Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-42gr6 Total loading time: 0 Render date: 2024-04-25T06:23:21.491Z Has data issue: false hasContentIssue false

8 - The role of the serotonin transporter in reward mechanisms

Published online by Cambridge University Press:  06 July 2010

Allan V. Kalueff
Affiliation:
Georgetown University Medical Center
Justin L. LaPorte
Affiliation:
National Institute of Mental Health
Get access

Summary

ABSTRACT

In recent years, gene knock-out studies have greatly expanded understanding of the molecular basis of drug reward and drug addiction. One of the consequences of these studies has been to produce a more pluralistic view of the underlying neurochemical mechanisms that mediate drug reward after the development of a strongly dopamine-centered view in the 1980s. This is not to say that dopamine does not have a central role in drug reward and drug addiction, but rather a fuller examination of these mechanisms involves the complex neurocircuitry of which dopamine systems are a part. This view is not new, but has been expressed from a variety of perspectives. Gene knock-out studies have indicated a particular approach to examining the nature of interactions between different parts of this circuitry. This chapter will focus on the role of serotonin, and in particular the serotonin transporter (SERT), in drug reward. This more pluralistic perspective became apparent in gene knock-out studies of the rewarding effects of drugs of abuse which demonstrated that deletion of the dopamine transporter (DAT) did not eliminate the rewarding effects of cocaine, and subsequent findings that implicated a critical role of SERT in a variety of circumstances. These studies also validated the central role of dopamine in drug reward, and consequently the role of SERT must be considered largely from the point of view of interactions with dopamine systems.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adamec, R, Burton, P, Blundell, J, Murphy, D L, Holmes, A (2006). Vulnerability to mild predator stress in serotonin transporter knockout mice. Behav Brain Res 170: 126–40.CrossRefGoogle ScholarPubMed
Altamura, C, Dell'Acqua, M L, Moessner, R, Murphy, D L, Lesch, K P, Persico, A M (2007). Altered neocortical cell density and layer thickness in serotonin transporter knockout mice: a quantitation study. Cereb Cortex 17: 1394–401.CrossRefGoogle ScholarPubMed
Ansorge, M S, Zhou, M, Lira, A, Hen, R, Gingrich, J A (2004). Early-life blockade of the 5-HT transporter alters emotional behavior in adult mice. Science 306: 879–81.CrossRefGoogle ScholarPubMed
Arborelius, L, Chergui, K, Murase, S, et al. (1993). The 5-HT1A receptor selective ligands, (R)-8-OH-DPAT and (S)-UH-301, differentially affect the activity of midbrain dopamine neurons. Naunyn Schmiedebergs Arch Pharmacol 347: 353–62.CrossRefGoogle ScholarPubMed
Armando, I, Tjurmina, O A, Li, Q, Murphy, D L, Saavedra, J M (2003). The serotonin transporter is required for stress-evoked increases in adrenal catecholamine synthesis and angiotensin II AT(2) receptor expression. Neuroendocrinology 78: 217–25.CrossRefGoogle ScholarPubMed
Belzung, C, Scearce-Levie, K, Barreau, S, Hen, R (2000). Absence of cocaine-induced place conditioning in serotonin 1B receptor knock-out mice. Pharmacol Biochem Behav 66: 221–5.CrossRefGoogle ScholarPubMed
Bengel, D, Murphy, D L, Andrews, A M, et al. (1998). Altered brain serotonin homeostasis and locomotor insensitivity to 3,4-methylenedioxymethamphetamine (“Ecstasy”) in serotonin transporter-deficient mice. Mol Pharmacol 53: 649–55.CrossRefGoogle Scholar
Bisaga, A, Sikora, J, Kostowski, W (1993). The effect of drugs interacting with serotonergic 5HT3 and 5HT4 receptors on morphine place conditioning. Pol J Pharmacol 45: 513–9.Google ScholarPubMed
Bleich, S, Bönsch, D, Rauh, J, Bayerlein, K, Fiszer, R, Frieling, H, Hillemacher, T (2007). Association of the long allele of the 5-HTTLPR polymorphism with compulsive craving in alcohol dependence. Alcohol Alcohol 42: 509–12.CrossRefGoogle Scholar
Bonhomme, N, Deurwaerdere, P, Moal, M, Spampinato, U (1995). Evidence for 5-HT4 receptor subtype involvement in the enhancement of striatal dopamine release induced by serotonin: a microdialysis study in the halothane-anesthetized rat. Neuropharmacology 34: 269–79.CrossRefGoogle ScholarPubMed
