Skip to main content Accessibility help
×
Home
  • Print publication year: 2010
  • Online publication date: July 2010

8 - The role of the serotonin transporter in reward mechanisms

Summary

ABSTRACT

In recent years, gene knock-out studies have greatly expanded understanding of the molecular basis of drug reward and drug addiction. One of the consequences of these studies has been to produce a more pluralistic view of the underlying neurochemical mechanisms that mediate drug reward after the development of a strongly dopamine-centered view in the 1980s. This is not to say that dopamine does not have a central role in drug reward and drug addiction, but rather a fuller examination of these mechanisms involves the complex neurocircuitry of which dopamine systems are a part. This view is not new, but has been expressed from a variety of perspectives. Gene knock-out studies have indicated a particular approach to examining the nature of interactions between different parts of this circuitry. This chapter will focus on the role of serotonin, and in particular the serotonin transporter (SERT), in drug reward. This more pluralistic perspective became apparent in gene knock-out studies of the rewarding effects of drugs of abuse which demonstrated that deletion of the dopamine transporter (DAT) did not eliminate the rewarding effects of cocaine, and subsequent findings that implicated a critical role of SERT in a variety of circumstances. These studies also validated the central role of dopamine in drug reward, and consequently the role of SERT must be considered largely from the point of view of interactions with dopamine systems.

REFERENCES
Adamec, R, Burton, P, Blundell, J, Murphy, D L, Holmes, A (2006). Vulnerability to mild predator stress in serotonin transporter knockout mice. Behav Brain Res 170: 126–40.
Altamura, C, Dell'Acqua, M L, Moessner, R, Murphy, D L, Lesch, K P, Persico, A M (2007). Altered neocortical cell density and layer thickness in serotonin transporter knockout mice: a quantitation study. Cereb Cortex 17: 1394–401.
Ansorge, M S, Zhou, M, Lira, A, Hen, R, Gingrich, J A (2004). Early-life blockade of the 5-HT transporter alters emotional behavior in adult mice. Science 306: 879–81.
Arborelius, L, Chergui, K, Murase, S, et al. (1993). The 5-HT1A receptor selective ligands, (R)-8-OH-DPAT and (S)-UH-301, differentially affect the activity of midbrain dopamine neurons. Naunyn Schmiedebergs Arch Pharmacol 347: 353–62.
Armando, I, Tjurmina, O A, Li, Q, Murphy, D L, Saavedra, J M (2003). The serotonin transporter is required for stress-evoked increases in adrenal catecholamine synthesis and angiotensin II AT(2) receptor expression. Neuroendocrinology 78: 217–25.
Belzung, C, Scearce-Levie, K, Barreau, S, Hen, R (2000). Absence of cocaine-induced place conditioning in serotonin 1B receptor knock-out mice. Pharmacol Biochem Behav 66: 221–5.
Bengel, D, Murphy, D L, Andrews, A M, et al. (1998). Altered brain serotonin homeostasis and locomotor insensitivity to 3,4-methylenedioxymethamphetamine (“Ecstasy”) in serotonin transporter-deficient mice. Mol Pharmacol 53: 649–55.
Bisaga, A, Sikora, J, Kostowski, W (1993). The effect of drugs interacting with serotonergic 5HT3 and 5HT4 receptors on morphine place conditioning. Pol J Pharmacol 45: 513–9.
Bleich, S, Bönsch, D, Rauh, J, Bayerlein, K, Fiszer, R, Frieling, H, Hillemacher, T (2007). Association of the long allele of the 5-HTTLPR polymorphism with compulsive craving in alcohol dependence. Alcohol Alcohol 42: 509–12.
Bonhomme, N, Deurwaerdere, P, Moal, M, Spampinato, U (1995). Evidence for 5-HT4 receptor subtype involvement in the enhancement of striatal dopamine release induced by serotonin: a microdialysis study in the halothane-anesthetized rat. Neuropharmacology 34: 269–79.
Boulenguez, P, Peters, S L, Mitchell, S N, Chauveau, J, Gray, J A, Joseph, M H (1998). Dopamine release in the nucleus accumbens and latent inhibition in the rat following microinjections of a 5-HT1B agonist into the dorsal subiculum: implications for schizophrenia. J Psychopharmacol 12: 258–67.
Boulenguez, P, Rawlins, J N, Chauveau, J, Joseph, M H, Mitchell, S N, Gray, J A (1996). Modulation of dopamine release in the nucleus accumbens by 5-HT1B agonists: involvement of the hippocampo-accumbens pathway. Neuropharmacology 35: 1521–9.
