Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-c47g7 Total loading time: 0 Render date: 2024-04-24T19:48:18.695Z Has data issue: false hasContentIssue false

Chapter Fifteen - Asking the ecosystem if herbivory-inducible plant volatiles (HIPVs) have defensive functions

Published online by Cambridge University Press:  05 August 2012

Meredith C. Schuman
Affiliation:
Max Planck Institute for Chemical Ecology
Ian T. Baldwin
Affiliation:
Max Planck Institute for Chemical Ecology
Glenn R. Iason
Affiliation:
James Hutton Institute, Aberdeen
Marcel Dicke
Affiliation:
Wageningen Universiteit, The Netherlands
Susan E. Hartley
Affiliation:
University of York
Get access

Summary

Introduction

Plant volatiles (PVs) comprise cues exchanged among plants and members of their ecological communities, including other plants, microorganisms and insects. Moreover, some PVs may protect plants against oxidative and thermal damage. Volatiles that are specifically herbivory-inducible (HIPVs) can betray the location of feeding herbivores to their natural enemies, and some HIPVs may defend plants by repelling herbivores or attracting natural enemies. However, the fitness benefits of HIPVs have not been clearly demonstrated in any plant system, so it remains unclear whether they function as indirect defences (Allison & Hare, 2009; Dicke & Baldwin, 2010). Indeed, HIPVs can be detrimental to plants, causing them to be more apparent to and attract herbivores as well as non-beneficial natural enemies that may interfere with other mutualistic interactors, such as pollinators (Halitschke et al., 2008; Kessler & Halitschke, 2009). And it is not clear whether the carnivores found in native plant populations can cope with variability in HIPV emissions. Within single populations of a species, there can be significant variation in the production of PVs among individuals (e.g. Skoula et al., 2000; Delphia et al., 2009), and also after herbivore attack (Schuman et al., 2009), raising the question of whether HIPVs are reliable indicators of herbivory. Do natural enemies learn which compounds are relevant in each population, or are they innately programmed to respond to certain HIPVs? Do plants that emit different or greater amounts of HIPVs than their neighbours risk making themselves more apparent to herbivores and other detrimental visitors, or benefit from greater apparency to beneficial natural enemies? The best way to answer these questions is to ask the ecosystem in which the plant evolved; however, PV research has a history of anthropomorphic metaphors and utilitarian motivations which we suggest may prevent researchers from placing their experiments in the proper ecological context. This chapter will describe an approach which attempts to ‘phytopomorphise’ the researcher by using field experiments with wild-type (WT) and appropriate transformed lines of the wild tobacco Nicotiana attenuata, in its native ecosystem.

Type
Chapter
Information
The Ecology of Plant Secondary Metabolites
From Genes to Global Processes
, pp. 287 - 307
Publisher: Cambridge University Press
Print publication year: 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aharoni, A.Giri, A. P.Deuerlein, S. 2003 Terpenoid metabolism in wild-type and transgenic plantsPlant Cell 15 2866CrossRefGoogle Scholar
Alborn, H. T.Turlings, T. C. J.Jones, T. H. 1997 An elicitor of plant volatiles from beet armyworm oral secretionScience 276 945CrossRefGoogle Scholar