Boulenguez, P, Peters, S L, Mitchell, S N, Chauveau, J, Gray, J A, Joseph, M H (1998). Dopamine release in the nucleus accumbens and latent inhibition in the rat following microinjections of a 5-HT1B agonist into the dorsal subiculum: implications for schizophrenia. J Psychopharmacol 12: 258–67.CrossRefGoogle Scholar
Boulenguez, P, Rawlins, J N, Chauveau, J, Joseph, M H, Mitchell, S N, Gray, J A (1996). Modulation of dopamine release in the nucleus accumbens by 5-HT1B agonists: involvement of the hippocampo-accumbens pathway. Neuropharmacology 35: 1521–9.CrossRefGoogle ScholarPubMed
Boyce-Rustay, J M, Wiedholz, L M, Millstein, R A, et al. (2006). Ethanol-related behaviors in serotonin transporter knockout mice. Alcohol Clin Exp Res 30: 1957–65.CrossRefGoogle ScholarPubMed
Brodie, M S, Bunney, E B (1996). Serotonin potentiates dopamine inhibition of ventral tegmental area neurons in vitro. J Neurophysiol 76: 2077–82.CrossRefGoogle ScholarPubMed
Cameron, D L, Wessendorf, M W, Williams, J T (1997). A subset of ventral tegmental area neurons is inhibited by dopamine, 5-hydroxytryptamine and opioids. Neuroscience 77: 155–66.CrossRefGoogle ScholarPubMed
Campbell, A D, McBride, W J (1995). Serotonin-3 receptor and ethanol-stimulated dopamine release in the nucleus accumbens. Pharmacol Biochem Behav 51: 835–42.CrossRefGoogle ScholarPubMed
Carroll, J C, Boyce-Rustay, J M, Millstein, R, et al. (2007). Effects of mild early life stress on abnormal emotion-related behaviors in 5-HTT knockout mice. Behav Genet 37: 214–22.CrossRefGoogle ScholarPubMed
Caspi, A, Sugden, K, Moffitt, T E, et al. (2003). Influence of life stress on depression: moderation by a polymorphism in the 5-HTT gene. Science 301: 386–9.CrossRefGoogle ScholarPubMed
Chen, J P, Praag, H M, Gardner, E L (1991). Activation of 5-HT3 receptor by 1-phenylbiguanide increases dopamine release in the rat nucleus accumbens. Brain Res 543: 354–7.CrossRefGoogle ScholarPubMed
Daws, L C, Montanez, S, Munn, J L, et al. (2006). Ethanol inhibits clearance of brain serotonin by a serotonin transporter-independent mechanism. J Neurosci 26: 6431–8.CrossRefGoogle ScholarPubMed
Deurwaerdere, P, L'Hirondel, M, Bonhomme, N, Lucas, G, Cheramy, A, Spampinato, U (1997). Serotonin stimulation of 5-HT4 receptors indirectly enhances in vivo dopamine release in the rat striatum. J Neurochem 68: 195–203.CrossRefGoogle ScholarPubMed
Deurwaerdere, P, Spampinato, U (1999). Role of serotonin(2A) and serotonin(2B/2C) receptor subtypes in the control of accumbal and striatal dopamine release elicited in vivo by dorsal raphe nucleus electrical stimulation. J Neurochem 73: 1033–42.CrossRefGoogle ScholarPubMed
Deurwaerdere, P, Stinus, L, Spampinato, U (1998). Opposite change of in vivo dopamine release in the rat nucleus accumbens and striatum that follows electrical stimulation of dorsal raphe nucleus: role of 5-HT3 receptors. J Neurosci 18: 6528–38.CrossRefGoogle ScholarPubMed
Di Giovanni, G, Deurwaerdere, P, Di Mascio, M, Di Matteo, V, Esposito, E, Spampinato, U (1999). Selective blockade of serotonin-2C/2B receptors enhances mesolimbic and mesostriatal dopaminergic function: a combined in vivo electrophysiological and microdialysis study. Neuroscience 91: 587–97.CrossRefGoogle ScholarPubMed
Di Giovanni, G, Di Matteo, V, Di Mascio, M, Esposito, E (2000). Preferential modulation of mesolimbic vs. nigrostriatal dopaminergic function by serotonin(2C/2B) receptor agonists: a combined in vivo electrophysiological and microdialysis study. Synapse 35: 53–61.3.0.CO;2-2>CrossRefGoogle ScholarPubMed
Di Mascio, M, Di Giovanni, G, Di Matteo, V, Prisco, S, Esposito, E (1998). Selective serotonin reuptake inhibitors reduce the spontaneous activity of dopaminergic neurons in the ventral tegmental area. Brain Res Bull 46: 547–54.CrossRefGoogle ScholarPubMed
Di Matteo, V, Di Giovanni, G, Di Mascio, M, Esposito, E (2000). Biochemical and electrophysiological evidence that RO 60–0175 inhibits mesolimbic dopaminergic function through serotonin(2C) receptors. Brain Res 865: 85–90.CrossRefGoogle ScholarPubMed
Diaz-Mataix, L, Artigas, F, Celada, P (2006). Activation of pyramidal cells in rat medial prefrontal cortex projecting to ventral tegmental area by a 5-HT1A receptor agonist. Eur Neuropsychopharmacol 16: 288–96.CrossRefGoogle ScholarPubMed
