Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-xfwgj Total loading time: 0 Render date: 2024-07-05T23:41:23.080Z Has data issue: false hasContentIssue false

3 - Developmental roles for the serotonin transporter

Published online by Cambridge University Press:  06 July 2010

Allan V. Kalueff
Affiliation:
Georgetown University Medical Center
Justin L. LaPorte
Affiliation:
National Institute of Mental Health
Get access

Summary

ABSTRACT

From invertebrates to humans, serotonin (5-HT) exerts structural effects, especially during development. The 5-HT transporter (SERT) directly regulates these effects by maintaining extracellular 5-HT concentrations within a physiological range and possibly by modulating the intracellular redox state of the cell. This chapter addresses 5-HT trophic effects on developing neural and non-neural mammalian cells, and summarizes SERT roles in 5HT-mediated structural effects from basic neurodevelopment to human teratology.

INTRODUCTION

The neurotransmitter serotonin (5-HT) is known to influence behavioral, autonomic, and cognitive functions, including learning and memory, sleep, temperature regulation, appetite, and mood. 5HT also plays a major role in human disorders such as anxiety, fear, depression, obsessive compulsive behavior, autism, and aggression. In addition to triggering a wide variety of electrophysiological effects, 5-HT also exerts important developmental roles in neural and non-neural tissues from early embryogenesis. In many regions of the central nervous system (CNS), this dual “functional” and “structural” involvement is interestingly paralleled at the histological and molecular levels by classical synaptic neurotransmission co-existing with paracrine mechanisms typical of “volume” or “mass” transmission. Indeed, many serotoninergic presynaptic terminals are not in direct proximity to postsynaptic elements. Many 5-HT receptors display CNS distributions necessarily implying the existence of abundant extrasynaptic binding sites, and the 5-HT transporter (SERT) is distributed along 5-HT axonal membranes mostly at extrasynaptic, non-junctional sites.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Gingrich, J A, Hen, R (2001). Dissecting the role of the serotonin system in neuropsychiatric disorders using knockout mice. Psychopharmacology 155: 1–10.CrossRefGoogle ScholarPubMed
Murphy, D L, Lesch, K P (2008). Targeting the murine serotonin transporter: insights into human neurobiology. Nat Rev Neurosci 9: 85–96.CrossRefGoogle ScholarPubMed
Buznikov, G A, Shmukler, Y B, Lauder, J M (1996). From oocyte to neuron: do neurotransmitters function in the same way throughout development?Cell Mol Neurobiol 16: 537–59.CrossRefGoogle ScholarPubMed
Moiseiwitsch, J R (2000). The role of serotonin and neurotransmitters during craniofacial development. Crit Rev Oral Biol Med 11: 230–9.CrossRefGoogle ScholarPubMed
Moiseiwitsch, J R, Lambert, H W, Lauder, J M (2001). Roles for serotonin in non-neural embryonic development. In Kalverboer, A, Gramsbergen, A, editors. Brain and behavior in human development. Amsterdam: Kluwer, pp. 139–52.Google Scholar
Buznikov, G A, Lambert, H W, Lauder, J M (2001). Serotonin and serotonin-like substances as regulators of early embryogenesis and morphogenesis. Cell Tissue Res 305: 177–86.CrossRefGoogle ScholarPubMed
Bunin, M A, Wightman, R M (1999). Paracrine neurotransmission in the CNS: involvement of 5-HT. Trends Neurosci 22: 377–82.CrossRefGoogle ScholarPubMed
Ridet, J L, Privat, A (2000). Volume transmission. Trends Neurosci 23: 58–9.CrossRefGoogle ScholarPubMed
Zoli, M, Jansson, A, Sykova, E, Agnati, L F, Fuxe, K (1999). Volume transmission in the CNS and its relevance for neuropsychopharmacology. Trends Pharmacol Sci 20: 142–50.CrossRefGoogle ScholarPubMed
Tao-Cheng, J H, Zhou, F C (1999). Differential polarization of serotonin transporters in axons versus somadendrites: an immunogold electron microscopy study. Neuroscience 94: 821–30.CrossRefGoogle Scholar
Janusonis, S, Gluncic, V, Rakic, P (2004). Early serotoninergic projections to Cajal–Retzius cells: relevance for cortical development. J Neurosci 24: 1652–9.CrossRefGoogle Scholar
Ramamoorthy, S, Bauman, A L, Moore, K R, et al. (1993). Antidepressant- and cocaine-sensitive human serotonin transporter: molecular cloning, expression, and chromosomal localization. Proc Natl Acad Sci USA 90: 2542–6.CrossRefGoogle ScholarPubMed
Jacobs, B L, Azmitia, E C (1992). Structure and function of the brain serotonin system. Physiol Rev 72: 165–229.CrossRefGoogle ScholarPubMed
Lauder, J M (1990). Ontogeny of the serotonergic system in the rat: Serotonin as a developmental signal. Ann NY Acad Sci 600: 297–314.CrossRefGoogle ScholarPubMed
Hendricks, T J, Fyodorov, D V, Wegman, L J, et al. (2003). Pet-1 ETS gene plays a critical role in 5-HT neuron development and is required for normal anxiety-like and aggressive behavior. Neuron 37: 233–47.CrossRefGoogle Scholar
