Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-767nl Total loading time: 0 Render date: 2024-07-12T14:52:05.722Z Has data issue: false hasContentIssue false

21 - Pediatric mature B-cell non-Hodgkin lymphomas

from Section 2 - Neoplastic hematopathology

Published online by Cambridge University Press:  03 May 2011

Sherrie L. Perkins
Affiliation:
University of Utah Health Sciences Center
Maria A. Proytcheva
Affiliation:
Northwestern University Medical School, Illinois
Get access

Summary

Non-Hodgkin lymphomas (NHLs) comprise approximately 10% of all childhood cancers and are a diverse collection of malignant neoplasms of lymphoreticular cells [1]. Pediatric NHL includes a varied group of neoplasms that derive from both mature and immature (blastic) cells of both B-cell and T-cell origin (Table 21.1). NHLs in children are typically intermediate to high-grade (clinically aggressive) tumors. This is in direct contrast to NHL in adults, in which more than two-thirds of the tumors are indolent, low-grade malignancies [2–5]. Pediatric NHL also appears very different from adult lymphomas in that nearly all of the tumors are diffuse neoplasms, and follicular (nodular) lymphomas are exceedingly rare. Pediatric NHL is nearly evenly split between B-cell and T-cell neoplasms, whereas in adults nearly 80% of NHLs are of B-cell phenotype. In addition, pediatric populations have a high incidence of precursor (lymphoblastic) lymphomas, whereas nearly all adult lymphomas arise from mature B- and T-cells [3–4, 6–8].

Diagnosis of pediatric NHL requires similar approaches to those used in adults. Pediatric NHLs are usually aggressive, fast-growing neoplasms that require efficient and appropriate handling of pathologic materials to ensure that a diagnosis can be established (Table 21.2) [9–10]. Morphology and immunophenotype provide the cornerstones of diagnosis, with some problematic cases requiring additional diagnostic ancillary testing, including cytogenetics (to identify specific recurrent cytogenetic abnormalities) or molecular studies (to determine clonality or specific translocations).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Cairo, MS, Raetz, E, Perkins, SL. Non-Hodgkin lymphoma in children. In Kufe, D, Pollock, RE, Weishelbaum, RR, et al., eds. Cancer Medicine (6th edn.). London: BC Decker Inc.; 2003, 2337–2348.Google Scholar
Perkins, SL, Work-up and diagnosis of pediatric non-Hodgkin's lymphomas. Pediatric and Developmental Pathology. 2000;3(4):374–390.CrossRefGoogle ScholarPubMed
Sandlund, JT, Downing, JR, Crist, WM. Non-Hodgkin's lymphoma in childhood. New England Journal of Medicine. 1996;334(19):1238–1248.CrossRefGoogle ScholarPubMed
Gross, TG, Termuhlen, AM. Pediatric non-Hodgkin's lymphoma. Current Oncology Reports. 2007;9(6):459–465.CrossRefGoogle ScholarPubMed
Reiter, A, Klapper, W. Recent advances in the understanding and management of diffuse large B-cell lymphoma in children. British Journal of Haematology. 2008;142(3):329–347.CrossRefGoogle ScholarPubMed
Swerdlow, SH. Pediatric follicular lymphomas, marginal zone lymphomas, and marginal zone hyperplasia. American Journal of Clinical Pathology. 2004;122(Suppl):S98–S109.Google ScholarPubMed
Effect of age on the characteristics and clinical behavior of non-Hodgkin's lymphoma patients. The Non- Hodgkin's Lymphoma Classification Project. Annals of Oncology. 1997; 8:973–978.
Hochberg, J, Waxman, IM, Kelly, KM, Morris, E, Cairo, MS. Adolescent non-Hodgkin lymphoma and Hodgkin lymphoma: state of the science. British Journal of Haematology. 2009;144(1):24–40.CrossRefGoogle ScholarPubMed
Said, J. Diffuse aggressive B-cell lymphomas. Advances in Anatomic Pathology. 2009;16(4):216–235.CrossRefGoogle ScholarPubMed
Leval, L, Hasserjian, RP. Diffuse large B-cell lymphomas and Burkitt lymphoma. Hematology/Oncology Clinics of North America. 2009;23(4):791–827.CrossRefGoogle ScholarPubMed
Swerdlow, SH, Campo, E, Harris, NL, et al. WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues (4th edn.). Lyon: IARC Press; 2008.Google Scholar
Poirel, HA, Cairo, MS, Heerema, NA. Specific cytogenetic abnormalities are associated with a significantly inferior outcome in children and adolescents with mature B-cell non-Hodgkin's lymphoma: results of the FAB/LMB 96 international study. Leukemia. 2009;23(2):323–331.CrossRefGoogle ScholarPubMed
Klapper, W, Szczepanowski, M, Burkhardt, B, et al. Molecular profiling of pediatric mature B-cell lymphoma treated in population-based prospective clinical trials. Blood. 2008;112(4):1374–1381.CrossRefGoogle ScholarPubMed
Craig, FE, Foon, KA. Flow cytometric immunophenotyping for hematologic neoplasms. Blood. 2008;111(8):3941–3967.CrossRefGoogle ScholarPubMed
Bagg, A. Molecular diagnosis in lymphoma. Current Hematology Reports. 2005;4(4):313–323.Google ScholarPubMed