Boyce-Rustay, J M, Wiedholz, L M, Millstein, R A, et al. (2006). Ethanol-related behaviors in serotonin transporter knockout mice. Alcohol Clin Exp Res 30: 1957–65.
Brodie, M S, Bunney, E B (1996). Serotonin potentiates dopamine inhibition of ventral tegmental area neurons in vitro. J Neurophysiol 76: 2077–82.
Cameron, D L, Wessendorf, M W, Williams, J T (1997). A subset of ventral tegmental area neurons is inhibited by dopamine, 5-hydroxytryptamine and opioids. Neuroscience 77: 155–66.
Campbell, A D, McBride, W J (1995). Serotonin-3 receptor and ethanol-stimulated dopamine release in the nucleus accumbens. Pharmacol Biochem Behav 51: 835–42.
Carroll, J C, Boyce-Rustay, J M, Millstein, R, et al. (2007). Effects of mild early life stress on abnormal emotion-related behaviors in 5-HTT knockout mice. Behav Genet 37: 214–22.
Caspi, A, Sugden, K, Moffitt, T E, et al. (2003). Influence of life stress on depression: moderation by a polymorphism in the 5-HTT gene. Science 301: 386–9.
Chen, J P, Praag, H M, Gardner, E L (1991). Activation of 5-HT3 receptor by 1-phenylbiguanide increases dopamine release in the rat nucleus accumbens. Brain Res 543: 354–7.
Daws, L C, Montanez, S, Munn, J L, et al. (2006). Ethanol inhibits clearance of brain serotonin by a serotonin transporter-independent mechanism. J Neurosci 26: 6431–8.
Deurwaerdere, P, L'Hirondel, M, Bonhomme, N, Lucas, G, Cheramy, A, Spampinato, U (1997). Serotonin stimulation of 5-HT4 receptors indirectly enhances in vivo dopamine release in the rat striatum. J Neurochem 68: 195–203.
Deurwaerdere, P, Spampinato, U (1999). Role of serotonin(2A) and serotonin(2B/2C) receptor subtypes in the control of accumbal and striatal dopamine release elicited in vivo by dorsal raphe nucleus electrical stimulation. J Neurochem 73: 1033–42.
Deurwaerdere, P, Stinus, L, Spampinato, U (1998). Opposite change of in vivo dopamine release in the rat nucleus accumbens and striatum that follows electrical stimulation of dorsal raphe nucleus: role of 5-HT3 receptors. J Neurosci 18: 6528–38.
Di Giovanni, G, Deurwaerdere, P, Di Mascio, M, Di Matteo, V, Esposito, E, Spampinato, U (1999). Selective blockade of serotonin-2C/2B receptors enhances mesolimbic and mesostriatal dopaminergic function: a combined in vivo electrophysiological and microdialysis study. Neuroscience 91: 587–97.
Di Giovanni, G, Di Matteo, V, Di Mascio, M, Esposito, E (2000). Preferential modulation of mesolimbic vs. nigrostriatal dopaminergic function by serotonin(2C/2B) receptor agonists: a combined in vivo electrophysiological and microdialysis study. Synapse 35: 53–61.
Di Mascio, M, Di Giovanni, G, Di Matteo, V, Prisco, S, Esposito, E (1998). Selective serotonin reuptake inhibitors reduce the spontaneous activity of dopaminergic neurons in the ventral tegmental area. Brain Res Bull 46: 547–54.
Di Matteo, V, Di Giovanni, G, Di Mascio, M, Esposito, E (2000). Biochemical and electrophysiological evidence that RO 60–0175 inhibits mesolimbic dopaminergic function through serotonin(2C) receptors. Brain Res 865: 85–90.
Diaz-Mataix, L, Artigas, F, Celada, P (2006). Activation of pyramidal cells in rat medial prefrontal cortex projecting to ventral tegmental area by a 5-HT1A receptor agonist. Eur Neuropsychopharmacol 16: 288–96.
Diaz-Mataix, L, Scorza, M C, Bortolozzi, A, Toth, M, Celada, P, Artigas, F (2005). Involvement of 5-HT1A receptors in prefrontal cortex in the modulation of dopaminergic activity: role in atypical antipsychotic action. J Neurosci 25: 10 831–43.