Whitaker-Azmitia, P M (2001). Serotonin and brain development: role in human developmental diseases. Brain Res Bull 56: 479–85.CrossRefGoogle ScholarPubMed
Sundstrom, E, Kolare, S, Souverbie, F, et al. (1993). Neurochemical differentiation of human bulbospinal monoaminergic neurons during the first trimester. Dev Brain Res 75: 1–12.CrossRefGoogle ScholarPubMed
Levallois, C, Valence, C, Baldet, P, Privat, A (1997). Morphological and morphometric analysis of serotonin-containing neurons in primary dissociated cultures of human rhombencephalon: a study of development. Dev Brain Res 99: 243–52.CrossRefGoogle ScholarPubMed
Chugani, D C, Muzik, O, Behen, M, et al. (1999). Developmental changes in brain serotonin synthesis capacity in autistic and nonautistic children. Ann Neurol 45: 287–95.3.0.CO;2-9>CrossRefGoogle ScholarPubMed
Verge, D, Calas, A (2000). Serotonergic neurons and serotonin receptors: gains from cytochemical approaches. J Chem Neuroanat 18: 41–56.CrossRefGoogle ScholarPubMed
Lauder, J M, Liu, J P, Grayson, D R (2000). In utero exposure to serotonergic drugs alters neonatal expression of 5-HT1A receptor transcripts: a quantitative RT- PCR study. Int J Dev Neurosci 18: 171–6.CrossRefGoogle Scholar
Johns, J M, Lubin, D A, Lieberman, J A, Lauder, J M (2002). Developmental effects of prenatal cocaine exposure on 5-HT1A receptors in male and female rat offspring. Dev Neurosci 24: 522–30.CrossRefGoogle ScholarPubMed
Lubin, D A, Cannon, J B, Black, M C, Brown, L E, Johns, J M (2003). Effects of chronic cocaine on monoamine levels in discrete brain structures of lactating rat dams. Pharmacol Biochem Behav 74: 449–54.CrossRefGoogle ScholarPubMed
Ivgy-May, N, Tamir, H, Gershon, M D (1994). Synaptic properties of serotonergic growth cones in developing rat brain. J Neurosci 14: 1011–29.CrossRefGoogle ScholarPubMed
Mansour-Robaey, S, Mechawar, N, Radja, F, Beaulieu, C, Descarries, L (1998). Quantified distribution of serotonin transporter and receptors during the postnatal development of the rat barrel field cortex. Dev Brain Res 107: 159–63.CrossRefGoogle ScholarPubMed
Lebrand, C, Cases, O, Wehrle, R, Blakely, R D, Edwards, R H, Gaspar, P (1998). Transient developmental expression of monoamine transporters in the rodent forebrain. J Comp Neurol 401: 506–24.3.0.CO;2-#>CrossRefGoogle ScholarPubMed
Hansson, S R, Mezey, E, Hoffman, B J (1999). Serotonin transporter messenger RNA expression in neural crest-derived structures and sensory pathways of the developing rat embryo. Neuroscience 89: 243–65.CrossRefGoogle ScholarPubMed
Hoyer, D, Hannon, J P, Martin, G R (2002). Molecular, pharmacological and functional diversity of 5-HT receptors. Pharmacol Biochem Behav 71: 533–54.CrossRefGoogle ScholarPubMed
Roth, B L, Hamblin, M W, Ciaranello, R D (1991). Developmental regulation of 5-HT2 and 5-HT1c mRNA and receptor levels. Dev Brain Res 58: 51–8.CrossRefGoogle ScholarPubMed
Hellendall, R P, Schambra, U, Liu, J, Breese, G R, Millhorn, D E, Lauder, J M (1992). Detection of serotonin receptor transcripts in the developing nervous system. J Chem Neuroanat 5: 299–310.CrossRefGoogle ScholarPubMed
Morilak, D A, Ciaranello, R D (1993). Ontogeny of 5-hydroxytryptamine2 receptor immunoreactivity in the developing rat brain. Neuroscience 55: 869–80.CrossRefGoogle ScholarPubMed
Zec, N, Filiano, J J, Panigrahy, A, White, W F, Kinney, H C (1996). Developmental changes in [3H]lysergic acid diethylamide ([3H]LSD) binding to serotonin receptors in the human brainstem. J Neuropathol Exp Neurol 55: 114–26.CrossRefGoogle ScholarPubMed
Borella, A, Bindra, M, Whitaker-Azmitia, P M (1997). Role of the 5-HT1A receptor in development of the neonatal rat brain: preliminary behavioral studies. Neuropharmacology 36: 445–50.CrossRefGoogle ScholarPubMed
Ruiz, G, Bancila, M, Valenzuela, M, Daval, G, Kia, K H, Verge, D (1999). Plasticity of 5-hydroxytryptamine(1B) receptors during postnatal development in the rat visual cortex. Int J Dev Neurosci 17: 305–15.CrossRefGoogle ScholarPubMed
Talley, E M, Bayliss, D A (2000). Postnatal development of 5-HT1A receptor expression in rat somatic motoneurons. Dev Brain Res 122: 1–10.CrossRefGoogle Scholar
Rho, J M, Storey, T W (2001). Molecular ontogeny of major neurotransmitter receptor systems in the mammalian central nervous system: norepinephrine, dopamine, serotonin, acetylcholine, and glycine. J Child Neurol 16: 271–80.CrossRefGoogle ScholarPubMed
Hendricks, T, Francis, N, Fyodorov, D, Deneris, E S (1999). The ETS domain factor Pet-1 is an early and precise marker of central serotonin neurons and interacts with a conserved element in serotonergic genes. J Neurosci 19: 10 348–56.CrossRefGoogle ScholarPubMed
Zhao, Z Q, Scott, M, Chiechio, S, et al. (2006). Lmx1b is required for maintenance of central serotonergic neurons and mice lacking central serotonergic system exhibit normal locomotor activity. J Neurosci 26: 12 781–8.CrossRefGoogle ScholarPubMed