Leonard, JP, Martin, P, Barrientos, J, Elstrom, R. Targeted treatment and new agents in diffuse large B-cell lymphoma. Seminars in Hematology. 2008;45(3 Suppl 2):S11–S16.CrossRefGoogle ScholarPubMed
Kwong, YL. Predicting the outcome in non-Hodgkin lymphoma with molecular markers. British Journal of Haematology. 2007;137(4):273–287.CrossRefGoogle ScholarPubMed
Casimiro, Onofre AS, Pomjanski, N, Buckstegge, B, Böcking, A. Immunocytochemical typing of primary tumors on fine-needle aspiration cytologies of lymph nodes. Diagnostic Cytopathology. 2008;36(4):207–215.CrossRefGoogle Scholar
Maroto, A, Martinez, M, Martinez, MA, Agustin, P, Rodriguez- Peralto, JL. Comparative analysis of immunoglobulin polymerase chain reaction and flow cytometry in fine needle aspiration biopsy differential diagnosis of non-Hodgkin B-cell lymphoid malignancies. Diagnostic Cytopathology. 2009;37(9):647–653.CrossRefGoogle ScholarPubMed
Gautam, U, Srinivasan, R, Rajwanshi, A, Bansal, D, Marwaha, RK. Comparative evaluation of flow- cytometric immunophenotyping and immunocytochemistry in the categorization of malignant small round cell tumors in fine-needle aspiration cytologic specimens. Cancer. 2008;114(6):494–503.CrossRefGoogle ScholarPubMed
Muzzafar, T, Srinivasan, R, Rajwanshi, A, Bansal, D, Marwaha, RK. Flow cytometric immunophenotyping of anaplastic large cell lymphoma. Archives of Pathology and Laboratory Medicine. 2009;133(1):49–56.Google ScholarPubMed
Dey, P. Role of ancillary techniques in diagnosing and subclassifying non-Hodgkin's lymphomas on fine needle aspiration cytology. Cytopathology. 2006;17(5):275–287.CrossRefGoogle ScholarPubMed
Teruya-Feldstein, J. Getting the diagnosis right in NHL: role of immunohistochemistry and molecular diagnostic testing. Journal of the National Comprehensive Cancer Network. 2008;6(4):422–427.CrossRefGoogle ScholarPubMed
Cairo, MS, Raetz, E, Lim, MS, Davenport, V, Perkins, SL. Childhood and adolescent non-Hodgkin lymphoma: new insights in biology and critical challenges for the future. Pediatric Blood and Cancer. 2005;45(6):753–769.CrossRefGoogle ScholarPubMed
Hartmann, EM, Ott, G, Rosenwald, A. Molecular biology and genetics of lymphomas. Hematology/Oncology Clinics of North America. 2008;22(5):807–823, vii.CrossRefGoogle ScholarPubMed
Bench, AJ, Erber, WN, Follows, GA, Scott, MA. Molecular genetic analysis of haematological malignancies II: Mature lymphoid neoplasms. International Journal of Laboratory Hematology. 2007;29(4):229–260.CrossRefGoogle ScholarPubMed
Lones, MA, Cairo, MS, Perkins, SL. T-cell-rich large B-cell lymphoma in children and adolescents: a clinicopathologic report of six cases from the Children's Cancer Group Study CCG-5961. Cancer. 2000;88(10):2378–2386.3.0.CO;2-Q>CrossRefGoogle ScholarPubMed
Wilson, J, Kjeldsberg, CR, Sposto, R, et al. The pathology of non-Hodgkin's lymphoma of childhood: reproducibility and relevance of the histologic classification of “undifferentiated” lymphomas (Burkitt's versus non-Burkitts). Human Pathology. 1987;18:1008–1014.CrossRefGoogle Scholar
Rosenwald, A, Ott, G. Burkitt lymphoma versus diffuse large B-cell lymphoma. Annals of Oncology. 2008;19(Suppl 4):iv67–iv69.CrossRefGoogle ScholarPubMed
Ott, G, Balague-Ponz, O, de Leval, L, et al. Commentary on the WHO classification of tumors of lymphoid tissues (2008): indolent B cell lymphomas. Journal of Hematopathology. 2009;2(2):77–81.CrossRefGoogle ScholarPubMed
Cairo, MS, Gerrard, M, Sposto, R, et al. Results of a randomized international study of high-risk central nervous system B non-Hodgkin lymphoma and B acute lymphoblastic leukemia in children and adolescents. Blood. 2007;109(7):2736–2743.Google Scholar
Patte, C, Auperin, A, Gerrard, M, et al. Results of the randomized international FAB/LMB96 trial for intermediate risk B-cell non-Hodgkin lymphoma in children and adolescents: it is possible to reduce treatment for the early responding patients. Blood. 2007;109(7):2773–2780.Google ScholarPubMed
Miles, RR, Raphael, M, McCarthy, K, et al. Pediatric diffuse large B-cell lymphoma demonstrates a high proliferation index, frequent c-Myc protein expression, and a high incidence of germinal center subtype: Report of the French-American-British (FAB) international study group. Pediatric Blood and Cancer. 2008;51(3):369–374.CrossRefGoogle Scholar
Balague Ponz, O, Ott, G, Hasserjian, RP, et al. Commentary on the WHO classification of tumors of lymphoid tissues (2008): aggressive B-cell lymphomas. Journal of Hematopathology. 2009;2(2):83–87.CrossRefGoogle ScholarPubMed
Lorsbach, RB, Shay-Seymore, D, Moore, J, et al. Clinicopathologic analysis of follicular lymphoma occurring in children. Blood. 2002;99(6):1959–1964.CrossRefGoogle ScholarPubMed
