Skip to main content Accessibility help
×
Home
  • Print publication year: 2008
  • Online publication date: July 2010

5 - Patch antennas with EBG structures

Summary

Electromagnetic band gap structures have been characterized and designed in previous chapters. We now shift our focus to EBG applications in antenna engineering. In this chapter, the EBG structures are integrated into microstrip patch antenna designs and their surface wave band gap property helps to increase the antenna gain, minimize the back lobe, and reduce mutual coupling in array elements. Some applications of EBG patch antenna designs in high precision GPS receivers, wearable electronics, and phased array systems are highlighted at the end of the chapter.

Patch antennas on high permittivity substrate

Microstrip patch antennas are widely used in wireless communications due to the advantages of low profile, light weight, and low cost [1–2]. In principle, the microstrip patch antenna is a resonant type antenna, where the antenna size is determined by the operating wavelength and the bandwidth is determined by the Q factor of the resonance. An important research topic in microstrip antenna designs is to broaden the inherent narrow bandwidth of microstrip antennas. Parasitic patches are used to form a multi-resonant circuit so that the operating bandwidth is improved. In [3], the parasitic patches are located on the same layer with the main patch. In [4], a multi-layer microstrip antenna is investigated with parasitic patches stacked on the top of the main patch. The multi-resonant behavior can also be realized by incorporating slots into the metal patch. Several single-layer single-patch microstrip antennas have been reported, such as the U-slot microstrip antenna [5] and the E-shaped patch antenna [6].