Zhao, Z Q, Chiechio, S, Sun, Y G, et al. (2007). Mice lacking central serotonergic neurons show enhanced inflammatory pain and an impaired analgesic response to antidepressant drugs. J Neurosci 27: 6045–53.CrossRefGoogle ScholarPubMed
Hodges, M R, Tattersall, G J, Harris, M B, et al. (2008). Defects in breathing and thermoregulation in mice with near-complete absence of central serotonin neurons. J Neurosci 28: 2495–505.CrossRefGoogle ScholarPubMed
Scott, M M, Wylie, C J, Lerch, J K, et al. (2005). A genetic approach to access serotonin neurons for in vivo and in vitro studies. Proc Natl Acad Sci USA 102: 16 472–7.CrossRefGoogle ScholarPubMed
Jensen, P, Farago, A F, Awatramani, R B, Scott, M M, Deneris, E S, Dymecki, S M (2008). Redefining the serotonergic system by genetic lineage. Nat Neurosci 11: 417–9.CrossRefGoogle ScholarPubMed
Whitaker-Azmitia, P M, Druse, M, Walker, P, Lauder, J M (1996). Serotonin as a developmental signal. Behav Brain Res 73: 19–29.CrossRefGoogle ScholarPubMed
Harrison, M A, Pickard, B G (1989). Auxin asymmetry during gravitropism by tomato hypocotyls. Plant Physiol 89: 652–7.CrossRefGoogle ScholarPubMed
Muday, G K (2001). Auxins and tropisms. J Plant Growth Regul 20: 226–43.CrossRefGoogle ScholarPubMed
Blancaflor, E B (2002). The cytoskeleton and gravitropism in higher plants. J Plant Growth Regul 21: 120–36.CrossRefGoogle ScholarPubMed
Colas, J F, Launay, J M, Kellermann, O, Rosay, P, Maroteaux, L (1995). Drosophila 5-HT2 serotonin receptor: coexpression with fushi-tarazu during segmentation. Proc Natl Acad Sci USA 92: 5441–5.CrossRefGoogle ScholarPubMed
Colas, J F, Launay, J M, Vonesch, J L, Hickel, P, Maroteaux, L (1999). Serotonin synchronises convergent extension of ectoderm with morphogenetic gastrulation movements in Drosophila. Mech Dev 87: 77–91.CrossRefGoogle ScholarPubMed
Levitt, P, Harvey, J A, Friedman, E, Simansky, K, Murphy, E H (1997). New evidence for neurotransmitter influences on brain development. Trends Neurosci 20: 269–74.CrossRefGoogle ScholarPubMed
Zimmerman, E F, Clark, R L, Ganguli, S, Venkatasubramanian, K (1983). Serotonin regulation of palatal cell motility. J Craniofac Genet Dev Biol 3: 371–85.Google ScholarPubMed
Bottaro, D, Shepro, D, Peterson, S, Hechtman, H B (1985). Serotonin, histamine, and norepinephrine mediation of endothelial and vascular smooth muscle cell movement. Am J Physiol 248: C252–7.CrossRefGoogle ScholarPubMed
Bell, L, Madri, J A (1989). Effect of platelet factors on migration of cultured bovine aortic endothelial and smooth muscle cells. Circ Res 65: 1057–65.CrossRefGoogle ScholarPubMed
Lee, S L, Wang, W W, Moore, B J, Fanburg, B L (1991). Dual effects of serotonin on growth of bovine pulmonary artery smooth muscle cells in culture. Circ Res 68: 1362–8.CrossRefGoogle ScholarPubMed
Shuey, D L, Sadler, T W, Lauder, J M (1992). Serotonin as a regulator of craniofacial morphogenesis: site specific malformations following exposure to serotonin uptake inhibitors. Teratology 46: 367–78.CrossRefGoogle ScholarPubMed
Yavarone, M S, Shuey, D L, Tamir, H, Sadler, T W, Lauder, J M (1993). Serotonin and cardiac morphogenesis in the mouse embryo. Teratology 47: 573–84.CrossRefGoogle ScholarPubMed
Moiseiwitch, J R D, Lauder, J M (1995). Serotonin regulates mouse cranial neural crest migration. Proc Natl Acad Sci USA 92: 7182–6.CrossRefGoogle Scholar
Moiseiwitsch, J R, Lauder, J M (1996). Stimulation of murine tooth development in organotypic culture by the neurotransmitter serotonin. Arch Oral Biol 41: 161–5.CrossRefGoogle ScholarPubMed
Moiseiwitsch, J R, Lauder, J M (1997). Regulation of gene expression in cultured embryonic mouse mandibular mesenchyme by serotonin antagonists. Anat Embryol 195: 71–8.CrossRefGoogle ScholarPubMed
Choi, D S, Ward, S J, Messaddeq, N, Launay, J M, Maroteaux, L (1997). 5-HT2B receptor-mediated serotonin morphogenetic functions in mouse cranial neural crest and myocardial cells. Development 124: 1745–55.Google Scholar
Fanburg, B L, Lee, S L (1997). A new role for an old molecule: serotonin as a mitogen. Am J Physiol 272: L795–806.Google ScholarPubMed
Tamura, K, Kanzaki, T, Saito, Y, Otabe, M, Saito, Y, Morisaki, N (1997). Serotonin (5-hydroxytryptamine, 5-HT) enhances migration of rat aortic smooth muscle cells through 5-HT2 receptors. Atherosclerosis 132: 139–43.CrossRefGoogle ScholarPubMed
Lee, S L, Wang, W W, Finaly, G A, Fanburg, F L (1999). Serotonin stimulates mitogen-activated protein kinase activity through the formation of superoxide anions. Am J Physiol 277: L282–91.Google Scholar
Lee, S L, Simon, A R, Wang, W W, Fanburg, B L (2001). H2O2 signals 5-HT-induced ERK MAP kinase activation and mitogenesis of smooth muscle cells. Am J Physiol 281: L646–52.Google Scholar