Goldsby, RE, Carroll, WL. The molecular biology of pediatric lymphomas. Journal of Pediatric Hematology/Oncology. 1998;20(4):282–296.CrossRefGoogle ScholarPubMed
Harris, NL, Stein, H, Coupland, SE, et al. New approaches to lymphoma diagnosis. Hematology/The Education Program of the American Society of Hematology. 2001:194–220.Google ScholarPubMed
Rowland, JM. Molecular genetic diagnosis of pediatric cancer: current and emerging methods. Pediatric Clinics of North America. 2002;49(6):1415–1435.CrossRefGoogle ScholarPubMed
Sen, F, Vega, F, Medeiros, LJ. Molecular genetic methods in the diagnosis of hematologic neoplasms. Seminars in Diagnostic Pathology. 2002;19(2):72–93.Google Scholar
Falini, B, Bigerna, B, Pasqualucci, L, et al. Distinctive expression pattern of the BCL-6 protein in nodular lymphocyte predominance Hodgkin's disease. Blood. 1996;87(2):465–471.Google ScholarPubMed
Murphy, S. Classification, staging and end results of treatment of childhood non-Hodgkinn's lymphomas: Dissimilarities from lymphomas in adults. Seminars in Oncology. 1980;7:332–338.Google ScholarPubMed
Zhang, QY, Foucar, K. Bone marrow involvement by Hodgkin and non- Hodgkin lymphomas. Hematology/ Oncology Clinics of North America. 2009;23(4):873–902.CrossRefGoogle ScholarPubMed
Talaulikar, D, Dahlstrom, JE. Staging bone marrow in diffuse large B-cell lymphoma: the role of ancillary investigations. Pathology. 2009;41(3):214–222.CrossRefGoogle ScholarPubMed
Cheson, BD. Staging and evaluation of the patient with lymphoma. Hematology/Oncology Clinics of North America. 2008;22(5):825–837, vii–viii.CrossRefGoogle ScholarPubMed
Diebold, J, Raphael, M, Prevot, S, Audouin, J. Burkitt lymphoma. In Jaffe, ES, Harris, NL, Stein, H, Vardiman, J, eds. World Health Organization Classification of Tumours: Pathology and Genetics of Tumours of Haematopoietic and Lymphoid Tissues. Lyon: IARC Press; 2001, 181–184.Google Scholar
Burkitt, D. A sarcoma involving the jaws in African children. British Journal of Surgery. 1958;46:218–223.CrossRefGoogle ScholarPubMed
Magrath, I. Small noncleaved cell lymphomas (Burkitt and Burkitt-like lymphomas). In Magrath, I, ed. The Non-Hodgkin's Lymphomas (2nd edn.). New York: Arnold; 1997, 781–811.Google ScholarPubMed
Brady, G, MacArthur, GJ, Farrell, PG. Epstein-Barr virus and Burkitt lymphoma. Journal of Clinical Pathology. 2007;60(12):1397–1402.Google ScholarPubMed
Hecht, JL, Aster, JC. Molecular biology of Burkitt's lymphoma. Journal of Clinical Oncology. 2000;18(21):3707–3721.CrossRefGoogle ScholarPubMed
Krieken, JH. Lymphoproliferative disease associated with immune deficiency in children. American Journal of Clinical Pathology. 2004;122(Suppl):S122–S127.Google ScholarPubMed
The Non-Hodgkin's Lymphoma Pathologic Classification Project. The National Cancer Institute sponsored study of classification of non-Hodgkin's lymphomas: summary and description of working formulation for clinical usage. Cancer. 1982; 49:2112–2135.
Harris, AC, Todd, WM, Hackney, MH, Ben-Ezra, J. Bone marrow changes associated with recombinant granulocyte-macrophage and granulocyte colony-stimulating factors. Archives of Pathology and Laboratory Medicine. 1994;118:624–629.Google ScholarPubMed
Jaffe, ES, Harris, NL, Stein, H, Vardiman, JW (eds.). World Health Organization Classification of Tumours: Pathology and Genetics of Tumours of Haematopoietic and Lymphoid Tissues. Lyon: IARC Press; 2001.Google Scholar
Kelly, D, Nathwani, BN, Griffith, RC, et al. A morphologic study of childhood lymphoma of the undifferentiated type. The Pediatric Oncology Group experience. Cancer. 1987;59:1132–1137.3.0.CO;2-T>CrossRefGoogle ScholarPubMed
Spina, D, Leoncini, L, Megha, T, et al. Cellular kinetic and phenotypic heterogeneity in and among Burkitt's and Burkitt-like lymphomas. Journal of Pathology. 1997;182(2):145–150.3.0.CO;2-P>CrossRefGoogle ScholarPubMed
Lones, MA, Auperin, A, Raphael, M, et al. Mature B-cell lymphoma/ leukemia in children and adolescents: intergroup pathologist consensus with the revised European-American lymphoma classification. Annals of Oncology. 2000;11(1):47–51.CrossRefGoogle ScholarPubMed
Lones, MA, Raphael, M, Perkins, SL, et al. Mature B-cell lymphoma in children and adolescents: international group pathologist consensus correlates with histology technical quality. Journal of Pediatric Hematology/Oncology. 2006;28(9):568–574.CrossRefGoogle Scholar
Hutchison, RE, Finch, C, Kepner, J, et al. Burkitt lymphoma is immunophenotypically different from Burkitt-like lymphoma in young persons. Annals of Oncology. 2000;11(Suppl 1):35–38.CrossRefGoogle ScholarPubMed
Mann, R, Jaffe, ES, Braylan, RC, et al. Non-edemic Burkitt's lymphoma: a B-cell tumor related to germinal centers. New England Journal of Medicine. 1976;295:685–691.CrossRefGoogle Scholar