Alborn, H. T.Brennan, M. M.Tumlinson, J. H. 2003 Differential activity and degradation of plant volatile elicitors in regurgitant of tobacco hornworm () larvaeJournal of Chemical Ecology 29 1357CrossRefGoogle ScholarPubMed
Allison, J. D.Hare, J. D. 2009 Learned and naive natural enemy responses and the interpretation of volatile organic compounds as cues or signalsNew Phytologist 184 768CrossRefGoogle ScholarPubMed
Allmann, S.Baldwin, I. T. 2010 Insects betray themselves in nature to predators by rapid isomerization of green leaf volatilesScience 329 1075CrossRefGoogle ScholarPubMed
Arimura, G.Ozawa, R.Shimoda, T. 2000 Herbivory-induced volatiles elicit defence genes in lima bean leavesNature 406 512Google ScholarPubMed
Arimura, G.Kost, C.Boland, W. 2005 Herbivore-induced, indirect plant defencesBiochimica et Biophysica Acta: Molecular and Cell Biology of Lipids 1734 91CrossRefGoogle ScholarPubMed
Arimura, G.Kopke, S.Kunert, M. 2008 Effects of feeding on lima bean leaves: IV. Diurnal and nocturnal damage differentially initiate plant volatile emissionPlant Physiology 146 965CrossRefGoogle ScholarPubMed
Bahulikar, R. A.Stanculescu, D.Preston, C. A.Baldwin, I. T. 2004 ISSR and AFLP analysis of the temporal and spatial population structure of the post-fire annual, , in SW UtahBMC Ecology 4 12CrossRefGoogle Scholar
Baldwin, I. T. 1998 Jasmonate-induced responses are costly but benefit plants under attack in native populationsProceedings of the National Academy of Sciences USA 95 8113CrossRefGoogle ScholarPubMed
Baldwin, I. T. 2010 Plant volatilesCurrent Biology 20 R392CrossRefGoogle ScholarPubMed
Baldwin, I. T.Halitschke, R.Paschold, A.von Dahl, C. C.Preston, C. A. 2006 Volatile signaling in plant–plant interactions: ‘talking trees’ in the genomics eraScience 311 812CrossRefGoogle Scholar
Bolter, C. J.Dicke, M.van Loon, J. J. A.Visser, J. H.Posthumus, M. A. 1997 Attraction of Colorado potato beetle to herbivore-damaged plants during herbivory and after its terminationJournal of Chemical Ecology 23 1003CrossRefGoogle Scholar
Carroll, M. J.Schmelz, E. A.Meagher, R. L.Teal, P. E. A. 2006 Attraction of larvae to volatiles from herbivore-damaged maize seedlingsJournal of Chemical Ecology 32 1911CrossRefGoogle ScholarPubMed
Cowan, M. M. 1999 Plant products as antimicrobial agentsClinical Microbiology Reviews 12 564Google ScholarPubMed
de Boer, J. G.Dicke, M. 2005 Information use by the predatory mite (Acari, Phytoseiidae), a specialised natural enemy of herbivorous spider mitesApplied Entomology and Zoology 40 1CrossRefGoogle Scholar
de Moraes, C. M.Lewis, W. J.Pare, P. W.Alborn, H. T.Tumlinson, J. H. 1998 Herbivore-infested plants selectively attract parasitoidsNature 393 570CrossRefGoogle Scholar
de Moraes, C. M.Mescher, M. C.Tumlinson, J. H. 2001 Caterpillar-induced nocturnal plant volatiles repel conspecific femalesNature 410 577CrossRefGoogle Scholar
Degenhardt, J.Gershenzon, J.Baldwin, I. T.Kessler, A. 2003 Attracting friends to feast on foes: engineering terpene emission to make crop plants more attractive to herbivore enemiesCurrent Opinion in Biotechnology 14 169CrossRefGoogle ScholarPubMed
Degenhardt, J.Hiltpold, I.Köllner, T. G. 2009 Restoring a maize root signal that attracts insect-killing nematodes to control a major pestProceedings of the National Academy of Sciences USA 106 13213CrossRefGoogle ScholarPubMed
Delphia, C. M.Rohr, J. R.Stephenson, A. G.de Moraes, C. M.Mescher, M. C. 2009 Effects of genetic variation and inbreeding on volatile production in a field population of horsenettleInternational Journal of Plant Sciences 170 12CrossRefGoogle Scholar