Pavone, L M, Mithbaokar, P, Mastellone, V, et al. (2007). Fate map of serotonin transporter-expressing cells in developing mouse heart. Genesis 45: 689–95.CrossRefGoogle ScholarPubMed
Nebigil, C G, Launay, J M, Hickel, P, Tournois, C, Maroteaux, L (2000b). 5-Hydroxytryptamine 2B receptor regulates cell-cycle progression: cross-talk with tyrosine kinase pathways. Proc Natl Acad Sci USA 97: 2591–6.CrossRefGoogle ScholarPubMed
Nebigil, C G, Choi, D S, Dierich, A, et al. (2000a). Serotonin 2B receptor is required for heart development. Proc Natl Acad Sci USA 97: 9508–13.CrossRefGoogle ScholarPubMed
Lambert, H W, Weiss, E R, Lauder, J M (2001). Activation of 5-HT receptors that stimulate the adenylyl cyclase pathway positively regulates IGF-I in cultured craniofacial mesenchymal cells. Dev Neurosci 23: 70–7.CrossRefGoogle ScholarPubMed
Azmitia, E C (2001). Modern views of an ancient chemical: serotonin effects on cell proliferation, maturation, and apoptosis. Brain Res Bull 56: 413–24.CrossRefGoogle ScholarPubMed
Mukhin, Y V, Garnovskaya, M N, Collinsworth, G, et al. (2000). 5-Hydroxytryptamine1A receptor/Giβγ stimulates mitogen-activated protein kinase via NAD(P)H oxidase and reactive oxygen species upstream of Src in Chinese hamster ovary fibroblasts. Biochem J 347: 61–7.CrossRefGoogle ScholarPubMed
Choi, D S, Kellermann, O, Richard, J F, et al. (1998). Mouse 5-HT2B receptor-mediated serotonin trophic functions. Ann NY Acad Sci 861: 67–73.CrossRefGoogle ScholarPubMed
Adayev, T, Ray, I, Sondhi, R, Sobocki, T, Banerjee, P (2003). The G protein-coupled 5-HT1A receptor causes suppression of caspase-3 through MAPK and protein kinase Cα. Biochem Biophys Acta 1640: 85–96.CrossRefGoogle Scholar
Serafeim, A, Grafton, G, Chamba, A, et al. (2002). 5-Hydroxytryptamine drives apoptosis in biopsylike Burkitt lymphoma cells: reversal by selective seoronin reuptake inhibitors. Blood 99: 2545–53.CrossRefGoogle ScholarPubMed
Persico, A M, Baldi, A, Dell'Acqua, M L, et al. (2003). Reduced programmed cell death in brains of serotonin transporter knockout mice. NeuroReport 14: 341–4.CrossRefGoogle ScholarPubMed
Scharper, C, Zhu, Y, Kouklei, M, Culmsee, C, Krieglstein, J (2000). Stimulation of 5-HT 1A receptors reduces apoptosis after transient forebrain ischemia in the rat. Brain Res 883: 41–50.CrossRefGoogle Scholar
Stankovski, L, Alvarez, C, Ouimet, T, et al. (2007). Developmental cell death is enhanced in the cerebral cortex of mice lacking the brain vesicular monoamine transporter. J Neurosci 27: 1316–24.CrossRefGoogle ScholarPubMed
Zilkha-Falb, R, Ziv, I, Nardi, N, Offen, D, Melamed, E, Barzilai, A (1997). Monoamine-induced apoptotic neuronal cell death. Cell Mol Neurobiol 17: 101–18.CrossRefGoogle ScholarPubMed
Mathews, T A, Fedele, D E, Coppelli, F M, Avila, A M, Murphy, D L, Andrews, A M (2004). Gene dose-dependent alterations in extraneuronal serotonin but not dopamine in mice with reduced serotonin transporter expression. J Neurosci Meth 140: 169–81.CrossRefGoogle Scholar
Bengel, D, Murphy, D L, Andrews, A M, et al. (1998). Altered brain serotonin homeostasis and locomotor insensitivity to 3,4-methylenedioxymethamphetamine (“Ecstasy”) in serotonin transporter-deficient mice. Mol Pharmacol 53: 649–55.CrossRefGoogle Scholar
Rakic, P (1995). Radial versus tangential migration of neuronal clones in the developing cerebral cortex. Proc Natl Acad Sci USA 92: 11 323–7.CrossRefGoogle ScholarPubMed
Levitt, P, Eagleson, K L, Powell, E M (2004). Regulation of neocortical interneuron development and the implications for neurodevelopmental disorders. Trends Neurosci 27: 400–06.CrossRefGoogle ScholarPubMed
Lidov, H G, Molliver, M E (1982). An immunohistochemical study of serotonin neuron development in the rat: ascending pathways and terminal fields. Brain Res Bull 8: 389–430.CrossRefGoogle ScholarPubMed
Wallace, J A, Lauder, J M (1983). Development of the serotonergic system in the rat embryo: an immunocytochemical study. Brain Res Bull 10: 459–79.CrossRefGoogle Scholar
Dori, I, Dinopoulos, A, Blue, M E, Parnavelas, J G (1996). Regional differences in the ontogeny of the serotonergic projection to the cerebral cortex. Exp Neurol 138: 1–14.CrossRefGoogle ScholarPubMed
Rice, F L (1995). Comparative aspects of barrel structure and development. In Jones, E G, Diamond, I T, editors. Cerebral cortex, Vol. 11 – The barrel cortex of rodents. New York: Plenum Press, pp. 1–76.Google Scholar
Erzurumlu, R S, Kind, P C (2001). Neural activity: sculptor of ‘barrels’ in the neocortex. Trends Neurosci 24: 589–95.CrossRefGoogle ScholarPubMed
Wong-Riley, M T T, Welt, C (1980). Histochemical changes in cytochrome oxydase of cortical barrels after vibrissal removal in neonatal and adult mice. Proc Natl Acad Sci USA 77: 2333–7.CrossRefGoogle Scholar
Woolsey, T A, Wann, J R (1976). Areal changes in mouse cortical barrels following vibrissal damage at different postnatal ages. J Comp Neurol 170: 53–66.CrossRefGoogle ScholarPubMed
