag, 1993.
[MS98] Dusa, McDuff and Dietmar, Salamon. Introduction to symplectic topology, 2nd edn. Oxford Mathematical Monographs. Oxford: Clarendon Press; New York: Oxford University Press, 1998.
[Muk03] Shigeru, Mukai. An introduction to invariants and moduli, tran., W. M., Oxbury. Cambridge: Cambridge University Press, 2003.
[Mum63] David, Mumford. Projective invariants of projective structures and applications. In Proceedings of the International Congress of Mathematicians (Stockholm, 1962), Djursholm: Institut Mittag-Leffler, 1963, pp. 526–530.
[New09] P. E., Newstead. Geometric invariant theory. In Moduli spaces and vector bundles, London Mathematical Society Lecture Note Series 359. Cambridge: Cambridge University Press, 2009, pp. 99–127.
[NS65] M. S., Narasimhan and C. S., Seshadri. Stable and unitary vector bundles on a compact Riemann surface. Ann. Math. (2)82 : 540–567, 1965.
[Ses67] C. S., Seshadri. Space of unitary vector bundles on a compact Riemann surface. Ann. Math. (2)85 : 303–336, 1967.
[Ses82] C. S., Seshadri. Fibres vectoriels sur les courbes algébriques, volume 96 of Astérisque. Paris: Société Mathématique de France, 1982. Notes written by J.-M., Drezet from a course at the École Normale Supérieure, June 1980.
[Ste51] Norman, Steenrod. The topology of fibre bundles. Princeton, NJ: Princeton University Press, 1951.
[Tha97] Michael, Thaddeus. An introduction to the topology of the moduli space of stable bundles on a Riemann surface. Andersen, Jørgen Ellegaardet al. (eds), Geometry and physics: Proceedings of the conference at Aarhus University, Aarhus, Denmark, 1995. Lecture Notes in Pure and Applied Mathematics 184. New York: Marcel Dekker, 1997, pp. 71–99.
[Tho06] R. P., Thomas. Notes on GIT and symplectic reduction for bundles and varieties. In Surveys in differential geometry, Vol. 10, Somerville, MA: International Press, 2006, pp. 221–273.
[Wel08] Raymond O., Wells Jr.Differential analysis on complex manifolds. With a new appendix by Oscar Garcia-Prada, 3rd edn. New York: Springer, 2008.