Deng, W.Hamilton-Kemp, T. R.Nielson, M. T. 1993 Effects of six-carbon aldehydes and alcohols on bacterial proliferationJournal of Agricultural and Food Chemistry 41 506CrossRefGoogle Scholar
Denno, R. F.McClure, M. S.Ott, J. R. 1995 Interspecific interaction in phytophagous insects: competition reexamined and resurrectedAnnual Review of Entomology 40 297CrossRefGoogle Scholar
Dicke, M. 1986 Volatile spider-mite pheromone and host-plant kairomone, involved in spaced-out gregariousness in the spider mite Physiological Entomology 11 251CrossRefGoogle Scholar
Dicke, M.Baldwin, I. T. 2010 The evolutionary context for herbivore-induced plant volatiles, beyond the ‘cry for help’Trends in Plant Science 15 167CrossRefGoogle ScholarPubMed
Dicke, M.van Loon, J. J. A. 2000 Multitrophic effects of herbivore-induced plant volatiles in an evolutionary contextEntomologia Experimentalis et Applicata 97 237CrossRefGoogle Scholar
Diezel, C.von Dahl, C. C.Gaquerel, E.Baldwin, I. T. 2009 Different lepidopteran elicitors account for cross-talk in herbivory-induced phytohormone signallingPlant Physiology 150 1576CrossRefGoogle Scholar
Dudareva, N.Negre, F. 2005 Practical applications of research into the regulation of plant volatile emissionCurrent Opinion in Plant Biology 8 113CrossRefGoogle ScholarPubMed
Dudareva, N.Negre, F.Nagegowda, D. A.Orlova, I. 2006 Plant volatiles: recent advances and future perspectivesCritical Reviews in Plant Sciences 25 417CrossRefGoogle Scholar
Dukas, R.Duan, J. J. 2000 Potential fitness consequences of associative learning in a parasitoid waspBehavioral Ecology 11 536CrossRefGoogle Scholar
Euler, M.Baldwin, I. T. 1996 The chemistry of defense and apparency in the corollas of Oecologia 107 102CrossRefGoogle Scholar
Fatouros, N.Pashalidou, F.Cordero, W. A. 2009 Anti-aphrodisiac compounds of male butterflies increase the risk of egg parasitoid attack by inducing plant synomone productionJournal of Chemical Ecology 35 1373CrossRefGoogle ScholarPubMed
Finke, D. L.Denno, R. F. 2004 Predator diversity dampens trophic cascadesNature 429 407CrossRefGoogle ScholarPubMed
Frost, C. J.Mescher, M. C.Dervinis, C. 2008 Priming defense genes and metabolites in hybrid poplar by the green leaf volatile -3-hexenyl acetateNew Phytologist 180 722CrossRefGoogle ScholarPubMed
Gaquerel, E.Weinhold, A.Baldwin, I. T. 2009 Molecular interactions between the specialist herbivore (Lepidoptera, Sphigidae) and its natural host . VIII. An unbiased GCxGC-ToFMS analysis of the plant’s elicited volatile emissionsPlant Physiology 149 1408CrossRefGoogle ScholarPubMed
Gierl, A.Frey, M. 2001 Evolution of benzoxazinone biosynthesis and indole production in maizePlanta 213 493CrossRefGoogle ScholarPubMed
Glawe, G. A.Zavala, J. A.Kessler, A.van Dam, N. M.Baldwin, I. T. 2003 Ecological costs and benefits correlated with trypsin protease inhibitor production in Ecology 84 79CrossRefGoogle Scholar
Gouinguene, S.Degen, T.Turlings, T. C. J. 2001 Variability in herbivore-induced odour emissions among maize cultivars and their wild ancestors (teosinte)Chemoecology 11 9CrossRefGoogle Scholar
Halitschke, R.Kessler, A.Kahl, J.Lorenz, A.Baldwin, I. T. 2000 Ecophysiological comparison of direct and indirect defenses in Oecologia 124 408CrossRefGoogle Scholar
Halitschke, R.Ziegler, J.Keinänen, M.Baldwin, I. T. 2004 Silencing of hydroperoxide lyase and allene oxide synthase reveals substrate and defense signaling crosstalk in The Plant Journal 40 35CrossRefGoogle Scholar