Fuchs, J L (1995). Neurotransmitter receptors in developing barrel cortex. In Jones, E G, Diamond, I T, editors. Cerebral cortex, Vol. 11 – The barrel cortex of rodents. New York: Plenum Press, pp. 375–409.CrossRefGoogle Scholar
Hedreen, J C, Bacon, S J, Price, D L (1985). A modified histochemical technique to visualize acetylcholinesterase-containing axons. J Histochem Cytochem 33: 134–40.CrossRefGoogle ScholarPubMed
Blue, M E, Erzurumlu, R S, Jhaveri, S (1991). A comparison of pattern formation by thalamocortical and serotonergic afferents in the rat barrel field cortex. Cereb Cortex 1: 380–9.CrossRefGoogle ScholarPubMed
Senft, S L, Woolsey, T A (1991). Growth of thalamic afferents into mouse barrel cortex. Cereb Cortex 1: 308–35.CrossRefGoogle ScholarPubMed
Erzurumlu, R S, Jhaveri, S (1990). Thalamic axons confer a blueprint of the sensory periphery onto the developing rat somatosensory cortex. Dev Brain Res 56: 229–34.CrossRefGoogle Scholar
Jhaveri, S, Erzurumlu, R S, Crossin, K (1991). Barrel construction in rodent neocortex: role of thalamic afferents versus extracellular matrix molecules. Proc Natl Acad Sci USA 88: 4489–93.CrossRefGoogle ScholarPubMed
Loos, H, Woolsey, T A (1973). Somatosensory cortex: structural alterations following early injury to sense organ. Science 179: 395–8.CrossRefGoogle Scholar
Calia, E, Persico, A M, Baldi, A, Keller, F (1998). BDNF and NT-3 applied in the whisker pad reverse cortical changes after peripheral deafferentation in neonatal rats. Eur J Neurosci 10: 3194–200.CrossRefGoogle ScholarPubMed
Baldi, A, Calia, E, Ciampini, A, et al. (2000). Deafferentation-induced apoptosis of neurons in thalamic somatosensory nuclei of the newborn rat: critical period and rescue from cell death by peripherally applied neurotrophins. Eur J Neurosci 12: 2281–90.CrossRefGoogle ScholarPubMed
Henderson, T A, Woolsey, T A, Jacquin, M F (1992). Infraorbital nerve blockade from birth does not disrupt central trigeminal pattern formation in the rat. Dev Brain Res 66: 146–52.CrossRefGoogle Scholar
Diamond, M E, Huang, W, Ebner, F F (1994). Laminar comparison of somatosensory cortical plasticity. Science 265: 1885–8.CrossRefGoogle ScholarPubMed
Wallace, H, Fox, K (1999). The effect of vibrissa deprivation pattern on the form of plasticity induced in rat barrel cortex. Somatosens Mot Res 16: 122–38.Google ScholarPubMed
Fujimiya, M, Kimura, H, Maeda, T (1986). Postnatal development of serotonin nerve fibers in the somatosensory cortex of mice studied by immunohistochemistry. J Comp Neurol 246: 191–201.CrossRefGoogle ScholarPubMed
D'Amato, R J, Blue, M E, Largent, B L, et al. (1987). Ontogeny of the serotonergic projection to rat neocortex: transient expression of a dense innervation to primary sensory areas. Proc Natl Acad Sci USA 84: 4322–6.CrossRefGoogle ScholarPubMed
Rhoades, R W, Mooney, R D, Chiaia, N L, Bennett-Clarke, C A (1990). Development and plasticity of the serotonergic projection to the hamster's superior colliculus. J Comp Neurol 299: 151–66.CrossRefGoogle Scholar
Bennett-Clarke, C A, Mooney, R D, Chiaia, N L, Rhoades, R W (1991). Serotonin immunoreactive neurons are present in the superficial layers of the hamster's, but not the rat's, superior colliculus. Exp Brain Res 85: 587–97.CrossRefGoogle Scholar
Bennett-Clarke, C A, Leslie, M J, Lane, R D, Rhoades, R W (1994). Effect of serotonin depletion on vibrissa-related patterns of thalamic afferents in the rat's somatosensory cortex. J Neurosci 14: 7594–607.CrossRefGoogle ScholarPubMed
Lebrand, C, Cases, O, Adelbrecht, C, et al. (1996). Transient uptake and storage of serotonin in developing thalamic neurons. Neuron 17: 823–35.CrossRefGoogle ScholarPubMed
Bennett-Clarke, CA, Leslie, M J, Chiaia, N L, Rhoades, R W (1993). Serotonin 1B receptors in the developing somatosensory and visual cortices are located on thalamocortical axons. Proc Natl Acad Sci USA 90: 153–7.CrossRefGoogle ScholarPubMed
Leslie, M J, Bennett-Clarke, C A, Rhoades, R W (1992). Serotonin 1B receptors form a transient vibrissa-related pattern in the primary somatosensory cortex of the developing rat. Dev Brain Res 69: 43–148.CrossRefGoogle Scholar
Cases, O, Seif, I, Grimsby, J, et al. (1995). Aggressive behavior and altered amounts of brain serotonin and norepinephrine in mice lacking MAOA. Science 268: 1763–6.CrossRefGoogle ScholarPubMed
Upton, A L, Salichon, N, Lebrand, C, et al. (1999). Excess of serotonin (5-HT) alters the segregation of ispilateral and contralateral retinal projections in monoamine oxidase A knock-out mice: possible role of 5-HT uptake in retinal ganglion cells during development. J Neurosci 19: 7007–24.CrossRefGoogle ScholarPubMed
Vitalis, T, Cases, O, Callebert, J, et al. (1998). Effects of monoamine oxidase A inhibition on barrel formation in the mouse somatosensory cortex: determination of a sensitive developmental period. J Comp Neurol 393: 169–84.3.0.CO;2-0>CrossRefGoogle ScholarPubMed