Frost, M, Newell, J, Lones, MA, et al. Comparative immunohistochemical analysis of pediatric Burkitt lymphoma and diffuse large B-cell lymphoma. American Journal of Clinical Pathology. 2004;121:384–392.CrossRefGoogle ScholarPubMed
Iverson, O, Iversen, U, Ziegler, JL, Bluming, AZ. Cell kinetics in Burkitt's lymphoma. European Journal of Cancer. 1974;10:1507–1512.Google Scholar
Macpherson, N, Lesack, D, Klasa, R, et al. Small noncleaved, non-Burkitt's (Burkitt-like) lymphoma: cytogenetics predict outcome and reflect clinical presentation. Journal of Clinical Oncology. 1999;17:1558–1567.CrossRefGoogle ScholarPubMed
Sanger, W. Primary (8q24) and secondary chromosome abnormalities (1q, 6q, 13q, & 17p) are similar in pediatric Burkitt lymphoma/Burkitt leukemia & Burkitt-like lymphoma: a report of the International Pediatric B-cell Non-Hodgkin Lymphoma study. Blood. 2003;102(11):845a.Google Scholar
Heerema, NA, Bernheim, A, Lim, MS, et al. State of the art and future needs in cytogenetic/molecular genetics/arrays in childhood lymphoma: summary report of workshop at the First International Symposium on Childhood and Adolescent non-Hodgkin Lymphoma, April 9, 2003, New York City, NY. Pediatric Blood and Cancer. 2005;45(5):616–622.CrossRefGoogle ScholarPubMed
Boerma, EG, Siebert, R, Kluin, PM, Baudis, M. Translocations involving 8q24 in Burkitt lymphoma and other malignant lymphomas: a historical review of cytogenetics in the light of todays knowledge. Leukemia. 2009;23(2):225–234.CrossRefGoogle ScholarPubMed
Yustein, JT, Dang, CV. Biology and treatment of Burkitt's lymphoma. Current Opinion in Hematology. 2007;14(4):375–381.CrossRefGoogle ScholarPubMed
O' Neil, J, Look, AT. Mechanisms of transcription factor deregulation in lymphoid cell transformation. Oncogene. 2007;26(47):6838–6849.CrossRefGoogle Scholar
Pelicci, PG, Knowles, DM, Magrath, I, Dalla-Favera, R. Chromosomal breakpoints and structural alterations of the c-myc locus differ in endemic and sporadic forms of Burkitt lymphoma. Proceedings of the National Academy of Sciences of the United States of America. 1986;83(9):2984–2988.CrossRefGoogle ScholarPubMed
Haralambieva, E, Banham, AH, Bastard, C, et al. Detection by the fluorescence in situ hybridization technique of MYC translocations in paraffin-embedded lymphoma biopsy samples. British Journal of Haematology. 2003;121(1):49–56.CrossRefGoogle ScholarPubMed
Garcia, JL, Hernandez, JM, Gutiérrez, NC, et al. Abnormalities on 1q and 7q are associated with poor outcome in sporadic Burkitt's lymphoma. A cytogenetic and comparative genomic hybridization study. Leukemia. 2003;17(10):2016–2024.CrossRefGoogle ScholarPubMed
Lones, MA, Sanger, WG, LeBeau, MM, et al. Chromosome abnormalities may correlate with prognosis in Burkitt/ Burkitt-like lymphomas of children and adolescents. Journal of Pediatric Hematology/Oncology. 2004;26(3):169–178.CrossRefGoogle ScholarPubMed
Jaffe, ES, Harris, NL, Stein, H, Vardiman, JW (eds.). World Health Organization Classification of Tumours: Pathology and Genetics of Tumours of Haematopoietic and Lymphoid Tissues. Lyon: IARC Press; 2001.Google Scholar
Dang, CV. c-Myc target genes involved in cell growth, apoptosis, and metabolism. Molecular and Cellular Biology. 1999;19(1):1–11.CrossRefGoogle ScholarPubMed
Gartel, AL, Shchors, K. Mechanisms of c-myc-mediated transcriptional repression of growth arrest genes. Experimental Cell Research. 2003;283(1):17–21.CrossRefGoogle ScholarPubMed
Packham, G, Cleveland, JL. c-Myc and apoptosis. Biochimica et Biophysica Acta. 1995;1242(1):11–28.Google ScholarPubMed
Wierstra, I, Alves, J. The c-myc promoter: still MysterY and Challenge. Advances in Cancer Research. 2008;99:113–333.CrossRefGoogle Scholar
Eilers, M, Schirm, S, Bishop, JM. The MYC protein activates transcription of the alpha-prothymosin gene. EMBO Journal. 1991;10(1):133–141.Google ScholarPubMed
Askew, DS, Ashmun, RA, Simmons, BC, Cleveland, JL. Constitutive c-myc expression in an IL-3-dependent myeloid cell line suppresses cell cycle arrest and accelerates apoptosis. Oncogene. 1991;6(10):1915–1922.Google Scholar
Evan, GI, Wyllie, AH, Gilbert, CS, et al. Induction of apoptosis in fibroblasts by c-myc protein. Cell. 1992;69(1):119–128.CrossRefGoogle ScholarPubMed
Langdon, WY, Harris, AW, Cory, S, Adams, JM. The c-myc oncogene perturbs B lymphocyte development in E-mu-myc transgenic mice. Cell. 1986;47(1):11–18.CrossRefGoogle ScholarPubMed
Adams, JA, Barrett, AJ. Haematopoietic stimulators in the serum of patients with severe aplastic anaemia. British Journal of Haematology. 1982;52:327–335.CrossRefGoogle ScholarPubMed
Hayashi, Y. The molecular genetics of recurring chromosome abnormalities in acute myeloid leukemia. Seminars in Hematology. 2000;37(4):368–380.CrossRefGoogle ScholarPubMed
Shim, H, Dolde, C, Lewis, BC, et al. c-Myc transactivation of LDH-A: implications for tumor metabolism and growth. Proceedings of the National Academy of Sciences of the United States of America. 1997;94(13):6658–6663.CrossRefGoogle Scholar