Halitschke, R.Stenberg, J. A.Kessler, D.Kessler, A.Baldwin, I. T. 2008 Shared signals – ‘alarm calls’ from plants increase apparency to herbivores and their enemies in natureEcology Letters 11 24Google ScholarPubMed
Hare, J. D. 2007 Variation in herbivore and methyl jasmonate-induced volatiles among genetic lines of Journal of Chemical Ecology 33 2028CrossRefGoogle Scholar
Heil, M. 2008 Indirect defence via tritrophic interactionsNew Phytologist 178 41CrossRefGoogle ScholarPubMed
Heil, M.Karban, R. 2010 Explaining evolution of plant communication by airborne signalsTrends in Ecology and Evolution 25 137CrossRefGoogle ScholarPubMed
Heil, M.Ton, J. 2008 Long-distance signalling in plant defenceTrends in Plant Science 13 264CrossRefGoogle ScholarPubMed
Hilker, M.Meiners, T. 2006 Early herbivore alert: insect eggs induce plant defenseJournal of Chemical Ecology 32 1379CrossRefGoogle ScholarPubMed
Hilker, M.Kobs, C.Varama, M.Schrank, K. 2002 Insect egg deposition induces to attract egg parasitoidsJournal of Experimental Biology 205 455Google ScholarPubMed
Hoballah, M. E. F.Turlings, T. C. J. 2001 Experimental evidence that plants under caterpillar attack may benefit from attracting parasitoidsEvolutionary Ecology Research 3 553Google Scholar
Holopainen, J. K.Gershenzon, J. 2010 Multiple stress factors and the emission of plant VOCsTrends in Plant Science 15 176CrossRefGoogle ScholarPubMed
Kahl, J.Siemens, D. H.Aerts, R. J. 2000 Herbivore-induced ethylene suppresses a direct defense but not a putative indirect defense against an adapted herbivorePlanta 210 336CrossRefGoogle Scholar
Kaplan, I.Denno, R. F. 2007 Interspecific interactions in phytophagous insects revisited: a quantitative assessment of competition theoryEcology Letters 10 977CrossRefGoogle Scholar
Kappers, I. F.Aharoni, A.van Herpen, T. W. J. M. 2005 Genetic engineering of terpenoid metabolism attracts bodyguards to Science 309 2070CrossRefGoogle Scholar
Karban, R.Baldwin, I. T. 1997 Induced Responses to HerbivoryChicago, ILUniversity of Chicago PressCrossRefGoogle Scholar
Kessler, A.Baldwin, I. T. 2001 Defensive function of herbivore-induced plant volatile emissions in natureScience 291 2141CrossRefGoogle ScholarPubMed
Kessler, A.Baldwin, I. T. 2004 Herbivore-induced plant vaccination. Part I. The orchestration of plant defenses in nature and their fitness consequences in the wild tobacco The Plant Journal 38 639CrossRefGoogle ScholarPubMed
Kessler, A.Halitschke, R. 2009 Testing the potential for conflicting selection on floral chemical traits by pollinators and herbivores, predictions and case studyFunctional Ecology 23 901CrossRefGoogle Scholar
Kessler, D.Gase, K.Baldwin, I. T. 2008 Field experiments with transformed plants reveal the sense of floral scentsScience 321 1200CrossRefGoogle ScholarPubMed
Kessler, D.Diezel, C.Baldwin, I. T. 2010 Changing pollinators as a means of escaping herbivoresCurrent Biology 20 237CrossRefGoogle ScholarPubMed
Khosla, C.Keasling, J. D. 2003 Metabolic engineering for drug discovery and developmentNature Reviews Drug Discovery 2 1019CrossRefGoogle ScholarPubMed
Köllner, T. G.Gershenzon, J.Degenhardt, J. 2009 Molecular and biochemical evolution of maize terpene synthase 10, an enzyme of indirect defensePhytochemistry 70 1139CrossRefGoogle ScholarPubMed
Körner, E.von Dahl, C.Bonaventure, G.Baldwin, I. T. 2009 Pectin methylesterase NaPME1 contributes to the emission of methanol during insect herbivory and to the elicitation of defence responses in Journal of Experimental Botany 60 2631CrossRefGoogle ScholarPubMed