Rebsam, A, Seif, I, Gaspar, P (2002). Refinement of thalamocortical arbors and emergence of barrel domains in the primary somatosensory cortex: a study of normal and monoamine oxidase A knock-out mice. J Neurosci 22: 8541–52.CrossRefGoogle ScholarPubMed
Burnet, H, Bevengut, M, Chakri, F, et al. (2001). Altered respiratory activity and respiratory regulations in adult monoamine oxidase A-deficient mice. J Neurosci 21: 5212–21.CrossRefGoogle ScholarPubMed
Rebsam, A, Seif, I, Gaspar, P (2005). Dissociating barrel development and lesion-induced plasticity in the mouse somatosensory cortex. J Neurosci 25: 706–10.CrossRefGoogle ScholarPubMed
Persico, A M, Mengual, E, Moessner, R, et al. (2001). Barrel pattern formation requires serotonin uptake by thalamocortical afferents, and not vesicular monoamine release. J Neurosci 21: 6862–73.CrossRefGoogle Scholar
Salichon, N, Gaspar, P, Upton, A L, et al. (2001). Excessive activation of serotonin (5-HT) 1B receptors disrupts the formation of sensory maps in monoamine oxidase A and 5-HT transporter knock-out mice. J Neurosci 21: 884–96.CrossRefGoogle ScholarPubMed
Altamura, C, Dell'Acqua, M L, Moessner, R, Murphy, D L, Lesch, K P, Persico, A M (2007). Altered neocortical cell density and layer thickness in serotonin transporter knockout mice: a quantitation study. Cereb Cortex 17: 1394–401.CrossRefGoogle ScholarPubMed
Erzurumlu, R S, Ebner, F F (1988). Maintenance of discrete somatosensory maps in subcortical relay nuclei is dependent on an intact sensory cortex. Dev Brain Res 44: 302–08.CrossRefGoogle ScholarPubMed
Luo, X, Persico, A M, Lauder, J M (2003). Serotonergic regulation of somatosensory cortical development: lessons from genetic mouse models. Dev Neurosci 25: 173–83.CrossRefGoogle ScholarPubMed
Gaspar, P, Cases, O, Maroteaux, L (2003). The developmental role of serotonin: news from mouse molecular genetics. Nat Rev Neurosci 4: 1002–12.CrossRefGoogle ScholarPubMed
Osterheld-Haas, M C, Loos, H, Hornung, J P (1994). Monoaminergic afferents to cortex modulate structural plasticity in the barrelfield of the mouse. Dev Brain Res 77: 189–202.CrossRefGoogle ScholarPubMed
Persico, A M, Altamura, C, Calia, E, et al. (2000). Serotonin depletion and barrel cortex development: impact of growth impairment vs 5-HT effects on thalamocortical endings. Cereb Cortex 10: 181–91.CrossRefGoogle ScholarPubMed
Alvarez, C, Vitalis, T, Fon, E A, et al. (2002). Effects of genetic depletion of monoamines on somatosensory cortical development. Neuroscience 115: 753–64.CrossRefGoogle ScholarPubMed
Wang, Y M, Gainetdinov, R R, Fumagalli, F, et al. (1997). Knockout of the vesicular monoamine transporter 2 gene results in neonatal death and supersensitivity to cocaine and amphetamine. Neuron 19: 1285–96.CrossRefGoogle ScholarPubMed
Whitaker-Azmitia, P M, Lauder, J M, Shemmer, A, Azmitia, E C (1987). Postnatal changes in serotonin receptors following prenatal alterations in serotonin levels: further evidence for functional fetal serotonin receptors. Brain Res 430: 285–9.CrossRefGoogle ScholarPubMed
Okado, N, Shibanoki, S, Ishikawa, K, Sako, H (1989). Developmental changes in serotonin levels in the chick spinal cord and brain. Dev Brain Res 50: 217–23.CrossRefGoogle ScholarPubMed
Okado, N, Cheng, L, Tanatsugu, Y, Hamada, S, Hamaguchi, K (1993). Synaptic loss following removal of serotonergic fibers in newly hatched and adult chickens. J Neurobiol 24: 687–98.CrossRefGoogle Scholar
Chen, L, Hamaguchi, K, Ogawa, M, Hamada, S, Okado, N (1994). PCPA reduces both monoaminergic afferents and nonmonoaminergic synapses in the cerebral cortex. Neurosci Res 19: 111–5.CrossRefGoogle ScholarPubMed
Niitsu, Y, Hamada, S, Hamaguchi, K, Mikuni, M, Okado, N (1995). Regulation of synapse density by 5-HT2A receptor agonist and antagonist in the spinal cord of chicken embryo. Neurosci Lett 195: 159–62.CrossRefGoogle ScholarPubMed
Durig, J, Hornung, J P (2000). Neonatal serotonin depletion affects developing and mature mouse cortical neurons. Dev Neurosci 4: 833–7.Google Scholar
Crowley, J C, Katz, L C (2002). Ocular dominance development revisited. Curr Opin Neurobiol 12: 104–09.CrossRefGoogle ScholarPubMed
Reh, T A, Constantine-Paton, M (1985). Eye-specific segregation requires neural activity in three-eyed Rana pipiens. J Neurosci 5: 1132–43.CrossRefGoogle ScholarPubMed
Stellwagen, D, Shatz, C J (2002). An instructive role for retinal waves in the development of retinogeniculate connectivity. Neuron 33: 357–67.CrossRefGoogle ScholarPubMed
Kanold, P O, Kara, P, Reid, R C, Shatz, C J (2003). Role of subplate neurons in functional maturation of visual cortical columns. Science 301: 521–4.CrossRefGoogle ScholarPubMed
Adams, D L, Horton, J C (2003). Shadows cast by retinal blood vessels mapped in primary visual cortex. Science 298: 572–6.CrossRefGoogle Scholar
