Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-r6qrq Total loading time: 0 Render date: 2024-04-28T12:01:50.672Z Has data issue: false hasContentIssue false

4 - Introduction to Feynman integrals

Published online by Cambridge University Press:  05 May 2013

Stefan Weinzierl
Affiliation:
Universität Mainz
Alexander Cardona
Affiliation:
Universidad de los Andes, Colombia
Iván Contreras
Affiliation:
Universität Zürich
Andrés F. Reyes-Lega
Affiliation:
Universidad de los Andes, Colombia
Get access

Summary

Abstract

In these lecture notes I will give an introduction to Feynman integrals. In the first part I review the basics of the perturbative expansion in quantum field theories. In the second part I will discuss more advanced topics: mathematical aspects of loop integrals related to periods, shuffle algebras and multiple polylogarithms are covered as well as practical algorithms for evaluating Feynman integrals.

Introduction

In these lecture notes Iwill give an introduction to perturbation theory and Feynman integrals occurring in quantum field theory. But before embarking onto a journey of integration and special function theory, it is worth recalling the motivation for such an effort.

High-energy physics is successfully described by the Standard Model. The term “Standard Model” has become a synonym for a quantum field theory based on the gauge group SU(3) ⊗ SU(2) ⊗ U(1). At high energies all coupling constants are small and perturbation theory is a valuable tool to obtain predictions from the theory. For the Standard Model there are three coupling constants, g1, g2 and g3, corresponding to the gauge groups U(1), SU(2) and SU(3), respectively. As all methods which will be discussed below do not depend on the specific nature of these gauge groups and are even applicable to extensions of the Standard Model (like super-symmetry), I will just talk about a single expansion in a single coupling constant. All observable quantities are taken as a power series expansion in the coupling constant, and calculated order by order in perturbation theory.