Dray, A, Davies, J, Oakley, N R, Tongroach, P, Vellucci, S (1978). The dorsal and medial raphe projections to the substantia nigra in the rat: electrophysiological, biochemical and behavioural observations. Brain Res 151: 431–42.
Einhorn, L C, Johansen, P A, White, F J (1988). Electrophysiological effects of cocaine in the mesoaccumbens dopamine system: studies in the ventral tegmental area. J Neurosci 8: 100–12.
Fabre, V, Beaufour, C, Evrard, A, et al. (2000). Altered expression and functions of serotonin 5-HT1A and 5-HT1B receptors in knock-out mice lacking the 5-HT transporter. Eur J Neurosci 12: 2299–310.
Fadda, F, Garau, B, Marchei, F, Colombo, G, Gessa, G L (1991). MDL 72222, a selective 5-HT3 receptor antagonist, suppresses voluntary ethanol consumption in alcohol-preferring rats. Alcohol Alcohol 26: 107–10.
Fink, K B, Gothert, M (2007). 5-HT receptor regulation of neurotransmitter release. Pharmacol Rev 59: 360–417.
Fletcher, P J, Grottick, A J, Higgins, G A (2002). Differential effects of the 5-HT(2A) receptor antagonist M100907 and the 5-HT(2C) receptor antagonist SB242084 on cocaine-induced locomotor activity, cocaine self-administration and cocaine-induced reinstatement of responding. Neuropsychopharmacology 27: 576–86.
Fletcher, P J, Korth, K M (1999). Activation of 5-HT1B receptors in the nucleus accumbens reduces amphetamine-induced enhancement of responding for conditioned reward. Psychopharmacology (Berl.) 142: 165–74.
Fox, M A, Andrews, A M, Wendland, J R, Lesch, K P, Holmes, A, Murphy, D L (2007a). A pharmacological analysis of mice with a targeted disruption of the serotonin transporter. Psychopharmacology (Berl.) 195: 147–66.
Fox, M A, Jensen, C L, Gallagher, P S, Murphy, D L (2007b). Receptor mediation of exaggerated responses to serotonin-enhancing drugs in serotonin transporter (SERT)-deficient mice. Neuropharmacology 53: 643–56.
Gainetdinov, R R, Wetsel, W C, Jones, S R, Levin, E D, Jaber, M, Caron, M G (1999). Role of serotonin in the paradoxical calming effect of psychostimulants on hyperactivity. Science 283: 397–401.
Gervais, J, Rouillard, C (2000). Dorsal raphe stimulation differentially modulates dopaminergic neurons in the ventral tegmental area and substantia nigra. Synapse 35: 281–91.
Giros, B, Jaber, M, Jones, S R, Wightman, R M, Caron, M G (1996). Hyperlocomotion and indifference to cocaine and amphetamine in mice lacking the dopamine transporter. Nature 379: 606–12.
Gobbi, G, Murphy, D L, Lesch, K, Blier, P (2001). Modifications of the serotonergic system in mice lacking serotonin transporters: an in vivo electrophysiological study. J Pharmacol Exp Ther 296: 987–95.
Gobert, A, Millan, M J (1999). Serotonin (5-HT)2A receptor activation enhances dialysate levels of dopamine and noradrenaline, but not 5-HT, in the frontal cortex of freely-moving rats. Neuropharmacology 38: 315–7.
Gobert, A, Rivet, J M, Lejeune, F, et al. (2000). Serotonin(2C) receptors tonically suppress the activity of mesocortical dopaminergic and adrenergic, but not serotonergic, pathways: a combined dialysis and electrophysiological analysis in the rat. Synapse 36: 205–21.
Gongora-Alfaro, J L, Hernandez-Lopez, S, Flores-Hernandez, J, Galarraga, E (1997). Firing frequency modulation of substantia nigra reticulata neurons by 5-hydroxytryptamine. Neurosci Res 29: 225–31.
Grottick, A J, Fletcher, P J, Higgins, G A (2000). Studies to investigate the role of 5-HT(2C) receptors on cocaine- and food-maintained behavior. J Pharmacol Exp Ther 295: 1183–91.
Hall, F S, Drgonova, J, Goeb, M, Uhl, G R (2003). Reduced behavioral effects of cocaine in heterozygous brain-derived neurotrophic factor (BDNF) knockout mice. Neuropsychopharmacology 28: 1485–90.
Hall, F S, Li, X F, Sora, I, et al. (2002). Cocaine mechanisms: enhanced cocaine, fluoxetine and nisoxetine place preferences following monoamine transporter deletions. Neuroscience 115: 153–61.