Diaz-Mataix, L, Scorza, M C, Bortolozzi, A, Toth, M, Celada, P, Artigas, F (2005). Involvement of 5-HT1A receptors in prefrontal cortex in the modulation of dopaminergic activity: role in atypical antipsychotic action. J Neurosci 25: 10 831–43.CrossRefGoogle ScholarPubMed
Dray, A, Davies, J, Oakley, N R, Tongroach, P, Vellucci, S (1978). The dorsal and medial raphe projections to the substantia nigra in the rat: electrophysiological, biochemical and behavioural observations. Brain Res 151: 431–42.CrossRefGoogle ScholarPubMed
Einhorn, L C, Johansen, P A, White, F J (1988). Electrophysiological effects of cocaine in the mesoaccumbens dopamine system: studies in the ventral tegmental area. J Neurosci 8: 100–12.CrossRefGoogle ScholarPubMed
Fabre, V, Beaufour, C, Evrard, A, et al. (2000). Altered expression and functions of serotonin 5-HT1A and 5-HT1B receptors in knock-out mice lacking the 5-HT transporter. Eur J Neurosci 12: 2299–310.CrossRefGoogle ScholarPubMed
Fadda, F, Garau, B, Marchei, F, Colombo, G, Gessa, G L (1991). MDL 72222, a selective 5-HT3 receptor antagonist, suppresses voluntary ethanol consumption in alcohol-preferring rats. Alcohol Alcohol 26: 107–10.CrossRefGoogle ScholarPubMed
Fink, K B, Gothert, M (2007). 5-HT receptor regulation of neurotransmitter release. Pharmacol Rev 59: 360–417.CrossRefGoogle ScholarPubMed
Fletcher, P J, Grottick, A J, Higgins, G A (2002). Differential effects of the 5-HT(2A) receptor antagonist M100907 and the 5-HT(2C) receptor antagonist SB242084 on cocaine-induced locomotor activity, cocaine self-administration and cocaine-induced reinstatement of responding. Neuropsychopharmacology 27: 576–86.Google ScholarPubMed
Fletcher, P J, Korth, K M (1999). Activation of 5-HT1B receptors in the nucleus accumbens reduces amphetamine-induced enhancement of responding for conditioned reward. Psychopharmacology (Berl.) 142: 165–74.CrossRefGoogle ScholarPubMed
Fox, M A, Andrews, A M, Wendland, J R, Lesch, K P, Holmes, A, Murphy, D L (2007a). A pharmacological analysis of mice with a targeted disruption of the serotonin transporter. Psychopharmacology (Berl.) 195: 147–66.CrossRefGoogle ScholarPubMed
Fox, M A, Jensen, C L, Gallagher, P S, Murphy, D L (2007b). Receptor mediation of exaggerated responses to serotonin-enhancing drugs in serotonin transporter (SERT)-deficient mice. Neuropharmacology 53: 643–56.CrossRefGoogle ScholarPubMed
Gainetdinov, R R, Wetsel, W C, Jones, S R, Levin, E D, Jaber, M, Caron, M G (1999). Role of serotonin in the paradoxical calming effect of psychostimulants on hyperactivity. Science 283: 397–401.CrossRefGoogle ScholarPubMed
Gervais, J, Rouillard, C (2000). Dorsal raphe stimulation differentially modulates dopaminergic neurons in the ventral tegmental area and substantia nigra. Synapse 35: 281–91.3.0.CO;2-A>CrossRefGoogle ScholarPubMed
Giros, B, Jaber, M, Jones, S R, Wightman, R M, Caron, M G (1996). Hyperlocomotion and indifference to cocaine and amphetamine in mice lacking the dopamine transporter. Nature 379: 606–12.CrossRefGoogle ScholarPubMed
Gobbi, G, Murphy, D L, Lesch, K, Blier, P (2001). Modifications of the serotonergic system in mice lacking serotonin transporters: an in vivo electrophysiological study. J Pharmacol Exp Ther 296: 987–95.Google Scholar
Gobert, A, Millan, M J (1999). Serotonin (5-HT)2A receptor activation enhances dialysate levels of dopamine and noradrenaline, but not 5-HT, in the frontal cortex of freely-moving rats. Neuropharmacology 38: 315–7.CrossRefGoogle Scholar
Gobert, A, Rivet, J M, Lejeune, F, et al. (2000). Serotonin(2C) receptors tonically suppress the activity of mesocortical dopaminergic and adrenergic, but not serotonergic, pathways: a combined dialysis and electrophysiological analysis in the rat. Synapse 36: 205–21.3.0.CO;2-D>CrossRefGoogle Scholar
Gongora-Alfaro, J L, Hernandez-Lopez, S, Flores-Hernandez, J, Galarraga, E (1997). Firing frequency modulation of substantia nigra reticulata neurons by 5-hydroxytryptamine. Neurosci Res 29: 225–31.CrossRefGoogle ScholarPubMed
Grottick, A J, Fletcher, P J, Higgins, G A (2000). Studies to investigate the role of 5-HT(2C) receptors on cocaine- and food-maintained behavior. J Pharmacol Exp Ther 295: 1183–91.Google ScholarPubMed