Kost, C.Heil, M. 2006 Herbivore-induced plant volatiles induce an indirect defence in neighbouring plantsJournal of Ecology 94 619CrossRefGoogle Scholar
Krügel, T.Lim, M.Gase, K.Halitschke, R.Baldwin, I. T. 2002 -mediated transformation of , a model ecological expression systemChemoecology 12 177CrossRefGoogle Scholar
Laothawornkitkul, J.Paul, N. D.Vickers, C. E. 2008 The role of isoprene in insect herbivoryPlant Signaling and Behavior 3 1141CrossRefGoogle ScholarPubMed
Lewis, W. J.Tumlinson, J. H. 1988 Host detection by chemically mediated associative learning in a parasitic waspNature 331 257CrossRefGoogle Scholar
Loreto, F.Schnitzler, J.-P. 2010 Abiotic stresses and induced BVOCsTrends in Plant Science 15 154CrossRefGoogle ScholarPubMed
Mahmoud, S. S.Croteau, R. B. 2002 Strategies for transgenic manipulation of monoterpene biosynthesis in plantsTrends in Plant Science 7 366CrossRefGoogle ScholarPubMed
Mizutani, J. 1999 Selected allelochemicalsCritical Reviews in Plant Sciences 18 653CrossRefGoogle Scholar
Niinemets, U. 2010 Mild versus severe stress and BVOCs: thresholds, priming and consequencesTrends in Plant Science 15 145CrossRefGoogle ScholarPubMed
Pare, P. W.Tumlinson, J. H. 1999 Plant volatiles as a defense against insect herbivoresPlant Physiology 121 325CrossRefGoogle ScholarPubMed
Peñuelas, J. 2008 An increasingly scented worldNew Phytologist 180 735CrossRefGoogle ScholarPubMed
Peñuelas, J.Staudt, M. 2010 BVOCs and global changeTrends in Plant Science 15 133CrossRefGoogle ScholarPubMed
Price, P. W.Bouton, C. E.Gross, P. 1980 Interactions among three trophic levels: influence of plants on interactions between insect herbivores and natural enemiesAnnual Review of Ecology and Systematics 11 41CrossRefGoogle Scholar
Raguso, R. A. 2008 Wake up and smell the roses: the ecology and evolution of floral scentAnnual Review of Ecology, Evolution and Systematics 39 549CrossRefGoogle Scholar
Rasmann, S.Kollner, T. G.Degenhardt, J. 2005 Recruitment of entomopathogenic nematodes by insect-damaged maize rootsNature 434 732CrossRefGoogle ScholarPubMed
Rhoades, D. F. 1983 Responses of alder and willow to attack by tent caterpillars and webworms: evidence for pheromonal sensitivity of willowsHedin, P. A.Plant Resistance to InsectsWashington, DCAmerican Chemical SocietyGoogle Scholar
Rodríguez-Concepción, M. 2006 Early steps in isoprenoid biosynthesis: multilevel regulation of the supply of common precursors in plant cellsPhytochemistry Reviews 5 1CrossRefGoogle Scholar
Rosenheim, J. A. 1998 Higher-order predators and the regulation of insect herbivore populationsAnnual Review of Entomology 43 421CrossRefGoogle ScholarPubMed
Schnee, C.Köllner, T. G.Held, M. 2006 The products of a single maize sesquiterpene synthase form a volatile defense signal that attracts natural enemies of maize herbivoresProceedings of the National Academy of Sciences USA 103 1129CrossRefGoogle Scholar
Schuman, M. C.Heinzel, N.Gaquerel, E.Svatoš, A.Baldwin, I. T. 2009 Polymorphism in jasmonate signaling partially accounts for the variety of volatiles produced by plants in a native populationNew Phytologist 183 1134CrossRefGoogle Scholar
Schwachtje, J.Kutschbach, S.Baldwin, I. T. 2008 Reverse genetics in ecological researchPLoS ONE 3 e1543CrossRefGoogle ScholarPubMed
Shiojiri, K.Kishimoto, K.Ozawa, R. 2006 Changing green leaf volatile biosynthesis in plants: an approach for improving plant resistance against both herbivores and pathogensProceedings of the National Academy of Sciences USA 103 16672CrossRefGoogle ScholarPubMed