Hallbus, M, Magnusson, T, Magnusson, O (1997). Influence of 5-HT1B/1D receptors on dopamine release in the guinea pig nucleus accumbens: a microdialysis study. Neurosci Lett 225: 57–60.
Hariri, A R, Holmes, A (2006). Genetics of emotional regulation: the role of the serotonin transporter in neural function. Trends Cogn Sci 10: 182–91.
Harrison, A A, Parsons, L H, Koob, G F, Markou, A (1999). RU 24969, a 5-HT1A/1B agonist, elevates brain stimulation reward thresholds: an effect reversed by GR 127935, a 5-HT1B/1D antagonist. Psychopharmacology (Berl.) 141: 242–50.
Heinz, A, Jones, D W, Mazzanti, C, et al. (2000). A relationship between serotonin transporter genotype and in vivo protein expression and alcohol neurotoxicity. Biol Psychiatry 47: 643–9.
Herman, A I, Kaiss, K M, Ma, R, et al. (2005). Serotonin transporter promoter polymorphism and monoamine oxidase type A VNTR allelic variants together influence alcohol binge drinking risk in young women. Am J Med Genet B Neuropsychiatr Genet 133: 74–8.
Higgins, G A, Joharchi, N, Nguyen, P, Sellers, E M (1992). Effect of the 5-HT3 receptor antagonists, MDL72222 and ondansetron on morphine place conditioning. Psychopharmacology 106: 315–20.
Hnasko, T S, Sotak, B N, Palmiter, R D (2007). Cocaine-conditioned place preference by dopamine-deficient mice is mediated by serotonin. J Neurosci 27: 12 484–8.
Holmes, A, Lit, Q, Murphy, D L, Gold, E, Crawley, J N (2003). Abnormal anxiety-related behavior in serotonin transporter null mutant mice: the influence of genetic background. Genes Brain Behav 2: 365–80.
Holmes, A, Murphy, D L, Crawley, J N (2002a). Reduced aggression in mice lacking the serotonin transporter. Psychopharmacology (Berl.) 161: 160–7.
Holmes, A, Yang, R J, Murphy, D L, Crawley, J N (2002b). Evaluation of antidepressant-related behavioral responses in mice lacking the serotonin transporter. Neuropsychopharmacology 27: 914–23.
Ichikawa, J, Meltzer, H Y (1995). DOI, a 5-HT2A/2C receptor agonist, potentiates amphetamine-induced dopamine release in rat striatum. Brain Res 698: 204–8.
Imperato, A, Angelucci, L (1989). 5-HT3 receptors control dopamine release in the nucleus accumbens of freely moving rats. Neurosci Lett 101: 214–7.
Iyer, R N, Bradberry, C W (1996). Serotonin-mediated increase in prefrontal cortex dopamine release: pharmacological characterization. J Pharmacol Exp Ther 277: 40–7.
Johnson, S W, Mercuri, N B, North, R A (1992). 5-Hydroxytryptamine1B receptors block the GABAB synaptic potential in rat dopamine neurons. J Neurosci 12: 2000–6.
Kalueff, A V, Fox, M A, Gallagher, P S, Murphy, D L (2007a). Hypolocomotion, anxiety and serotonin syndrome-like behavior contribute to the complex phenotype of serotonin transporter knockout mice. Genes Brain Behav 6: 389–400.
Kalueff, A V, Gallagher, P S, Murphy, D L (2006). Are serotonin transporter knockout mice ‘depressed’? Hypoactivity but no anhedonia. Neuroreport 17: 1347–51.
Kalueff, A V, Jensen, C L, Murphy, D L (2007b). Locomotory patterns, spatiotemporal organization of exploration and spatial memory in serotonin transporter knockout mice. Brain Res 1169: 87–97.
Kankaanpaa, A, Lillsunde, P, Ruotsalainen, M, Ahtee, L, Seppala, T (1996). 5-HT3 receptor antagonist MDL 72222 dose-dependently attenuates cocaine- and amphetamine-induced elevations of extracellular dopamine in the nucleus accumbens and the dorsal striatum. Pharmacol Toxicol 78: 317–21.
Kankaanpaa, A, Meririnne, E, Seppala, T (2002). 5-HT3 receptor antagonist MDL 72222 attenuates cocaine- and mazindol-, but not methylphenidate-induced neurochemical and behavioral effects in the rat. Psychopharmacology (Berl.) 159: 341–50.