Hall, F S, Drgonova, J, Goeb, M, Uhl, G R (2003). Reduced behavioral effects of cocaine in heterozygous brain-derived neurotrophic factor (BDNF) knockout mice. Neuropsychopharmacology 28: 1485–90.CrossRefGoogle ScholarPubMed
Hall, F S, Li, X F, Sora, I, et al. (2002). Cocaine mechanisms: enhanced cocaine, fluoxetine and nisoxetine place preferences following monoamine transporter deletions. Neuroscience 115: 153–61.CrossRefGoogle ScholarPubMed
Hallbus, M, Magnusson, T, Magnusson, O (1997). Influence of 5-HT1B/1D receptors on dopamine release in the guinea pig nucleus accumbens: a microdialysis study. Neurosci Lett 225: 57–60.CrossRefGoogle ScholarPubMed
Hariri, A R, Holmes, A (2006). Genetics of emotional regulation: the role of the serotonin transporter in neural function. Trends Cogn Sci 10: 182–91.CrossRefGoogle ScholarPubMed
Harrison, A A, Parsons, L H, Koob, G F, Markou, A (1999). RU 24969, a 5-HT1A/1B agonist, elevates brain stimulation reward thresholds: an effect reversed by GR 127935, a 5-HT1B/1D antagonist. Psychopharmacology (Berl.) 141: 242–50.CrossRefGoogle ScholarPubMed
Heinz, A, Jones, D W, Mazzanti, C, et al. (2000). A relationship between serotonin transporter genotype and in vivo protein expression and alcohol neurotoxicity. Biol Psychiatry 47: 643–9.CrossRefGoogle ScholarPubMed
Herman, A I, Kaiss, K M, Ma, R, et al. (2005). Serotonin transporter promoter polymorphism and monoamine oxidase type A VNTR allelic variants together influence alcohol binge drinking risk in young women. Am J Med Genet B Neuropsychiatr Genet 133: 74–8.CrossRefGoogle Scholar
Higgins, G A, Joharchi, N, Nguyen, P, Sellers, E M (1992). Effect of the 5-HT3 receptor antagonists, MDL72222 and ondansetron on morphine place conditioning. Psychopharmacology 106: 315–20.CrossRefGoogle ScholarPubMed
Hnasko, T S, Sotak, B N, Palmiter, R D (2007). Cocaine-conditioned place preference by dopamine-deficient mice is mediated by serotonin. J Neurosci 27: 12 484–8.CrossRefGoogle ScholarPubMed
Holmes, A, Lit, Q, Murphy, D L, Gold, E, Crawley, J N (2003). Abnormal anxiety-related behavior in serotonin transporter null mutant mice: the influence of genetic background. Genes Brain Behav 2: 365–80.CrossRefGoogle ScholarPubMed
Holmes, A, Murphy, D L, Crawley, J N (2002a). Reduced aggression in mice lacking the serotonin transporter. Psychopharmacology (Berl.) 161: 160–7.CrossRefGoogle ScholarPubMed
Holmes, A, Yang, R J, Murphy, D L, Crawley, J N (2002b). Evaluation of antidepressant-related behavioral responses in mice lacking the serotonin transporter. Neuropsychopharmacology 27: 914–23.CrossRefGoogle ScholarPubMed
Ichikawa, J, Meltzer, H Y (1995). DOI, a 5-HT2A/2C receptor agonist, potentiates amphetamine-induced dopamine release in rat striatum. Brain Res 698: 204–8.CrossRefGoogle ScholarPubMed
Imperato, A, Angelucci, L (1989). 5-HT3 receptors control dopamine release in the nucleus accumbens of freely moving rats. Neurosci Lett 101: 214–7.CrossRefGoogle ScholarPubMed
Iyer, R N, Bradberry, C W (1996). Serotonin-mediated increase in prefrontal cortex dopamine release: pharmacological characterization. J Pharmacol Exp Ther 277: 40–7.Google ScholarPubMed
Johnson, S W, Mercuri, N B, North, R A (1992). 5-Hydroxytryptamine1B receptors block the GABAB synaptic potential in rat dopamine neurons. J Neurosci 12: 2000–6.CrossRefGoogle ScholarPubMed
Kalueff, A V, Fox, M A, Gallagher, P S, Murphy, D L (2007a). Hypolocomotion, anxiety and serotonin syndrome-like behavior contribute to the complex phenotype of serotonin transporter knockout mice. Genes Brain Behav 6: 389–400.CrossRefGoogle ScholarPubMed
Kalueff, A V, Gallagher, P S, Murphy, D L (2006). Are serotonin transporter knockout mice ‘depressed’? Hypoactivity but no anhedonia. Neuroreport 17: 1347–51.CrossRefGoogle ScholarPubMed
Kalueff, A V, Jensen, C L, Murphy, D L (2007b). Locomotory patterns, spatiotemporal organization of exploration and spatial memory in serotonin transporter knockout mice. Brain Res 1169: 87–97.CrossRefGoogle ScholarPubMed
Kankaanpaa, A, Lillsunde, P, Ruotsalainen, M, Ahtee, L, Seppala, T (1996). 5-HT3 receptor antagonist MDL 72222 dose-dependently attenuates cocaine- and amphetamine-induced elevations of extracellular dopamine in the nucleus accumbens and the dorsal striatum. Pharmacol Toxicol 78: 317–21.CrossRefGoogle ScholarPubMed