Wick, M, Zubov, D, Hagen, G. Genomic organization and promoter characterization of the gene encoding the human telomerase reverse transcriptase (hTERT). Gene. 1999;232(1):97–106.CrossRefGoogle ScholarPubMed
Martin-Subero, JI, Kreuz, M, Bibikova, M, et al. New insights into the biology and origin of mature aggressive B-cell lymphomas by combined epigenomic, genomic, and transcriptional profiling. Blood. 2009;113(11):2488–2497.CrossRefGoogle ScholarPubMed
Dave, SS, Fu, K, Wright, GW, et al. Molecular diagnosis of Burkitt's lymphoma. New England Journal of Medicine. 2006;354(23):2431–2442.CrossRefGoogle ScholarPubMed
Hummel, M, Bentink, S, Berger, H, et al. A biologic definition of Burkitt's lymphoma from transcriptional and genomic profiling. New England Journal of Medicine. 2006;354(23):2419–2430.CrossRefGoogle ScholarPubMed
Young, L, Alfieri, C, Hennessy, K, et al. Expression of Epstein-Barr virus transformation-associated genes in tissues of patients with EBV lymphoproliferative disease. New England Journal of Medicine. 1989;321(16):1080–1085.CrossRefGoogle ScholarPubMed
Lyons, SF, Liebowitz, DN. The roles of human viruses in the pathogenesis of lymphoma. Seminars in Oncology. 1998;25(4):461–475.Google ScholarPubMed
Bornkamm, GW. Epstein-Barr virus and the pathogenesis of Burkitt's lymphoma: more questions than answers. International Journal of Cancer. 2009;124(8):1745–1755.CrossRefGoogle ScholarPubMed
Wilson, JB, Bell, JL, Levine, AJ. Expression of Epstein-Barr virus nuclear antigen-1 induces B cell neoplasia in transgenic mice. EMBO Journal. 1996;15(12):3117–3126.Google ScholarPubMed
Komano, J, Maruo, S, Kurozumi, K, Oda, T, Takada, K. Oncogenic role of Epstein-Barr virus-encoded RNAs in Burkitt's lymphoma cell line Akata. Journal of Virology. 1999;73(12):9827–9831.Google ScholarPubMed
Preciado, MV, Fallo, A, Chabay, P, Calcagno, L, Matteo, E. Epstein Barr virus-associated lymphoma in HIV- infected children. Pathology, Research and Practice. 2002;98(5):327–332.CrossRefGoogle Scholar
Cairo, MS. Current advances and future strategies of B large cell lymphoma in children and adolescents. Proceedings of the American Society of Oncology. 2002;21:512–519.Google Scholar
Ferry, JA. Extranodal lymphoma. Archives of Pathology and Laboratory Medicine. 2008;132(4):565–578.Google ScholarPubMed
Hunt, KE, Reichard, KK. Diffuse large B-cell lymphoma. Archives of Pathology and Laboratory Medicine. 2008;132(1):118–124.Google ScholarPubMed
Friedberg, JW, Fisher, RI. Diffuse large B-cell lymphoma. Hematology/Oncology Clinics of North America. 2008;22(5):941–952, ix.CrossRefGoogle ScholarPubMed
El Weshi, A, Akhtar, S, Mourad, WA, et al. T-cell/histiocyte-rich B-cell lymphoma: Clinical presentation, management and prognostic factors: report on 61 patients and review of literature. Leukemia and Lymphoma. 2007;48(9):1764–1773.CrossRefGoogle ScholarPubMed
Gurbuxani, S, Anastasi, J, Hyjek, E. Diffuse large B-cell lymphoma–more than a diffuse collection of large B cells: an entity in search of a meaningful classification. Archives of Pathology and Laboratory Medicine. 2009;133(7):1121–1134.Google Scholar
Rodriguez, J, Gutierrez, A, Piris, M. Primary mediastinal B-cell lymphoma: treatment and therapeutic targets. Leukemia and Lymphoma. 2008;49(6):1050–1061.CrossRefGoogle ScholarPubMed
Boleti, E, Johnson, PW. Primary mediastinal B-cell lymphoma. Hematological Oncology. 2007;25(4):157–163.CrossRefGoogle ScholarPubMed
Martelli, M, Ferreri, AJ, Johnson, P. Primary mediastinal large B-cell lymphoma. Critical Reviews in Oncology/Hematology. 2008;68(3):256–263.CrossRefGoogle ScholarPubMed
Chadburn, A, Frizzera, G. Mediastinal large B-cell lymphoma versus classic Hodgkin lymphoma. American Journal of Clinical Pathology. 1999;112:155–158.CrossRefGoogle Scholar
Savage, KJ. Primary mediastinal large B-cell lymphoma. Oncologist. 2006;11(5):488–495.CrossRefGoogle ScholarPubMed
Higgin, JP,Warnke, RA. CD30 expression is common in mediastinal large B-cell lymphoma. American Journal of Clinical Pathology. 1999;112:241–247.CrossRefGoogle Scholar
Browne, P, Petrosyan, K, Hernandez, A, Chan, JA. The B-cell transcription factors BSAP, Oct-2, and BOB.1 and the pan-B-cell markers CD20, CD22, and CD79a are useful in the differential diagnosis of classic Hodgkin lymphoma. American Journal of Clinical Pathology. 2003;120(5):767–777.CrossRefGoogle ScholarPubMed
Watanabe, K, Yamashita, Y, Nakayama, A, et al. Varied B-cell immunophenotypes of Hodgkin/Reed- Sternberg cells in classic Hodgkin's disease. Histopathology. 2000;36(4):353–361.CrossRefGoogle ScholarPubMed
Elgin, J, Phillips, JG, Reddy, VV, Gibbs, PO, Listinsky, CM. Hodgkin's and non-Hodgkin's lymphoma: spectrum of morphologic and immunophenotypic overlap. Annals of Diagnostic Pathology. 1999;3(5):263–275.CrossRefGoogle ScholarPubMed