Kelai, S, Aissi, F, Lesch, K P, Cohen-Salmon, C, Hamon, M, Lanfumey, L (2003). Alcohol intake after serotonin transporter inactivation in mice. Alcohol Alcohol 38: 386–9.
Kim, D K, Tolliver, T J, Huang, S J, et al. (2005). Altered serotonin synthesis, turnover and dynamic regulation in multiple brain regions of mice lacking the serotonin transporter. Neuropharmacology 49: 798–810.
Kostowski, W, Dyr, W, Krzascik, P (1993). The abilities of 5-HT3 receptor antagonist ICS 205–930 to inhibit alcohol preference and withdrawal seizures in rats. Alcohol 10: 369–73.
Lacroix, L P, Dawson, L A, Hagan, J J, Heidbreder, C A (2004). 5-HT6 receptor antagonist SB-271046 enhances extracellular levels of monoamines in the rat medial prefrontal cortex. Synapse 51: 158–64.
Lejeune, F, Millan, M J (1998). Induction of burst firing in ventral tegmental area dopaminergic neurons by activation of serotonin (5-HT)1A receptors: WAY 100,635-reversible actions of the highly selective ligands, flesinoxan and S 15535. Synapse 30: 172–80.
Lesch, K P (2005). Alcohol dependence and gene x environment interaction in emotion regulation: is serotonin the link?Eur J Pharmacol 526: 113–24.
Lesch, K P, Bengel, D, Heils, A, et al. (1996). Association of anxiety-related traits with a polymorphism in the serotonin transporter gene regulatory region. Science 274: 1527–31.
Li, Q, Wichems, C, Heils, A, Lesch, K P, Murphy, D L (2000). Reduction in the density and expression, but not G-protein coupling, of serotonin receptors (5-HT1A) in 5-HT transporter knock-out mice: gender and brain region differences. J Neurosci 20: 7888–95.
Li, Q, Wichems, C, Heils, A, Kar, L D, Lesch, K P, Murphy, D L (1999). Reduction of 5-hydroxytryptamine (5-HT)(1A)-mediated temperature and neuroendocrine responses and 5-HT(1A) binding sites in 5-HT transporter knockout mice. J Pharmacol Exp Ther 291: 999–1007.
Li, Q, Wichems, C H, Ma, L, Kar, L D, Garcia, F, Murphy, D L (2003). Brain region-specific alterations of 5-HT2A and 5-HT2C receptors in serotonin transporter knockout mice. J Neurochem 84: 1256–65.
Lira, A, Zhou, M, Castanon, N, et al. (2003). Altered depression-related behaviors and functional changes in the dorsal raphe nucleus of serotonin transporter-deficient mice. Biol Psychiatry 54: 960–71.
Liu, W, Thielen, R J, McBride, W J (2006a). Effects of repeated daily treatments with a 5-HT3 receptor antagonist on dopamine neurotransmission and functional activity of 5-HT3 receptors within the nucleus accumbens of Wistar rats. Pharmacol Biochem Behav 84: 370–7.
Liu, W, Thielen, R J, Rodd, Z A, McBride, W J (2006b). Activation of serotonin-3 receptors increases dopamine release within the ventral tegmental area of Wistar and alcohol-preferring (P) rats. Alcohol 40: 167–76.
Lucas, G, Di Matteo, V, Deurwaerdere, P, et al. (2001). Neurochemical and electrophysiological evidence that 5-HT4 receptors exert a state-dependent facilitatory control in vivo on nigrostriatal, but not mesoaccumbal, dopaminergic function. Eur J Neurosci 13: 889–98.
Lucas, G, Spampinato, U (2000). Role of striatal serotonin2A and serotonin2C receptor subtypes in the control of in vivo dopamine outflow in the rat striatum. J Neurochem 74: 693–701.
Mannoury la Cour, C, Boni, C, Hanoun, N, Lesch, K P, Hamon, M, Lanfumey, L (2001). Functional consequences of 5-HT transporter gene disruption on 5-HT(1a) receptor-mediated regulation of dorsal raphe and hippocampal cell activity. J Neurosci 21: 2178–85.
Mateo, Y, Budygin, E A, John, C E, Jones, S R (2004). Role of serotonin in cocaine effects in mice with reduced dopamine transporter function. Proc Natl Acad Sci USA 101: 372–7.
Mathews, T A, Fedele, D E, Coppelli, F M, Avila, A M, Murphy, D L, Andrews, A M (2004). Gene dose-dependent alterations in extraneuronal serotonin but not dopamine in mice with reduced serotonin transporter expression. J Neurosci Methods 140: 169–81.