Kankaanpaa, A, Meririnne, E, Seppala, T (2002). 5-HT3 receptor antagonist MDL 72222 attenuates cocaine- and mazindol-, but not methylphenidate-induced neurochemical and behavioral effects in the rat. Psychopharmacology (Berl.) 159: 341–50.Google Scholar
Kelai, S, Aissi, F, Lesch, K P, Cohen-Salmon, C, Hamon, M, Lanfumey, L (2003). Alcohol intake after serotonin transporter inactivation in mice. Alcohol Alcohol 38: 386–9.CrossRefGoogle ScholarPubMed
Kim, D K, Tolliver, T J, Huang, S J, et al. (2005). Altered serotonin synthesis, turnover and dynamic regulation in multiple brain regions of mice lacking the serotonin transporter. Neuropharmacology 49: 798–810.CrossRefGoogle ScholarPubMed
Kostowski, W, Dyr, W, Krzascik, P (1993). The abilities of 5-HT3 receptor antagonist ICS 205–930 to inhibit alcohol preference and withdrawal seizures in rats. Alcohol 10: 369–73.CrossRefGoogle ScholarPubMed
Lacroix, L P, Dawson, L A, Hagan, J J, Heidbreder, C A (2004). 5-HT6 receptor antagonist SB-271046 enhances extracellular levels of monoamines in the rat medial prefrontal cortex. Synapse 51: 158–64.CrossRefGoogle ScholarPubMed
Lejeune, F, Millan, M J (1998). Induction of burst firing in ventral tegmental area dopaminergic neurons by activation of serotonin (5-HT)1A receptors: WAY 100,635-reversible actions of the highly selective ligands, flesinoxan and S 15535. Synapse 30: 172–80.3.0.CO;2-9>CrossRefGoogle ScholarPubMed
Lesch, K P (2005). Alcohol dependence and gene x environment interaction in emotion regulation: is serotonin the link?Eur J Pharmacol 526: 113–24.CrossRefGoogle ScholarPubMed
Lesch, K P, Bengel, D, Heils, A, et al. (1996). Association of anxiety-related traits with a polymorphism in the serotonin transporter gene regulatory region. Science 274: 1527–31.CrossRefGoogle ScholarPubMed
Li, Q, Wichems, C, Heils, A, Lesch, K P, Murphy, D L (2000). Reduction in the density and expression, but not G-protein coupling, of serotonin receptors (5-HT1A) in 5-HT transporter knock-out mice: gender and brain region differences. J Neurosci 20: 7888–95.CrossRefGoogle Scholar
Li, Q, Wichems, C, Heils, A, Kar, L D, Lesch, K P, Murphy, D L (1999). Reduction of 5-hydroxytryptamine (5-HT)(1A)-mediated temperature and neuroendocrine responses and 5-HT(1A) binding sites in 5-HT transporter knockout mice. J Pharmacol Exp Ther 291: 999–1007.Google ScholarPubMed
Li, Q, Wichems, C H, Ma, L, Kar, L D, Garcia, F, Murphy, D L (2003). Brain region-specific alterations of 5-HT2A and 5-HT2C receptors in serotonin transporter knockout mice. J Neurochem 84: 1256–65.CrossRefGoogle ScholarPubMed
Lira, A, Zhou, M, Castanon, N, et al. (2003). Altered depression-related behaviors and functional changes in the dorsal raphe nucleus of serotonin transporter-deficient mice. Biol Psychiatry 54: 960–71.CrossRefGoogle ScholarPubMed
Liu, W, Thielen, R J, McBride, W J (2006a). Effects of repeated daily treatments with a 5-HT3 receptor antagonist on dopamine neurotransmission and functional activity of 5-HT3 receptors within the nucleus accumbens of Wistar rats. Pharmacol Biochem Behav 84: 370–7.CrossRefGoogle ScholarPubMed
Liu, W, Thielen, R J, Rodd, Z A, McBride, W J (2006b). Activation of serotonin-3 receptors increases dopamine release within the ventral tegmental area of Wistar and alcohol-preferring (P) rats. Alcohol 40: 167–76.CrossRefGoogle ScholarPubMed
Lucas, G, Di Matteo, V, Deurwaerdere, P, et al. (2001). Neurochemical and electrophysiological evidence that 5-HT4 receptors exert a state-dependent facilitatory control in vivo on nigrostriatal, but not mesoaccumbal, dopaminergic function. Eur J Neurosci 13: 889–98.CrossRefGoogle Scholar
Lucas, G, Spampinato, U (2000). Role of striatal serotonin2A and serotonin2C receptor subtypes in the control of in vivo dopamine outflow in the rat striatum. J Neurochem 74: 693–701.CrossRefGoogle ScholarPubMed
Mannoury la Cour, C, Boni, C, Hanoun, N, Lesch, K P, Hamon, M, Lanfumey, L (2001). Functional consequences of 5-HT transporter gene disruption on 5-HT(1a) receptor-mediated regulation of dorsal raphe and hippocampal cell activity. J Neurosci 21: 2178–85.CrossRefGoogle ScholarPubMed
Mateo, Y, Budygin, E A, John, C E, Jones, S R (2004). Role of serotonin in cocaine effects in mice with reduced dopamine transporter function. Proc Natl Acad Sci USA 101: 372–7.CrossRefGoogle ScholarPubMed