Type
Chapter
Information
Geometric and Topological Methods for Quantum Field Theory
Proceedings of the 2009 Villa de Leyva Summer School
, pp. 144 - 187
Publisher: Cambridge University Press
Print publication year: 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] T., van Ritbergen, J. A. M., Vermaseren and S. A., Larin, Phys. Lett. B400, 379, (1997), hep-ph/9701390.
[2] S., Laporta and E., Remiddi, Phys. Lett. B379 283 (1996), hep-ph/9602417.
[3] S. G., Gorishnii, A. L., Kataev and S. A., Larin, Phys. Lett. B259 144 (1991).
[4] P., Belkale and P., Brosnan, Int. Math. Res. Not.2655 (2003).
[5] S., Bloch, H., Esnault and D., Kreimer, Comm. Math. Phys. 267 181 (2006), math.AG/0510011.
[6] S., Bloch and D., Kreimer, Commun. Num. Theor. Phys. 2 637 (2008), arXiv:0804.4399.
[7] S., Bloch, (2008), arXiv:0810.1313.
[8] F., Brown, Commun. Math. Phys. 287 925 (2008), arXiv:0804.1660.
[9] F., Brown, (2009), arXiv:0910.0114.
[10] F., Brown and K., Yeats, (2009), arXiv:0910.5429.
[11] O., Schnetz, (2008), arXiv:0801.2856.
[12] O., Schnetz, (2009), arXiv:0909.0905.
[13] P., Aluffi and M., Marcolli, Commun. Num. Theor. Phys. 3 1 (2009), arXiv:0807.1690.
[14] P., Aluffi and M., Marcolli, (2008), arXiv:0811.2514.
[15] P., Aluffi and M., Marcolli, (2009), arXiv:0901.2107.
[16] P., Aluffi and M., Marcolli, (2009), arXiv:0907.3225.
[17] C., Bergbauer, R., Brunetti and D., Kreimer, (2009), arXiv:0908.0633.
[18] S., Laporta, Phys. Lett. B549 115 (2002), hep-ph/0210336.
[19] S., Laporta and E., Remiddi, Nucl. Phys. B704 349 (2005), hep-ph/0406160.
[20] S., Laporta, Int. J. Mod. Phys. A23 5007 (2008), arXiv:0803.1007.
[21] D. H., Bailey, J. M., Borwein, D., Broadhurst and M. L., Glasser, (2008), arXiv:0801.0891.
[22] I., Bierenbaum and S., Weinzierl, Eur. Phys. J. C32 67 (2003), hep-ph/0308311.
[23] C., Bogner and S., Weinzierl, J. Math. Phys. 50 042302 (2009), arXiv:0711.4863.
[24] O. V., Tarasov, Phys. Rev. D54 6479 (1996), hep-th/9606018.
[25] O. V., Tarasov, Nucl. Phys. B502 455 (1997), hep-ph/9703319.
[26] M. E., Peskin and D. V., Schroeder, An Introduction to Quantum Field Theory (Perseus Books, 1995).
[27] C., Itzykson and J. B., Zuber, Quantum Field Theory (McGraw-Hill, 1980).
[28] G., 't Hooft and M. J. G., Veltman, Nucl. Phys. B44 189 (1972).
[29] C. G., Bollini and J. J., Giambiagi, Nuovo Cim. B12 20 (1972).
[30] G. M., Cicuta and E., Montaldi, Nuovo Cim. Lett. 4 329 (1972).
[31] K. G., Wilson, Phys. Rev. D7 2911 (1973).
[32] J., Collins, Renormalization (Cambridge University Press, 1984).
[33] P., Breitenlohner and D., Maison, Commun. Math. Phys. 52 11 (1977).
[34] Z., Bern and D. A., Kosower, Nucl. Phys. B379 451 (1992).
[35] S., Weinzierl, (1999), hep-ph/9903380.
[36] Z., Bern, A., De Freitas, L., Dixon and H. L., Wong, Phys. Rev. D66 085002 (2002), hep-ph/0202271.
[37] Z., Kunszt, A., Signer and Z., Trocsanyi, Nucl. Phys. B411 397 (1994), hep-ph/9305239.
[38] A., Signer, PhD thesis, Diss. ETH Nr. 11143 (1995).
[39] S., Catani, M. H., Seymour and Z., Trocsanyi, Phys. Rev. D55 6819 (1997), hep-ph/9610553.
[40] C., Bogner and S., Weinzierl, (2010), arXiv:1002.3458.
[41] T., Kinoshita, J. Math. Phys. 3 650 (1962).
[42] T. D., Lee and M., Nauenberg, Phys. Rev. 133 B1549 (1964).
[43] W. T., Giele and E. W. N., Glover, Phys. Rev. D46 1980 (1992).
[44] W. T., Giele, E. W. N., Glover and D. A., Kosower, Nucl. Phys. B403 633 (1993), hep-ph/9302225.
[45] S., Keller and E., Laenen, Phys. Rev. D59 114004 (1999), hep-ph/9812415.
[46] S., Frixione, Z., Kunszt and A., Signer, Nucl. Phys. B467 399 (1996), hep-ph/9512328.
[47] S., Catani and M. H., Seymour, Nucl. Phys. B485 291 (1997), hep-ph/9605323.
[48] S., Dittmaier, Nucl. Phys. B565 69 (2000), hep-ph/9904440.
[49] L., Phaf and S., Weinzierl, JHEP 04 006 (2001), hep-ph/0102207.
[50] S., Catani, S., Dittmaier, M. H., Seymour and Z., Trocsanyi, Nucl. Phys. B627 189 (2002), hep-ph/0201036.
[51] M., Kontsevich and D., Zagier, in B., Engquis and W., Schmid (eds), Mathematics Unlimited – 2001 and Beyond (Springer, 2001), 771.
[52] M., Yoshinaga, (2008), arXiv:0805.0349.