Maurel, S, Vry, J, Beun, R, Schreiber, R (1999). 5-HT2A and 5-HT2C/5-HT1B receptors are differentially involved in alcohol preference and consummatory behavior in cAA rats. Pharmacol Biochem Behav 62: 89–96.
McNeish, C S, Svingos, A L, Hitzemann, R, Strecker, R E (1993). The 5-HT3 antagonist zacopride attenuates cocaine-induced increases in extracellular dopamine in rat nucleus accumbens. Pharmacol Biochem Behav 45: 759–63.
Minabe, Y, Schechter, L, Hashimoto, K, Shirayama, Y, Ashby, CR (2003). Acute and chronic administration of the selective 5-HT1A receptor antagonist WAY-405 significantly alters the activity of midbrain dopamine neurons in rats: an in vivo electrophysiological study. Synapse 50: 181–90.
Murphy, D L, Uhl, G R, Holmes, A, et al. (2003). Experimental gene interaction studies with SERT mutant mice as models for human polygenic and epistatic traits and disorders. Genes Brain Behav 2: 350–64.
Mylecharane, E J (1996). Ventral tegmental area 5-HT receptors: mesolimbic dopamine release and behavioural studies. Behav Brain Res 73: 1–5.
Navailles, S, Deurwaerdere, P, Porras, G, Spampinato, U (2004). In vivo evidence that 5-HT2C receptor antagonist but not agonist modulates cocaine-induced dopamine outflow in the rat nucleus accumbens and striatum. Neuropsychopharmacology 29: 319–26.
Numachi, Y, Ohara, A, Yamashita, M, et al. (2007). Methamphetamine-induced hyperthermia and lethal toxicity: role of the dopamine and serotonin transporters. Eur J Pharmacol 572: 120–8.
O'Dell, L E, Parsons, L H (2004). Serotonin1B receptors in the ventral tegmental area modulate cocaine-induced increases in nucleus accumbens dopamine levels. J Pharmacol Exp Ther 311: 711–9.
Parsons, L H, Koob, G F, Weiss, F (1999). RU 24969, a 5-HT1B/1A receptor agonist, potentiates cocaine-induced increases in nucleus accumbens dopamine. Synapse 32: 132–5.
Parsons, L H, Weiss, F, Koob, G F (1998). Serotonin1B receptor stimulation enhances cocaine reinforcement. J Neurosci 18: 10 078–89.
Pehek, E A, McFarlane, H G, Maguschak, K, Price, B, Pluto, C P (2001). M100,907, a selective 5-HT(2A) antagonist, attenuates dopamine release in the rat medial prefrontal cortex. Brain Res 888: 51–9.
Persico, A M, Baldi, A, Dell'Acqua, M L, et al. (2003). Reduced programmed cell death in brains of serotonin transporter knockout mice. Neuroreport 14: 341–4.
Persico, A M, Mengual, E, Moessner, R, et al. (2001). Barrel pattern formation requires serotonin uptake by thalamocortical afferents, and not vesicular monoamine release. J Neurosci 21: 6862–73.
Pessia, M, Jiang, Z G, North, R A, Johnson, S W (1994). Actions of 5-hydroxytryptamine on ventral tegmental area neurons of the rat in vitro. Brain Res 654: 324–30.
Pierucci, M, Di Matteo, V, Esposito, E (2004). Stimulation of serotonin2C receptors blocks the hyperactivation of midbrain dopamine neurons induced by nicotine administration. J Pharmacol Exp Ther 309: 109–18.
Porras, G, Di Matteo, V, Deurwaerdere, P, Esposito, E, Spampinato, U (2002). Central serotonin4 receptors selectively regulate the impulse-dependent exocytosis of dopamine in the rat striatum: in vivo studies with morphine, amphetamine and cocaine. Neuropharmacology 43: 1099–109.
Porras, G, Di Matteo, V, Fracasso, C, et al. (2002). 5-HT2A and 5-HT2C/2B receptor subtypes modulate dopamine release induced in vivo by amphetamine and morphine in both the rat nucleus accumbens and striatum. Neuropsychopharmacology 26: 311–24.
Powell, S B, Lehmann-Masten, V D, Paulus, M P, Gainetdinov, R R, Caron, M G, Geyer, M A (2004). MDMA “ecstasy” alters hyperactive and perseverative behaviors in dopamine transporter knockout mice. Psychopharmacology (Berl.) 173: 310–7.