Mathews, T A, Fedele, D E, Coppelli, F M, Avila, A M, Murphy, D L, Andrews, A M (2004). Gene dose-dependent alterations in extraneuronal serotonin but not dopamine in mice with reduced serotonin transporter expression. J Neurosci Methods 140: 169–81.CrossRefGoogle Scholar
Maurel, S, Vry, J, Beun, R, Schreiber, R (1999). 5-HT2A and 5-HT2C/5-HT1B receptors are differentially involved in alcohol preference and consummatory behavior in cAA rats. Pharmacol Biochem Behav 62: 89–96.CrossRefGoogle ScholarPubMed
McNeish, C S, Svingos, A L, Hitzemann, R, Strecker, R E (1993). The 5-HT3 antagonist zacopride attenuates cocaine-induced increases in extracellular dopamine in rat nucleus accumbens. Pharmacol Biochem Behav 45: 759–63.CrossRefGoogle ScholarPubMed
Minabe, Y, Schechter, L, Hashimoto, K, Shirayama, Y, Ashby, CR (2003). Acute and chronic administration of the selective 5-HT1A receptor antagonist WAY-405 significantly alters the activity of midbrain dopamine neurons in rats: an in vivo electrophysiological study. Synapse 50: 181–90.CrossRefGoogle Scholar
Murphy, D L, Uhl, G R, Holmes, A, et al. (2003). Experimental gene interaction studies with SERT mutant mice as models for human polygenic and epistatic traits and disorders. Genes Brain Behav 2: 350–64.CrossRefGoogle ScholarPubMed
Mylecharane, E J (1996). Ventral tegmental area 5-HT receptors: mesolimbic dopamine release and behavioural studies. Behav Brain Res 73: 1–5.CrossRefGoogle ScholarPubMed
Navailles, S, Deurwaerdere, P, Porras, G, Spampinato, U (2004). In vivo evidence that 5-HT2C receptor antagonist but not agonist modulates cocaine-induced dopamine outflow in the rat nucleus accumbens and striatum. Neuropsychopharmacology 29: 319–26.CrossRefGoogle Scholar
Numachi, Y, Ohara, A, Yamashita, M, et al. (2007). Methamphetamine-induced hyperthermia and lethal toxicity: role of the dopamine and serotonin transporters. Eur J Pharmacol 572: 120–8.CrossRefGoogle ScholarPubMed
O'Dell, L E, Parsons, L H (2004). Serotonin1B receptors in the ventral tegmental area modulate cocaine-induced increases in nucleus accumbens dopamine levels. J Pharmacol Exp Ther 311: 711–9.CrossRefGoogle ScholarPubMed
Parsons, L H, Koob, G F, Weiss, F (1999). RU 24969, a 5-HT1B/1A receptor agonist, potentiates cocaine-induced increases in nucleus accumbens dopamine. Synapse 32: 132–5.3.0.CO;2-V>CrossRefGoogle ScholarPubMed
Parsons, L H, Weiss, F, Koob, G F (1998). Serotonin1B receptor stimulation enhances cocaine reinforcement. J Neurosci 18: 10 078–89.CrossRefGoogle ScholarPubMed
Pehek, E A, McFarlane, H G, Maguschak, K, Price, B, Pluto, C P (2001). M100,907, a selective 5-HT(2A) antagonist, attenuates dopamine release in the rat medial prefrontal cortex. Brain Res 888: 51–9.CrossRefGoogle ScholarPubMed
Persico, A M, Baldi, A, Dell'Acqua, M L, et al. (2003). Reduced programmed cell death in brains of serotonin transporter knockout mice. Neuroreport 14: 341–4.CrossRefGoogle ScholarPubMed
Persico, A M, Mengual, E, Moessner, R, et al. (2001). Barrel pattern formation requires serotonin uptake by thalamocortical afferents, and not vesicular monoamine release. J Neurosci 21: 6862–73.CrossRefGoogle Scholar
Pessia, M, Jiang, Z G, North, R A, Johnson, S W (1994). Actions of 5-hydroxytryptamine on ventral tegmental area neurons of the rat in vitro. Brain Res 654: 324–30.CrossRefGoogle ScholarPubMed
Pierucci, M, Di Matteo, V, Esposito, E (2004). Stimulation of serotonin2C receptors blocks the hyperactivation of midbrain dopamine neurons induced by nicotine administration. J Pharmacol Exp Ther 309: 109–18.CrossRefGoogle ScholarPubMed
Porras, G, Di Matteo, V, Deurwaerdere, P, Esposito, E, Spampinato, U (2002). Central serotonin4 receptors selectively regulate the impulse-dependent exocytosis of dopamine in the rat striatum: in vivo studies with morphine, amphetamine and cocaine. Neuropharmacology 43: 1099–109.CrossRefGoogle ScholarPubMed
Porras, G, Di Matteo, V, Fracasso, C, et al. (2002). 5-HT2A and 5-HT2C/2B receptor subtypes modulate dopamine release induced in vivo by amphetamine and morphine in both the rat nucleus accumbens and striatum. Neuropsychopharmacology 26: 311–24.CrossRefGoogle ScholarPubMed