Shiojiri, K.Ozawa, R.Kugimiya, S. 2010 Herbivore-specific, density-dependent induction of plant volatiles: honest or ‘cry wolf’ signals?PLoS ONE 5 e12161CrossRefGoogle ScholarPubMed
Singh, H. P.Batish, D.Kohli, R. K. 2003 Allelopathic interactions and allelochemicals: new possibilities for sustainable weed managementCritical Reviews in Plant Sciences 22 239CrossRefGoogle Scholar
Skibbe, M.Qu, N.Gális, I.Baldwin, I. T. 2008 Induced plant defenses in the natural environment: WRKY3 and WRKY6 coordinate responses to herbivoryPlant Cell 20 1984CrossRefGoogle ScholarPubMed
Skoula, M.Abbes, J. E.Johnson, C. B. 2000 Genetic variation of volatiles and rosmarinic acid in populations of mill growing in CreteBiochemical Systematics and Ecology 28 551CrossRefGoogle ScholarPubMed
Steppuhn, A.Schuman, M. C.Baldwin, I. T. 2008 Silencing jasmonate signalling and jasmonate-mediated defences reveals different survival strategies between two accessionsMolecular Ecology 17 3717CrossRefGoogle Scholar
Stork, W.Diezel, C.Halitschke, R.Gális, I.Baldwin, I. T. 2009 An ecological analysis of the herbivory-elicited JA burst and its metabolism: plant memory processes and predictions of the moving target modelPLoS ONE 4 e4697CrossRefGoogle ScholarPubMed
Takabayashi, J.Dicke, M.Posthumus, M. A. 1994 Volatile herbivore-induced terpenoids in plant–mite interactions: variation caused by biotic and abiotic factorsJournal of Chemical Ecology 20 1329CrossRefGoogle ScholarPubMed
Thaler, J. S. 1999 Jasmonate-inducible plant defences cause increased parasitism of herbivoresNature 399 686CrossRefGoogle Scholar
Tholl, D.Chen, F.Petri, J.Gershenzon, J.Pichersky, E. 2005 Two sesquiterpene synthases are responsible for the complex mixture of sesquiterpenes emitted from flowersThe Plant Journal 42 757CrossRefGoogle Scholar
Turlings, T. C. J.Wäckers, F. 2004 Recruitment of predators and parasitoids by herbivore-injured plantsAdvances in Insect Chemical EcologyCambridgeCambridge University Press21CrossRefGoogle Scholar
Unsicker, S. B.Kunert, G.Gershenzon, J. 2009 Protective perfumes: the role of vegetative volatiles in plant defense against herbivoresCurrent Opinion in Plant Biology 12 479CrossRefGoogle ScholarPubMed
van Dam, N. M.Poppy, G. M. 2008 Why plant volatile analysis needs bioinformatics: detecting signal from noise in increasingly complex profilesPlant Biology 10 29CrossRefGoogle ScholarPubMed
van Dam, N. M.Hadwich, K.Baldwin, I. T. 2000 Induced responses in affect behavior and growth of the specialist herbivore Oecologia 122 371CrossRefGoogle ScholarPubMed
van Loon, J. J. A.de Boer, J. G.Dicke, M. 2000 Parasitoid–plant mutualism: parasitoid attack of herbivore increases plant reproductionEntomologia Experimentalis et Applicata 97 219CrossRefGoogle Scholar
Vickers, C. E.Gershenzon, J.Lerdau, M. T.Loreto, F. 2009 A unified mechanism of action for volatile isoprenoids in plant abiotic stressNature Chemical Biology 5 283CrossRefGoogle ScholarPubMed
von Dahl, C. C.Hävecker, M.Schlögl, R.Baldwin, I. T. 2006 Caterpillar-elicited methanol emission, a new signal in plant–herbivore interactions?The Plant Journal 46 948CrossRefGoogle ScholarPubMed
Wenke, K.Kai, M.Piechulla, B. 2010 Belowground volatiles facilitate interactions between plant roots and soil organismsPlanta 231 499CrossRefGoogle ScholarPubMed
Wu, J.Hettenhausen, C.Schuman, M. C.Baldwin, I. T. 2008 A comparison of two accessions reveals large differences in signaling induced by oral secretions of the specialist herbivore Plant Physiology 146 927CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×