Pozzi, L, Trabace, L, Invernizzi, R, Samanin, R (1995). Intranigral GR-113808, a selective 5-HT4 receptor antagonist, attenuates morphine-stimulated dopamine release in the rat striatum. Brain Res 692: 265–8.
Qu, Y, Villacreses, N, Murphy, D L, Rapoport, S I (2005). 5-HT2A/2C receptor signaling via phospholipase A2 and arachidonic acid is attenuated in mice lacking the serotonin reuptake transporter. Psychopharmacology (Berl.) 180: 12–20.
Ren-Patterson, R F, Cochran, L W, Holmes, A, Lesch, K P, Lu, B, Murphy, D L (2006). Gender-dependent modulation of brain monoamines and anxiety-like behaviors in mice with genetic serotonin transporter and BDNF deficiencies. Cell Mol Neurobiol 26: 755–80.
Ren-Patterson, R F, Cochran, L W, Holmes, A, et al. (2005). Loss of brain-derived neurotrophic factor gene allele exacerbates brain monoamine deficiencies and increases stress abnormalities of serotonin transporter knockout mice. J Neurosci Res 79: 756–71.
Rioux, A, Fabre, V, Lesch, K P, et al. (1999). Adaptive changes of serotonin 5-HT2A receptors in mice lacking the serotonin transporter. Neurosci Lett 262: 113–6.
Risinger, F O, Bormann, N M, Oakes, R A (1996). Reduced sensitivity to ethanol reward, but not ethanol aversion, in mice lacking 5-HT1B receptors. Alcohol Clin Exp Res 20: 1401–5.
Risinger, F O, Doan, A M, Vickrey, A C (1999). Oral operant ethanol self-administration in 5-HT1b knockout mice. Behav Brain Res 102: 211–5.
Rocha, B A, Fumagalli, F, Gainetdinov, R R, et al. (1998a). Cocaine self-administration in dopamine-transporter knockout mice. Nat Neurosci 1: 132–7.
Rocha, B A, Scearce-Levie, K, Lucas, J J, et al. (1998b). Increased vulnerability to cocaine in mice lacking the serotonin-1B receptor. Nature 393: 175–8.
Rompre, P P, Injoyan, R, Hagan, J J (1995). Effects of granisetron, a 5-HT3 receptor antagonist, on morphine-induced potentiation of brain stimulation reward. Eur J Pharmacol 287: 263–9.
Salichon, N, Gaspar, P, Upton, A L, et al. (2001). Excessive activation of serotonin (5-HT) 1B receptors disrupts the formation of sensory maps in monoamine oxidase a and 5-HT transporter knock-out mice. J Neurosci 21: 884–96.
Santiago, M, Machado, A, Cano, J (1995). 5-HT3 receptor agonist induced carrier-mediated release of dopamine in rat striatum in vivo. Br J Pharmacol 116: 1545–50.
Shen, H W, Hagino, Y, Kobayashi, H, et al. (2004). Regional differences in extracellular dopamine and serotonin assessed by in vivo microdialysis in mice lacking dopamine and/or serotonin transporters. Neuropsychopharmacology 29: 1790–9.
Sora, I, Hall, F S, Andrews, A M, et al. (2001). Molecular mechanisms of cocaine reward: combined dopamine and serotonin transporter knockouts eliminate cocaine place preference. Proc Natl Acad Sci USA 98: 5300–5.
Sora, I, Wichems, C, Takahashi, N, et al. (1998). Cocaine reward models: conditioned place preference can be established in dopamine- and in serotonin-transporter knockout mice. Proc Natl Acad Sci USA 95: 7699–704.
Steward, L J, Ge, J, Stowe, R L, et al. (1996). Ability of 5-HT4 receptor ligands to modulate rat striatal dopamine release in vitro and in vivo. Br J Pharmacol 117: 55–62.
Tanda, G, Frau, R, Di Chiara, G (1995). Local 5HT3 receptors mediate fluoxetine but not desipramine-induced increase of extracellular dopamine in the prefrontal cortex. Psychopharmacology (Berl.) 119: 15–9.
Thorre, K, Ebinger, G, Michotte, Y (1998). 5-HT4 receptor involvement in the serotonin-enhanced dopamine efflux from the substantia nigra of the freely moving rat: a microdialysis study. Brain Res 796: 117–24.