Powell, S B, Lehmann-Masten, V D, Paulus, M P, Gainetdinov, R R, Caron, M G, Geyer, M A (2004). MDMA “ecstasy” alters hyperactive and perseverative behaviors in dopamine transporter knockout mice. Psychopharmacology (Berl.) 173: 310–7.CrossRefGoogle ScholarPubMed
Pozzi, L, Trabace, L, Invernizzi, R, Samanin, R (1995). Intranigral GR-113808, a selective 5-HT4 receptor antagonist, attenuates morphine-stimulated dopamine release in the rat striatum. Brain Res 692: 265–8.CrossRefGoogle ScholarPubMed
Qu, Y, Villacreses, N, Murphy, D L, Rapoport, S I (2005). 5-HT2A/2C receptor signaling via phospholipase A2 and arachidonic acid is attenuated in mice lacking the serotonin reuptake transporter. Psychopharmacology (Berl.) 180: 12–20.CrossRefGoogle ScholarPubMed
Ren-Patterson, R F, Cochran, L W, Holmes, A, Lesch, K P, Lu, B, Murphy, D L (2006). Gender-dependent modulation of brain monoamines and anxiety-like behaviors in mice with genetic serotonin transporter and BDNF deficiencies. Cell Mol Neurobiol 26: 755–80.CrossRefGoogle ScholarPubMed
Ren-Patterson, R F, Cochran, L W, Holmes, A, et al. (2005). Loss of brain-derived neurotrophic factor gene allele exacerbates brain monoamine deficiencies and increases stress abnormalities of serotonin transporter knockout mice. J Neurosci Res 79: 756–71.CrossRefGoogle ScholarPubMed
Rioux, A, Fabre, V, Lesch, K P, et al. (1999). Adaptive changes of serotonin 5-HT2A receptors in mice lacking the serotonin transporter. Neurosci Lett 262: 113–6.CrossRefGoogle ScholarPubMed
Risinger, F O, Bormann, N M, Oakes, R A (1996). Reduced sensitivity to ethanol reward, but not ethanol aversion, in mice lacking 5-HT1B receptors. Alcohol Clin Exp Res 20: 1401–5.CrossRefGoogle Scholar
Risinger, F O, Doan, A M, Vickrey, A C (1999). Oral operant ethanol self-administration in 5-HT1b knockout mice. Behav Brain Res 102: 211–5.CrossRefGoogle ScholarPubMed
Rocha, B A, Fumagalli, F, Gainetdinov, R R, et al. (1998a). Cocaine self-administration in dopamine-transporter knockout mice. Nat Neurosci 1: 132–7.CrossRefGoogle ScholarPubMed
Rocha, B A, Scearce-Levie, K, Lucas, J J, et al. (1998b). Increased vulnerability to cocaine in mice lacking the serotonin-1B receptor. Nature 393: 175–8.Google ScholarPubMed
Rompre, P P, Injoyan, R, Hagan, J J (1995). Effects of granisetron, a 5-HT3 receptor antagonist, on morphine-induced potentiation of brain stimulation reward. Eur J Pharmacol 287: 263–9.CrossRefGoogle ScholarPubMed
Salichon, N, Gaspar, P, Upton, A L, et al. (2001). Excessive activation of serotonin (5-HT) 1B receptors disrupts the formation of sensory maps in monoamine oxidase a and 5-HT transporter knock-out mice. J Neurosci 21: 884–96.CrossRefGoogle ScholarPubMed
Santiago, M, Machado, A, Cano, J (1995). 5-HT3 receptor agonist induced carrier-mediated release of dopamine in rat striatum in vivo. Br J Pharmacol 116: 1545–50.CrossRefGoogle ScholarPubMed
Shen, H W, Hagino, Y, Kobayashi, H, et al. (2004). Regional differences in extracellular dopamine and serotonin assessed by in vivo microdialysis in mice lacking dopamine and/or serotonin transporters. Neuropsychopharmacology 29: 1790–9.CrossRefGoogle ScholarPubMed
Sora, I, Hall, F S, Andrews, A M, et al. (2001). Molecular mechanisms of cocaine reward: combined dopamine and serotonin transporter knockouts eliminate cocaine place preference. Proc Natl Acad Sci USA 98: 5300–5.CrossRefGoogle ScholarPubMed
Sora, I, Wichems, C, Takahashi, N, et al. (1998). Cocaine reward models: conditioned place preference can be established in dopamine- and in serotonin-transporter knockout mice. Proc Natl Acad Sci USA 95: 7699–704.CrossRefGoogle ScholarPubMed
Steward, L J, Ge, J, Stowe, R L, et al. (1996). Ability of 5-HT4 receptor ligands to modulate rat striatal dopamine release in vitro and in vivo. Br J Pharmacol 117: 55–62.CrossRefGoogle ScholarPubMed
Tanda, G, Frau, R, Di Chiara, G (1995). Local 5HT3 receptors mediate fluoxetine but not desipramine-induced increase of extracellular dopamine in the prefrontal cortex. Psychopharmacology (Berl.) 119: 15–9.CrossRefGoogle Scholar
Thorre, K, Ebinger, G, Michotte, Y (1998). 5-HT4 receptor involvement in the serotonin-enhanced dopamine efflux from the substantia nigra of the freely moving rat: a microdialysis study. Brain Res 796: 117–24.CrossRefGoogle ScholarPubMed