Related content

Powered by UNSILO
References
Bahl, J. J. and Bhartia, P., Microstrip Antennas, Artech House, 1980.
Bhartia, P., Bahl, Inder, Garg, R., and Ittipiboon, A., Microstrip Antenna Design Handbook, Artech House, 2000.
Kumar, G. and Gupta, K. C., “Directly coupled multiple resonator wide-band microstrip antenna,” IEEE Trans. Antennas Propagat., vol. AP-33, 588–93, 1985.
Pozar, D. M., “Microstrip antenna coupled to a microstrip-line,” Electron. Lett., vol. 21 , no. 2, 49–50, 1985.
Huynh, T. and Lee, K. F., “Single-layer single-patch wideband microstrip antenna,” Electron. Lett., vol. 31 , no. 16, 1310–12, 1995.
Yang, F., Zhang, X.-X., Ye, X., and Rahmat-Samii, Y., “Wideband E-shaped patch antennas for wireless communications,” IEEE Trans. Antennas Propagat., vol. 49 , no. 7, 1094–100, 2001.
Shackelford, A. K., Lee, K.-F., and Luk, K. M., “Design of small-size wide-bandwidth microstrip-patch antennas,” IEEE Antennas and Propagat. Magazine, vol. 45 , no. 1, 75–83, 2003.
Zhang, X.-X. and Yang, F., “The study of slit cut on the microstrip antenna and its applications,” Microwave Optical Tech. Lett., vol. 18 , no. 4, 297–300, 1998.
Dey, S. and Mittra, R., “Compact microstrip patch antenna”, Microwave Optical Tech. Lett., vol. 12 , no. 1, 12–14, 1996.
Lo, T. K., Ho, C.-O., Hwang, Y., Lam, E. K. W., and Lee, B., “Miniature aperture coupled microstrip antenna of very high permittivity,” Electron. Lett., vol. 33, 9–10, 1997.
Yang, F., Electromagnetic Band Gap Structure and Reconfigurable Technique in Antenna Designs: Applications to Wireless Communications, Ph. D. dissertation at University of California, Los Angeles, 2002.
Jensen, M. A., Time-Domain Finite-Difference Methods in Electromagnetics: Application to Personal Communication, Ph. D. dissertation at University of California, Los Angeles, 1994.
Gauthier, G. P., Courtay, A., and Rebeiz, G. H., “Microstrip antennas on synthesized low dielectric-constant substrate,” IEEE Trans. Antennas Propagat., vol. 45, 1310–14, 1997.
Papapolymerou, I., Frayton, R. F., and Katehi, L. P. B., “Micromachined patch antennas,” IEEE Trans. Antennas Propagat., vol. 46, 275–83, 1998.
Coccioli, R., Yang, F. R., Ma, K. P., and Itoh, T., “Aperture-coupled patch antenna on UC-Photonic Band Gap substrate,” IEEE Trans. Microwave Theory Tech., vol. 47, 2123–30, 1999.
Gonzalo, R., Maagt, P., and Sorolla, M., “Enhanced patch-antenna performance by suppressing surface waves using photonic-bandgap substrates,” IEEE Trans. Microwave Theory Tech., vol. 47, 2131–8, 1999.
Colburn, J. S. and Rahmat-Samii, Y., “Patch antennas on externally perforated high dielectric constant substrates,” IEEE Trans. Antennas Propagat., vol. 47, 1785–94, 1999.
Jackson, D. R., Williams, J. T., Bhattacharyya, A. K., Smith, R. L., Buchheit, S. J., and Long, S. A., “Microstrip patch antenna designs that do not excite surface waves,” IEEE Trans. Antennas Propagat., vol. 41, 1026–37, 1993.
Yang, F. and Rahmat-Samii, Y., “Step-Like structure and Electromagnetic Band Gap Structure to improve the performance of patch antennas on high dielectric substrate,” in Proc. IEEE APS Dig., vol. 2, 2001, pp. 482–5.
Rahman, M. and Stuchly, M., “Wide-band microstrip patch antenna with planar Photonic Band Gap structure,” in Proc. IEEE APS Dig., vol. 2, 2001, 486–9.
Rahman, M. and Stuchly, M. A., “Circularly polarized patch antenna with periodic structure,” IEE Proc. Microwaves, Antennas Propagation, vol. 149, issue3, 141–6, 2002.
Fan, M. Y., Hu, R., Feng, Z. H., Zhang, X. X., and Hao, Q., “Advance in 2D-Electromagnetic Band Gap research,” J. Infrared Millimeter Waves., vol. 22 , no. 2, 2003.
Qu, D., Shafai, L., and Foroozesh, A., “Improving microstrip patch antenna performance using Electromagnetic Band Gap substrates,” IEE Proc. Microwaves, Antennas Propagation, vol. 153 , issue6, 558–63, 2006.
Mollah, M. N. and Karmakar, N. C., “Planar Photonic Band Gap structures and their applications to antennas,” Proc. IEEE APS Dig., vol. 2, July 2001, pp. 494–7.
Yang, F. and Rahmat-Samii, Y., “Microstrip antennas integrated with electromagnetic band-gap (Electromagnetic Band Gap) structures: a low mutual coupling design for array applications,” IEEE Trans. Antennas Propagat., vol. 51 , no. 10, 2936–46, 2003.
Yu, A. and Zhang, X.-X., “A novel method to improve the performance of microstrip antenna arrays using a dumbbell Electromagnetic Band Gap structure,” IEEE Antennas Wireless Propagat. Lett., vol. 2, 170–2, 2003.
Jin, N., Yu, A., and Zhang, X.-X., “An enhanced 2 × 2 antenna array based on a dumbbell Electromagnetic Band Gap structure,” Microwave Optical Tech. Lett., vol. 39 , no. 5, 395–9, 2003.
Iluz, Z., Shavit, R., and Bauer, R., “Microstrip antenna phased array with Electromagnetic bandgap substrate,” IEEE Trans. Antennas Propagat., vol. 52 , no. 6, 1446–53, 2004.
Yang, L., Feng, Z. H., Chen, F. L., and Fan, M. Y., “A novel compact electromagnetic band-gap (Electromagnetic Band Gap) structure and its application in microstrip antenna arrays,” IEEE MTT-S Int. Microwave Symp. Dig., pp. 1635–8, 2004.
Yao, Y, Wang, X., and Feng, Z., “A novel dual-band compact electromagnetic bandgap (Electromagnetic Band Gap) structure and its application in multi-antennas,” in Proc. IEEE APS Dig., pp. 1943–6, 2006.
Buell, K., Mosallaei, H., and Sarabandi, K., “Metamaterial insulator enabled superdirective array,” IEEE Trans. Antennas Propagat., vol. 55 , no. 4, 1074–85, 2007.
Yang, F. and Rahmat-Samii, Y., “Applications of electromagnetic band-gap (Electromagnetic Band Gap) structures in microwave antenna designs,” Proc. of 3rd International Conference on Microwave and Millimeter Wave Technology, 528–31, 2002.
Maagt, P., Gonzalo, R., Vardaxoglou, Y. C., and Baracco, J.-M., “Electromagnetic bandgap antennas and components for microwave and (sub)millimeter wave applications,” IEEE Trans. Antennas Propagat., vol. 51 , no. 10, 2667–77, 2003.
Hurtado, R., Klimczak, W., McKinzie, W. E., and Humen, A., “Artificial magnetic conductor technology reduces weight and size for precision Global Positioning System antennas,” Navigational National Technical Meeting, San Diego, CA, January 28–30, 2002.
McKinzie, W. E. III, Hurtado, R. B., Klimczak, B. K., and Dutton, J. D., “Mitigation of multipath through the use of an artificial magnetic conductor for precision Global Positioning System surveying antennas,” Proc. IEEE APS Dig., vol. 4, pp. 640–3, 2002.
Bao, X. L., Ruvio, G., Ammann, M. J., and John, M., “A novel Global Positioning System patch antenna on a fractal hi-impedance surface substrate,” IEEE Antennas Wireless Propagat. Lett., vol. 5, 323–6, 2006.
Salonen, P. and Rahmat-Samii, Y., “Textile antennas: effects of antenna bending on input matching and impedance bandwidth,” IEEE Aerospace Electronic Systems Magazine, vol. 22 , no. 3, 10–14, 2007.
Salonen, P., Keskilammi, M., and Sydanheimo, L., “A low-cost 2.45 GHz photonic band-gap patch antenna for wearable systems,” Proc. 11th Int. Conf. Antennas and Propagation ICAP, pp. 719–24, April 17–20, 2001.
Salonen, P., Yang, F., and Rahmat-Samii, Y., “WEBGA – wearable electromagnetic band-gap antenna,” IEEE APS Int. Symp. Dig., vol. 1, 451–4, Monterey, CA, June 2004.
Kelly, P. K., Diaz, L., Piket-May, M., and Rumsey, L., “Scan blindness mitigation using photonic bandgap structure in phased arrays,” Proc. SPIE, vol. 3464, 239–48, July 1998.
Zhang, L., Castaneda, J. A., and Alexopoulos, N. G., “Scan blindness free phased array design using Photonic Band Gap materials,” IEEE Trans. Antennas Propagat., vol. 52 , no. 8, 2000–7, 2004.
Fu, Y. and Yuan, N., “Elimination of scan blindness in phased array of microstrip patches using electromagnetic bandgap materials,” IEEE Antennas Wireless Propagat. Lett., vol. 3, 63–5, 2004.