Oschlies, I, Klapper, W, Zimmermann, M, et al. Diffuse large B-cell lymphoma in pediatric patients belongs predominantly to the germinal-center type B-cell lymphomas: a clinicopathologic analysis of cases included in the German BFM (Berlin-Frankfurt-Munster) multicenter trial. Blood. 2006;107(10):4047–4052.CrossRefGoogle ScholarPubMed
Heerema, N, Poirel, H, Swansbury, J, et al. Chromosomal abnormalities of pediatric (ped) and adult diffuse large B-cell lymphoma (DLBCL) differ and may reflect potential differences in oncogenesis. An international pediatric mature B-cell non-Hodgkin lymphoma study (FAB/LMB96). Blood. 2003;102:3139.Google Scholar
Nanjangud, G, Rao, PH, Hegde, A, et al. Spectral karyotyping identifies new rearrangements, translocations, and clinical associations in diffuse large B-cell lymphoma. Blood. 2002;99(7):2554–2561.CrossRefGoogle ScholarPubMed
Tibiletti, MG, Martin, V, Bernasconi, B, et al. BCL2, BCL6, MYC, MALT 1, and BCL10 rearrangements in nodal diffuse large B-cell lymphomas: a multicenter evaluation of a new set of fluorescent in situ hybridization probes and correlation with clinical outcome. Human Pathology. 2009;40(5):645–652.CrossRefGoogle ScholarPubMed
Tzankov, A, Schneider, A, Hoeller, S, Dirnhofer, S. Prognostic importance of BCL6 rearrangements in diffuse large B-cell lymphoma with respect to Bcl6 protein levels and primary lymphoma site. Human Pathology. 2009;40(7):1055–1056.CrossRefGoogle ScholarPubMed
Morton, LM, Purdue, MP, Zheng, T, et al. Risk of non-Hodgkin lymphoma associated with germline variation in genes that regulate the cell cycle, apoptosis, and lymphocyte development. Cancer Epidemiology Biomarkers and Prevention. 2009;18(4):1259–1270.CrossRefGoogle ScholarPubMed
Flenghi, L, Ye, BH, Fizzotti, M, et al. A specific monoclonal antibody (PG-B6) detects expression of the BCL-6 protein in germinal center B cells. American Journal of Pathology. 1995;147(2):405–411.Google ScholarPubMed
Saito, M, Novak, U, Piovan, E, et al. BCL6 suppression of BCL2 via Miz1 and its disruption in diffuse large B cell lymphoma. Proceedings of the National Academy of Sciences of the United States of America. 2009;106(27):11294–11299.CrossRefGoogle ScholarPubMed
Ci, W, Polo, JM, Cerchietti, L, et al. The BCL6 transcriptional program features repression of multiple oncogenes in primary B cells and is deregulated in DLBCL. Blood. 2009;113(22):5536–5548.CrossRefGoogle ScholarPubMed
Perez-Rosado, A, Artiga, M, Vargiu, P, et al. BCL6 represses NFkappaB activity in diffuse large B-cell lymphomas. Journal of Pathology. 2008;214(4):498–507.CrossRefGoogle ScholarPubMed
Parekh, S, Polo, JM, Shaknovich, R, et al. BCL6 programs lymphoma cells for survival and differentiation through distinct biochemical mechanisms. Blood. 2007;110(6):2067–2074.CrossRefGoogle ScholarPubMed
Jardin, F, Ruminy, P, Kerckaert, JP, et al. Detection of somatic quantitative genetic alterations by multiplex polymerase chain reaction for the prediction of outcome in diffuse large B-cell lymphomas. Haematologica. 2008;93(4):543–550.CrossRefGoogle ScholarPubMed
Iqbal, J, Greiner, TC, Patel, K, et al. Distinctive patterns of BCL6 molecular alterations and their functional consequences in different subgroups of diffuse large B-cell lymphoma. Leukemia. 2007;21(11):2332–2343.CrossRefGoogle ScholarPubMed
Bernicot, I, Douet-Guilbert, N, Bris, MJ, et al. Molecular cytogenetics of IGH rearrangements in non-Hodgkin B-cell lymphoma. Cytogenetic and Genome Research. 2007;118(2-4):345–352.CrossRefGoogle ScholarPubMed
Dalla-Favera, R, Ye, BH, Cattoretti, G, et al. BCL-6 in diffuse large-cell lymphomas. Important Advances in Oncology. 1996:139–148.Google ScholarPubMed
Veelken, H, Vik Dannheim, S, Schulte Moenting, J, et al. Immunophenotype as prognostic factor for diffuse large B-cell lymphoma in patients undergoing clinical risk-adapted therapy. Annals of Oncology. 2007;18(5):931–939.CrossRefGoogle ScholarPubMed
Imhoff, GW, Boerma, EJ, Holt, B, et al. Prognostic impact of germinal center-associated proteins and chromosomal breakpoints in poor-risk diffuse large B-cell lymphoma. Journal of Clinical Oncology. 2006;24(25):4135–4142.CrossRefGoogle ScholarPubMed
Rodig, SJ, Savage, KJ, LaCasce, AS, et al. Expression of TRAF1 and nuclear c-Rel distinguishes primary mediastinal large cell lymphoma from other types of diffuse large B-cell lymphoma. American Journal of Surgical Pathology. 2007;31(1):106–112.CrossRefGoogle ScholarPubMed
Besien, K, Kelta, M, Bahaguna, P. Primary mediastinal B-cell lymphoma: a review of pathology and management. Journal of Clinical Oncology. 2001;19(6):1855–1864.CrossRefGoogle ScholarPubMed