[53] K., Hepp, Commun. Math. Phys. 2 301 (1966).
[54] M., Roth and A., Denner, Nucl. Phys. B479 495 (1996), hep-ph/9605420.
[55] T., Binoth and G., Heinrich, Nucl. Phys. B585 741 (2000), hep-ph/0004013.
[56] T., Binoth and G., Heinrich, Nucl. Phys. B680 375 (2004), hep-ph/0305234.
[57] C., Bogner and S., Weinzierl, Comput. Phys. Commun. 178 596 (2008), arXiv:0709.4092.
[58] A. V., Smirnov and M. N., Tentyukov, Comput. Phys. Commun. 180 735 (2009), arXiv:0807.4129.
[59] J., Ecalle, (2002), (available at http://www.math.u-psud.fr/biblio/ppo/2002/ppo2002-23.html).
[60] C., Reutenauer, Free Lie Algebras (Clarendon Press, 1993).
[61] M., Sweedler, Hopf Algebras (Benjamin, 1969).
[62] M. E., Hoffman, J. Algebraic Combin. 11 49 (2000), math.QA/9907173.
[63] Guo, and W., Keigher, Adv. in Math. 150 117 (2000), math.RA/0407155.
[64] J. M., Borwein, D. M., Bradley, D. J., Broadhurst and P., Lisonek, Trans. Amer. Math. Soc. 353: 3907 (2001), math.CA/9910045.
[65] A. B., Goncharov, Math. Res. Lett. 5 497 (1998), (available at http://www.math.uiuc.edu/K-theory/0297).
[66] H. M., Minh, M., Petitot and J., van der Hoeven, Discrete Math. 225: 1–3217 (2000).
[67] P., Cartier, Séminaire Bourbaki885 (2001).
[68] G., Racinet, Publ. Math. Inst. Hautes Études Sci. 95 185 (2002), math.QA/0202142.
[69] N., Nielsen, Nova Acta Leopoldina (Halle) 90 123 (1909).
[70] E., Remiddi and J. A. M., Vermaseren, Int. J. Mod. Phys. A15 725 (2000), hep-ph/9905237.
[71] T., Gehrmann and E., Remiddi, Nucl. Phys. B601 248 (2001), hep-ph/0008287.
[72] G., 't Hooft and M. J. G., Veltman, Nucl. Phys. B153 365 (1979).
[73] J., Vollinga and S., Weinzierl, Comput. Phys. Commun. 167 177 (2005), hep-ph/0410259.
[74] E. E., Boos and A. I., Davydychev, Theor. Math. Phys. 89 1052 (1991).
[75] A. I., Davydychev, J. Math. Phys. 32 1052 (1991).
[76] A. I., Davydychev, J. Math. Phys. 33 358 (1992).
[77] V. A., Smirnov, Phys. Lett. B460 397 (1999), hep-ph/9905323.
[78] V. A., Smirnov and O. L., Veretin, Nucl. Phys. B566 469 (2000), hep-ph/9907385.
[79] J. B., Tausk, Phys. Lett. B469 225 (1999), hep-ph/9909506.
[80] V. A., Smirnov, Phys. Lett. B491 130 (2000), hep-ph/0007032.
[81] V. A., Smirnov, Phys. Lett. B500 330 (2001), hep-ph/0011056.
[82] V. A., Smirnov, Phys. Lett. B567 193 (2003), hep-ph/0305142.
[83] G., Heinrich and V. A., Smirnov, Phys. Lett. B598 55 (2004), hep-ph/0406053.
[84] S., Friot, D., Greynat, and E., De Rafael, Phys. Lett. B628 73 (2005), hep-ph/0505038.
[85] Z., Bern, L. J., Dixon, and V. A., Smirnov, Phys. Rev. D72 085001 (2005), hep-th/0505205.
[86] C., Anastasiou and A., Daleo, JHEP 10 031 (2006), hep-ph/0511176.
[87] M., Czakon, Comput. Phys. Commun. 175 559 (2006), hep-ph/0511200.
[88] J., Gluza, K., Kajda and T., Riemann, Comput. Phys. Commun. 177 879 (2007), arXiv:0704.2423.
[89] S., Weinzierl, J. Math. Phys. 45 2656 (2004), hep-ph/0402131.
[90] S., Moch, P., Uwer and S., Weinzierl, J. Math. Phys. 43 3363 (2002), hep-ph/0110083.
[91] S., Weinzierl, Comput. Phys. Commun. 145 357 (2002), math-ph/0201011.
[92] S., Moch and P., Uwer, Comput. Phys. Commun. 174 759 (2006), math-ph/0508008.
[93] L., Euler, Novi Comm. Acad. Sci. Petropol. 20 140 (1775).
[94] D., Zagier, First European Congress of Mathematics, Vol. II (Birkhauser, 1994), 497.
[95] J. A. M., Vermaseren, Int. J. Mod. Phys. A14 2037 (1999), hep-ph/9806280.
[96] J., Blümlein and S., Kurth, Phys. Rev. D60 014018 (1999), hep-ph/9810241.
[97] J., Blümlein, Comput. Phys. Commun. 159 19 (2004), hep-ph/0311046.
[98] J., Blümlein, D. J., Broadhurst, and J. A. M., Vermaseren, Comput. Phys. Commun. 181 582 (2010), arXiv:0907.2557.
[99] A. V., Kotikov, Phys. Lett. B254 158 (1991).
[100] A. V., Kotikov, Phys. Lett. B267 123 (1991).
[101] E., Remiddi, Nuovo Cim. A110 1435 (1997), hep-th/9711188.
[102] T., Gehrmann and E., Remiddi, Nucl. Phys. B580 485 (2000), hep-ph/9912329.
[103] T., Gehrmann and E., Remiddi, Nucl. Phys. B601 287 (2001), hep-ph/0101124.
[104] M., Argeri and P., Mastrolia, Int. J. Mod. Phys. A22 4375 (2007), arXiv:0707.4037.

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×