Iwasato, T, Erzurumlu, R S, Huerta, P T, et al. (1997). NMDA receptor-dependent refinement of somatotopic maps. Neuron 19: 1201–10.CrossRefGoogle ScholarPubMed
Iwasato, T, Datwani, A, Wolf, A M, et al. (2000). Cortex-restricted disruption of NMDAR1 impairs neuronal patterns in the barrel cortex. Nature 406: 726–31.CrossRefGoogle ScholarPubMed
O'Leary, D D M, Nakagawa, Y (2002). Patterning centers, regulatory genes and extrinsic mechanisms controlling arealization of the neocortex. Curr Opin Neurobiol 12: 14–25.CrossRefGoogle ScholarPubMed
Agmon, A, O'Dowd, D K (1992). NMDA receptor-mediated currents are prominent in the thalamocortical synaptic response before maturation of inhibition. J Neurophysiol 68: 345–8.CrossRefGoogle ScholarPubMed
McCandlish, C A, Li, C X, Waters, R S (1993). Early development of the SI cortical barrel field representation in neonatal rats follows a lateral-to-medial gradient: an electrophysiological study. Exp Brain Res 92: 369–74.CrossRefGoogle Scholar
Melzer, P, Welker, E, Doerfl, J, Loos, H (1994). Maturation of the neuronal metabolic response to vibrissae stimulation in the developing whisker-to-barrel pathway of the mouse. Exp Brain Res 77: 227–50.CrossRefGoogle ScholarPubMed
Persico, A M, Di Pino, G, Levitt, P (2006). Multiple receptors mediate the trophic effects of serotonin on ventroposterior thalamic neurons in vitro. Brain Res 1095: 17–25.CrossRefGoogle ScholarPubMed
Young-Davies, C L, Bennett-Clarke, C A, Lane, R D, Rhoades, R W (2000). Selective facilitation of the serotonin(1B) receptor causes disorganization of thalamic afferents and barrels in somatosensory cortex of rat. J Comp Neurol 425: 130–8.3.0.CO;2-B>CrossRefGoogle ScholarPubMed
Laurent, A, Goaillard, J M, Cases, O, Lebrand, C, Gaspar, P, Ropert, N (2002). Activity-dependent presynaptic effect of serotonin 1B receptors on the somatosensory thalamocortical transmission in neonatal mice. J Neurosci 22: 886–900.CrossRefGoogle ScholarPubMed
Berg, K A, Clarke, W P (2001). Regulation of 5-HT1A and 5-HT1B receptor systems by phospholipid signaling cascades. Brain Res Bull 56: 471–7.CrossRefGoogle Scholar
Abdel-Majid, R M, Leong, W L, Schalkwyk, L C, et al. (1998). Loss of adenylyl cyclase I activity disrupts patterning of mouse somatosensory cortex. Nat Genet 19: 289–91.CrossRefGoogle ScholarPubMed
Lotto, B, Upton, L, Price, D J, Gaspar, P (1999). Serotonin receptor activation enhances neurite outgrowth of thalamic neurones in rodents. Neurosci Lett 269: 87–90.CrossRefGoogle ScholarPubMed
Bonnin, A, Torii, M, Wang, L, Rakic, P, Levitt, P (2007). Serotonin modulates the response of embryonic thalamocortical axons to netrin-1. Nat Neurosci 10: 588–97.CrossRefGoogle ScholarPubMed
Chiaia, N L, Fish, S E, Bauer, W R, Bennett-Clarke, C A, Rhoades, R W (1992). Postnatal blockade of cortical activity by tetrodoxin does not disrupt the formation of vibrissa-related patterns in the rat's somatosensory cortex. Dev Brain Res 66: 244–50.CrossRefGoogle Scholar
Rhoades, R W, Chiaia, N L, Lane, R D, Bennett-Clarke, C A (1998). Effect of activity blockade on changes in vibrissae-related patterns in rat's primary somatosensory cortex induced by serotonin depletion. J Comp Neurol 402: 276–83.3.0.CO;2-Y>CrossRefGoogle ScholarPubMed
Basu, B, Desai, R, Balaji, J, et al. (2008). Serotonin in pre-implantation mouse embryos is localized to the mitochondria and can modulate mitochondrial potential. Reproduction 135: 657–69.CrossRefGoogle ScholarPubMed
Brookes, P S, Yoon, Y, Robotham, J L, Anders, M W, Sheu, S S (2004). Calcium, ATP, and ROS: a mitochondrial love–hate triangle. Am J Physiol Cell Physiol 287: C817–33.CrossRefGoogle ScholarPubMed
Walther, D J, Peter, J U, Winter, S, et al. (2003). Serotonylation of small GTPases is a signal transduction pathway that triggers platelet alpha-granule release. Cell 115: 851–62.CrossRefGoogle ScholarPubMed
Moessner, R, Dringen, R, Persico, A M, et al. (2002). Increased hippocampal DNA oxidation in serotonin transporter deficient mice. J Neural Transm 109: 557–65.Google Scholar
Bastmeyer, M, O'Leary, D D M (1996). Dynamics of target recognition by interstitial axon branching along developing cortical axons. J Neurosci 16: 1450–9.CrossRefGoogle ScholarPubMed
Velez Pardo, C, Jimenez del Rio, M, Pinxteren, J, Potter, W, Ebinger, G, Vauquelin, G (1995). Fe(2+)-mediated binding of serotonin and dopamine to skeletal muscle actin: resemblance to serotonin binding proteins. Eur J Pharmacol 288: 209–18.CrossRefGoogle ScholarPubMed
Betten, A, Dahlgren, C, Hermodsson, S, Hellstrand, K (2001). Serotonin protects NK cells against oxidatively induced functional inhibition and apoptosis. J Leukoc Biol 70: 65–72.Google ScholarPubMed
Hadi, N, Singh, S, Ahmad, A, Zaidi, R (2001). Strand scission in DNA induced by 5-hydroxytryptamine (serotonin) in the presence of copper ions. Neurosci Lett 308: 83–6.CrossRefGoogle ScholarPubMed