Weniger, MA, Gesk, S, Ehrlich, S, et al. Gains of REL in primary mediastinal B-cell lymphoma coincide with nuclear accumulation of REL protein. Genes, Chromosomes and Cancer. 2007;46(4):406–415.CrossRefGoogle ScholarPubMed
Calvo, KR, Traverse-Glehen, A, Pittaluga, S, Jaffe, ES. Molecular profiling provides evidence of primary mediastinal large B-cell lymphoma as a distinct entity related to classic Hodgkin lymphoma: implications for mediastinal gray zone lymphomas as an intermediate form of B-cell lymphoma. Advances in Anatomic Pathology. 2004;11(5):227–238.CrossRefGoogle ScholarPubMed
Marafioti, T, Pozzobon, M, Hansmann, ML, et al. Expression pattern of intracellular leukocyte-associated proteins in primary mediastinal B cell lymphoma. Leukemia. 2005;19(5):856–861.CrossRefGoogle ScholarPubMed
Pileri, SA, Dirnhofer, S, Went, P, et al. Diffuse large B-cell lymphoma: one or more entities? Present controversies and possible tools for its subclassification. Histopathology. 2002;41(6):482–509.CrossRefGoogle ScholarPubMed
Alizadeh, AA, Eisen, MB, Davis, RE, et al. Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature 2000;403(6769):503–511.CrossRefGoogle ScholarPubMed
Rosenwald, A, Wright, G, Chan, WC, et al. The use of molecular profiling to predict survival after chemotherapy for diffuse large-B-cell lymphoma. New England Journal of Medicine. 2002;346(25):1937–1947.CrossRefGoogle ScholarPubMed
Shipp, MA, Ross, KN, Tamayo, P, et al. Diffuse large B-cell lymphoma outcome prediction by gene-expression profiling and supervised machine learning. Nature Medicine. 2002;8(1):68–74.CrossRefGoogle ScholarPubMed
Lenz, G, Wright, GW, Emre, NC, et al. Molecular subtypes of diffuse large B-cell lymphoma arise by distinct genetic pathways. Proceedings of the National Academy of Sciences of the United States of America. 2008;105(36):13520–13525.CrossRefGoogle ScholarPubMed
Leich, E, Hartmann, EM, Burek, C, Ott, G, Rosenwald, A. Diagnostic and prognostic significance of gene expression profiling in lymphomas. Acta Pathologica, Microbiologica et Immunologica Scandinavica. 2007;115(10):1135–1146.CrossRefGoogle ScholarPubMed
Lossos, IS, Alizadeh, AA, Eisen, MB, et al. Ongoing immunoglobulin somatic mutation in germinal center B cell-like but not in activated B cell-like diffuse large cell lymphomas. Proceedings of the National Academy of Sciences of the United States of America. 2000;97(18):10209–10213.CrossRefGoogle Scholar
Huang, JZ, Sanger, WG, Greiner, TC, et al. The t(14;18) defines a unique subset of diffuse large B-cell lymphoma with a germinal center B-cell gene expression profile. Blood. 2002;99(7):2285–2290.CrossRefGoogle Scholar
Davis, RE, Brown, KD, Siebenlist, U, Staudt, LM. Constitutive nuclear factor kappaB activity is required for survival of activated B cell-like diffuse large B cell lymphoma cells. Journal of Experimental Medicine. 2001;194(12):1861–1874.CrossRefGoogle ScholarPubMed
Hans, CP, Weisenburger, DD, Greiner, TC, et al. Confirmation of the molecular classification of diffuse large B-cell lymphoma by immunohisto-chemistry using a tissue microarray. Blood. 2004;103(1):275–282.CrossRefGoogle Scholar
Chang, CC, McClintock, S, Cleveland, RP, et al. Immunohistochemical expression patterns of germinal center and activation B-cell markers correlate with prognosis in diffuse large B-cell lymphoma. American Journal of Surgical Pathology. 2004;28(4):464–470.CrossRefGoogle ScholarPubMed
Haarer, CF, Roberts, RA, Frutiger, YM, Grogan, TM, Rimsza, LM. Immunohistochemical classification of de novo, transformed, and relapsed diffuse large B-cell lymphoma into germinal center B-cell and nongerminal center B-cell subtypes correlates with gene expression profile and patient survival. Archives of Pathology and Laboratory Medicine. 2006;130(12):1819–1824.Google ScholarPubMed
Brusamolino, E, Rusconi, C, Montalbetti, L, et al. Dose-dense R-CHOP-14 supported by pegfilgrastim in patients with diffuse large B-cell lymphoma: a phase II study of feasibility and toxicity. Haematologica. 2006;91(4):496–502.Google ScholarPubMed
Coiffier, B. Treatment of diffuse large B-cell lymphoma. Current Hematology Reports. 2005;4(1):7–14.Google ScholarPubMed
Attias, D, Hodgson, D, Weitzman, S. Primary mediastinal B-cell lymphoma in the pediatric patient: Can a rational approach to therapy be based on adult studies?Pediatric Blood and Cancer. 2009;52(5):566–570.CrossRefGoogle ScholarPubMed
Ribeiro, R, Pui, CH, Murphy, SB, et al. Childhood malignant non-Hodgkin's lymphomas of uncommon histology. Leukemia. 1992;6:761–765.Google Scholar
Pakzad, K, MacLennan, GT, Elder, JS, et al. Follicular large cell lymphoma localized to the testis in children. Journal of Urology. 2002;168(1):225–228.CrossRefGoogle ScholarPubMed
Finn, LS, Viswanatha, DS, Belasco, JB, et al. Primary follicular lymphoma of the testis in childhood. Cancer. 1999;85(7):1626–1635.3.0.CO;2-0>CrossRefGoogle ScholarPubMed