Tjurmina, O A, Armando, I, Saavedra, J M, Goldstein, D S, Murphy, D L (2002). Exaggerated adrenomedullary response to immobilization in mice with targeted disruption of the serotonin transporter gene. Endocrinology 143: 4520–6.CrossRefGoogle ScholarPubMed
Tomkins, D M, Higgins, G A, Sellers, E M (1994a). Low doses of the 5-HT1A agonist 8-hydroxy-2-(di-n-propylamino)-tetralin (8-OH DPAT) increase ethanol intake. Psychopharmacology (Berl.) 115: 173–9.CrossRefGoogle ScholarPubMed
Tomkins, D M, Le, A D, Sellers, E M (1995). Effect of the 5-HT3 antagonist ondansetron on voluntary ethanol intake in rats and mice maintained on a limited access procedure. Psychopharmacology (Berl.) 117: 479–85.CrossRefGoogle ScholarPubMed
Tomkins, D M, O'Neill, M F (2000). Effect of 5-HT(1B) receptor ligands on self-administration of ethanol in an operant procedure in rats. Pharmacol Biochem Behav 66: 129–36.CrossRefGoogle Scholar
Tomkins, D M, Sellers, E M, Fletcher, P J (1994b). Median and dorsal raphe injections of the 5-HT1A agonist, 8-OH-DPAT, and the GABAA agonist, muscimol, increase voluntary ethanol intake in Wistar rats. Neuropharmacology 33: 349–58.CrossRefGoogle ScholarPubMed
Trigo, J M, Renoir, T, Lanfumey, L, et al. (2007). 3,4-Methylenedioxymethamphetamine self-administration is abolished in serotonin transporter knockout mice. Biol Psychiatry 62: 669–79.CrossRefGoogle ScholarPubMed
Uhl, G R, Hall, F S, Sora, I (2002). Cocaine, reward, movement and monoamine transporters. Mol Psychiatry 7: 21–6.CrossRefGoogle ScholarPubMed
Wellman, C L, Izquierdo, A, Garrett, J E, et al. (2007). Impaired stress-coping and fear extinction and abnormal corticolimbic morphology in serotonin transporter knock-out mice. J Neurosci 27: 684–91.CrossRefGoogle ScholarPubMed
Wilson, A W, Neill, J C, Costall, B (1998). An investigation into the effects of 5-HT agonists and receptor antagonists on ethanol self-administration in the rat. Alcohol 16: 249–70.CrossRefGoogle ScholarPubMed
Wise, R A, Bozarth, M A (1987). A psychomotor stimulant theory of addiction. Psychol Rev 94: 469–92.CrossRefGoogle Scholar
Wozniak, K M, Pert, A, Linnoila, M (1990). Antagonism of 5-HT3 receptors attenuates the effects of ethanol on extracellular dopamine. Eur J Pharmacol 187: 287–9.CrossRefGoogle ScholarPubMed
Xu, F, Gainetdinov, R R, Wetsel, W C, et al. (2000). Mice lacking the norepinephrine transporter are supersensitive to psychostimulants. Nat Neurosci 3: 465–71.CrossRefGoogle ScholarPubMed
Yan, Q, Reith, M E, Yan, S (2000). Enhanced accumbal dopamine release following 5-HT(2A) receptor stimulation in rats pretreated with intermittent cocaine. Brain Res 863: 254–8.CrossRefGoogle ScholarPubMed
Yan, Q S (2000). Activation of 5-HT2A/2C receptors within the nucleus accumbens increases local dopaminergic transmission. Brain Res Bull 51: 75–81.CrossRefGoogle ScholarPubMed
Yan, Q S, Yan, S E (2001). Activation of 5-HT(1B/1D) receptors in the mesolimbic dopamine system increases dopamine release from the nucleus accumbens: a microdialysis study. Eur J Pharmacol 418: 55–64.CrossRefGoogle ScholarPubMed
Yan, Q S, Zheng, S Z, Yan, S E (2004). Involvement of 5-HT1B receptors within the ventral tegmental area in regulation of mesolimbic dopaminergic neuronal activity via GABA mechanisms: a study with dual-probe microdialysis. Brain Res 1021: 82–91.CrossRefGoogle ScholarPubMed
Yoshimoto, K, McBride, W J, Lumeng, L, Li, T K (1992). Alcohol stimulates the release of dopamine and serotonin in the nucleus accumbens. Alcohol 9: 17–22.CrossRefGoogle ScholarPubMed
Zhao, S, Edwards, J, Carroll, J, et al. (2006). Insertion mutation at the C-terminus of the serotonin transporter disrupts brain serotonin function and emotion-related behaviors in mice. Neuroscience 140: 321–34.CrossRefGoogle ScholarPubMed
Zhou, F C, Lesch, K P, Murphy, D L (2002). Serotonin uptake into dopamine neurons via dopamine transporters: a compensatory alternative. Brain Res 942: 109–19.CrossRefGoogle ScholarPubMed
Zhou, F M, Liang, Y, Salas, R, Zhang, L, Biasi, M, Dani, J A (2005). Corelease of dopamine and serotonin from striatal dopamine terminals. Neuron 46: 65–74.CrossRefGoogle ScholarPubMed
Zhou, Q Y, Palmiter, R D (1995). Dopamine-deficient mice are severely hypoactive, adipsic, and aphagic. Cell 83: 1197–209.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×