Park, J W, Youn, Y C, Kwon, O S, Jang, Y Y, Han, E S, Lee, C S (2002). Protective effect of serotonin on 6-hydroxydopamine- and dopamine-induced oxidative damage of brain mitochondria and synaptosomes and PC12 cells. Neurochem Int 40: 23–33.CrossRefGoogle ScholarPubMed
Velez Pardo, C, Jimenez del Rio, M, Ebinger, G, Vauquelin, G (1996). Redox cycling activity of monoamine-serotonin binding protein conjugates. Biochem Pharmacol 51: 1521–5.CrossRefGoogle ScholarPubMed
Roerig, B, Sutor, B (1996). Serotonin regulates gap junction coupling in the developing rat somatosensory cortex. Eur J Neurosci 8: 1685–95.CrossRefGoogle Scholar
Bauman, A L, Apparsundaram, S, Ramamoorthy, S, Wadzinski, B E, Vaughan, R A, Blakely, R D (2000). Cocaine and antidepressant-sensitive biogenic amine transporters exist in regulated complexes with protein phosphatase 2A. J Neurosci 20: 7571–8.CrossRefGoogle ScholarPubMed
Ramamoorthy, S, Blakely, R D (1999). Phosphorylation and sequenstration of serotonin transporters differentially modulated by psychostimulants. Science 285: 763–6.CrossRefGoogle Scholar
Carneiro, A M, Cook, E H, Murphy, D L, Blakely, R D (2008). Interactions between integrin alphaIIbbeta3 and the serotonin transporter regulate serotonin transport and platelet aggregation in mice and humans. J Clin Invest 118: 1544–52.CrossRefGoogle ScholarPubMed
Brunner, H G, Nelen, M, Breakfield, X O, Ropers, H H, Oost, B A (1993). Abnormal behavior associated with a point mutation in the structural gene for monoamine oxidase A. Science 262: 578–80.CrossRefGoogle ScholarPubMed
Orr, S T, Miller, C A (1995). Maternal depressive symptoms and the risk of poor pregnancy outcome. Review of the literature and preliminary findings. Epidemiol Rev 17: 165–71.CrossRefGoogle ScholarPubMed
Misri, S, Kostaras, D, Kostaras, X (2000). The use of selective serotonin reuptake inhibitors during pregnancy and lactation: current knowledge. Can J Psychiatry 45: 285–7.CrossRefGoogle ScholarPubMed
Jensen, P N, Olesen, O V, Bertelsen, A, Linnet, K (1997). Citalopram and desmethylcitalopram concentrations in breast milk and in serum of mother and infant. Ther Drug Monit 19: 236–9.CrossRefGoogle ScholarPubMed
Kulin, N A, Pastuszak, A, Sage, S R, et al. (1998). Pregnancy outcome following maternal use of the new selective serotonin reuptake inhibitors – a prospective controlled multicenter study. JAMA 279: 609–10.CrossRefGoogle ScholarPubMed
Ericson, A, Kallen, B, Wiholm, B (1999). Delivery outcome after the use of antidepressants in early pregnancy. Eur J Clin Pharmacol 55: 503–08.CrossRefGoogle ScholarPubMed
Einarson, A, Fatoye, B, Sarkar, M, et al. (2001). Pregnancy outcome following gestational exposure to venlafaxine: a multicenter prospective controlled study. Am J Psychiatry 158: 1728–30.CrossRefGoogle ScholarPubMed
Hendrick, V, Smith, L M, Suri, R, Hwang, S, Haynes, D, Altshuler, L (2003). Birth outcomes after prenatal exposure to antidepresant medication. Am J Obstet Gynecol 188: 812–5.CrossRefGoogle Scholar
Nulman, I, Rovet, J, Stewart, D E, et al. (1997). Neurodevelopment of children exposed in utero to antidepressant drugs. N Engl J Med 336: 258–62.CrossRefGoogle ScholarPubMed
Chambers, C D, Johnson, K A, Dick, L M, Felix, R J, Jones, K L (1996). Birth outcomes in pregnant women taking fluoxetine. N Engl J Med 335: 1010–15.CrossRefGoogle ScholarPubMed
Morrison, J L, Riggs, K W, Rurak, D W (2005). Fluoxetine during pregnancy: impact on fetal development. Reprod Fertil Dev 17: 641–50.CrossRefGoogle ScholarPubMed
Casper, C R, Fleiscer, B E, Ancajas, J C L, et al. (2003). Follow up of children of depressed mothers exposed or not exposed to antidepressant drugs during pregnancy. J Pediatr 142: 402–08.CrossRefGoogle ScholarPubMed
Oberlander, T F, Eckstein Grunau, R, Fitzgerald, C, et al. (2002). Prolonged prenatal psychotropic medication exposure alters neonatal acute pain response. Pediatr Res 51: 443–53.CrossRefGoogle ScholarPubMed
Koren, G (2002). SSRIs in pregnancy – are they safe?Pediatr Res 51: 424–5.CrossRefGoogle ScholarPubMed
Chubakov, A R, Gromova, E A, Konovalov, G V, Sarkisova, E F, Chumasov, E I (1986). The effects of serotonin on the morpho-functional development of rat cerebral neocortex in tissue culture. Brain Res 369: 285–97.CrossRefGoogle ScholarPubMed
Lieske, V, Bennett-Clarke, C A, Rhoades, R W (1999). Effects of serotonin on neurite outgrowth from thalamic neurons in vitro. Neuroscience 90: 967–74.CrossRefGoogle ScholarPubMed
Rhoades, R W, Bennett-Clarke, C A, Shi, M Y, Mooney, R D (1994). Effects of 5-HT on thalamocortical synaptic transmission in the developing rat. J Neurophysiol 72: 2438–50.CrossRefGoogle ScholarPubMed
Sikich, L, Hickok, J M, Todd, R D (1990). 5HT1A receptors control neurite branching during development. Dev Brain Res 56: 269–74.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×