Tjurmina, O A, Armando, I, Saavedra, J M, Goldstein, D S, Murphy, D L (2002). Exaggerated adrenomedullary response to immobilization in mice with targeted disruption of the serotonin transporter gene. Endocrinology 143: 4520–6.
Tomkins, D M, Higgins, G A, Sellers, E M (1994a). Low doses of the 5-HT1A agonist 8-hydroxy-2-(di-n-propylamino)-tetralin (8-OH DPAT) increase ethanol intake. Psychopharmacology (Berl.) 115: 173–9.
Tomkins, D M, Le, A D, Sellers, E M (1995). Effect of the 5-HT3 antagonist ondansetron on voluntary ethanol intake in rats and mice maintained on a limited access procedure. Psychopharmacology (Berl.) 117: 479–85.
Tomkins, D M, O'Neill, M F (2000). Effect of 5-HT(1B) receptor ligands on self-administration of ethanol in an operant procedure in rats. Pharmacol Biochem Behav 66: 129–36.
Tomkins, D M, Sellers, E M, Fletcher, P J (1994b). Median and dorsal raphe injections of the 5-HT1A agonist, 8-OH-DPAT, and the GABAA agonist, muscimol, increase voluntary ethanol intake in Wistar rats. Neuropharmacology 33: 349–58.
Trigo, J M, Renoir, T, Lanfumey, L, et al. (2007). 3,4-Methylenedioxymethamphetamine self-administration is abolished in serotonin transporter knockout mice. Biol Psychiatry 62: 669–79.
Uhl, G R, Hall, F S, Sora, I (2002). Cocaine, reward, movement and monoamine transporters. Mol Psychiatry 7: 21–6.
Wellman, C L, Izquierdo, A, Garrett, J E, et al. (2007). Impaired stress-coping and fear extinction and abnormal corticolimbic morphology in serotonin transporter knock-out mice. J Neurosci 27: 684–91.
Wilson, A W, Neill, J C, Costall, B (1998). An investigation into the effects of 5-HT agonists and receptor antagonists on ethanol self-administration in the rat. Alcohol 16: 249–70.
Wise, R A, Bozarth, M A (1987). A psychomotor stimulant theory of addiction. Psychol Rev 94: 469–92.
Wozniak, K M, Pert, A, Linnoila, M (1990). Antagonism of 5-HT3 receptors attenuates the effects of ethanol on extracellular dopamine. Eur J Pharmacol 187: 287–9.
Xu, F, Gainetdinov, R R, Wetsel, W C, et al. (2000). Mice lacking the norepinephrine transporter are supersensitive to psychostimulants. Nat Neurosci 3: 465–71.
Yan, Q, Reith, M E, Yan, S (2000). Enhanced accumbal dopamine release following 5-HT(2A) receptor stimulation in rats pretreated with intermittent cocaine. Brain Res 863: 254–8.
Yan, Q S (2000). Activation of 5-HT2A/2C receptors within the nucleus accumbens increases local dopaminergic transmission. Brain Res Bull 51: 75–81.
Yan, Q S, Yan, S E (2001). Activation of 5-HT(1B/1D) receptors in the mesolimbic dopamine system increases dopamine release from the nucleus accumbens: a microdialysis study. Eur J Pharmacol 418: 55–64.
Yan, Q S, Zheng, S Z, Yan, S E (2004). Involvement of 5-HT1B receptors within the ventral tegmental area in regulation of mesolimbic dopaminergic neuronal activity via GABA mechanisms: a study with dual-probe microdialysis. Brain Res 1021: 82–91.
Yoshimoto, K, McBride, W J, Lumeng, L, Li, T K (1992). Alcohol stimulates the release of dopamine and serotonin in the nucleus accumbens. Alcohol 9: 17–22.
Zhao, S, Edwards, J, Carroll, J, et al. (2006). Insertion mutation at the C-terminus of the serotonin transporter disrupts brain serotonin function and emotion-related behaviors in mice. Neuroscience 140: 321–34.
Zhou, F C, Lesch, K P, Murphy, D L (2002). Serotonin uptake into dopamine neurons via dopamine transporters: a compensatory alternative. Brain Res 942: 109–19.
Zhou, F M, Liang, Y, Salas, R, Zhang, L, Biasi, M, Dani, J A (2005). Corelease of dopamine and serotonin from striatal dopamine terminals. Neuron 46: 65–74.
Zhou, Q Y, Palmiter, R D (1995). Dopamine-deficient mice are severely hypoactive, adipsic, and aphagic. Cell 83: 1197–209.