Pinto, A, Hutchison, RE, Grant, LH, Trevenen, CL, Berard, CW. Follicular lymphomas in pediatric patients. Modern Pathology. 1990;3(3):308–313.Google ScholarPubMed
Winberg, CD, Nathwani, BN, Bearman, RM, Rappaport, H. Follicular (nodular) lymphoma during the first two decades of life: a clinicopathologic study of 12 patients. Cancer. 1981;48(10):2223–2235.3.0.CO;2-T>CrossRefGoogle ScholarPubMed
Agrawal, R, Wang, J. Pediatric follicular lymphoma: a rare clinicopathologic entity. Archives of Pathology and Laboratory Medicine. 2009;133(1):142–146.Google ScholarPubMed
Nathwani, BN, Winberg, CD, Diamond, LW, Bearman, RM, Kim, H. Morphologic criteria for the differentiation of follicular lymphoma from florid reactive follicular hyperplasia: a study of 80 cases. Cancer. 1981;48(8):1794–1806.3.0.CO;2-M>CrossRefGoogle ScholarPubMed
Nathwani, B, Diamond, LW, Winberg, CD, et al. Lymphoblastic lymphoma: a clinicopathologic study of 95 patients. Cancer. 1981;48:2347–2357.3.0.CO;2-X>CrossRefGoogle ScholarPubMed
Swerdlow, SH. Small B-cell lymphomas of the lymph nodes and spleen: practical insights to diagnosis and pathogenesis. Modern Pathology. 1999;12(2):125–140.Google ScholarPubMed
Good, DJ, Gascoyne, RD. Atypical lymphoid hyperplasia mimicking lymphoma. Hematology/Oncology Clinics of North America. 2009;23(4):729–745.CrossRefGoogle ScholarPubMed
Chan, JK, Ng, CS, Hui, PK. An unusual morphological variant of follicular lymphoma. Report of two cases. Histopathology. 1988;12(6):649–658.CrossRefGoogle ScholarPubMed
Goates, JJ, Kamel, OW, LeBrun, DP, Benharroch, D, Dorfman, RF. Floral variant of follicular lymphoma. Immunological and molecular studies support a neoplastic process. American Journal of Surgical Pathology. 1994;18(1):37–47.CrossRefGoogle ScholarPubMed
Kurtin, PJ. Indolent lymphomas of mature B lymphocytes. Hematology/ Oncology Clinics of North America. 2009;23(4):769–790.CrossRefGoogle ScholarPubMed
Metter, GE, Nathwani, BN, Burke, JS, et al. Morphological subclassification of follicular lymphoma: variability of diagnoses among hematopathologists, a collaborative study between the Repository Center and Pathology Panel for Lymphoma Clinical Studies. Journal of Clinical Oncology. 1985;3(1):25–38.CrossRefGoogle ScholarPubMed
Martin, AR, Weisenburger, DD, Chan, WC, et al. Prognostic value of cellular proliferation and histologic grade in follicular lymphoma. Blood. 1995;85(12):3671–3678.Google ScholarPubMed
Vitolo, U, Ferreri, AJ, Montoto, S. Follicular lymphomas. Critical Reviews in Oncology/Hematology. 2008;66(3):248–261.CrossRefGoogle ScholarPubMed
Martinez, AE, Lin, L, Dunphy, CH. Grading of follicular lymphoma: comparison of routine histology with immunohistochemistry. Archives of Pathology and Laboratory Medicine. 2007;131(7):1084–1088.Google ScholarPubMed
Ashton-Key, M, Diss, TC, Isaacson, PG, Smith, ME. A comparative study of the value of immunohistochemistry and the polymerase chain reaction in the diagnosis of follicular lymphoma. Histopathology. 1995;27(6):501–508.CrossRefGoogle Scholar
Tan, LH. A practical approach to the understanding and diagnosis of lymphoma: an assessment of the WHO classification based on immunoarchitecture and immuno-ontogenic principles. Pathology. 2009;41(4):305–326.Google ScholarPubMed
Jack, A, Barrans, S, Blythe, D, Rawstron, A. Demonstration of a germinal center immunophenotype in lymphomas by immunocytochemistry and flow cytometry. Methods in Molecular Medicine. 2005;115:65–91.Google ScholarPubMed
Dogan, A, Bagdi, E, Munson, P, Isaacson, PG. CD10 and BCL-6 expression in paraffin sections of normal lymphoid tissue and B-cell lymphomas. American Journal of Surgical Pathology. 2000;24(6):846–852.CrossRefGoogle ScholarPubMed
Olejniczak, SH, Stewart, CC, Donohue, K, Czuczman, MS. A quantitative exploration of surface antigen expression in common B-cell malignancies using flow cytometry. Immunological Investigations. 2006;35(1):93–114.CrossRefGoogle ScholarPubMed
Nam-Cha, SH, San-Millán, B, Mollejo, M, et al. Light-chain-restricted germinal centres in reactive lymphadenitis: report of eight cases. Histopathology. 2008;52(4):436–444.CrossRefGoogle ScholarPubMed
Kussick, SJ, Kalnoski, M, Braziel, RM, Wood, BL. Prominent clonal B-cell populations identified by flow cytometry in histologically reactive lymphoid proliferations. American Journal of Clinical Pathology. 2004;121(4):464–472.CrossRefGoogle ScholarPubMed
Bryant, RJ, Banks, PM, O'Malley, DP. Ki67 staining pattern as a diagnostic tool in the evaluation of lymphoproliferative disorders. Histopathology. 2006;48(5):505–515.CrossRefGoogle ScholarPubMed
Cory, S,Adams, JM. Killing cancer cells by flipping the Bcl-2/Bax switch. Cancer Cell. 2005;8(1):5–6.CrossRefGoogle ScholarPubMed
Bacon, CM, Du, MQ, Dogan, A. Mucosa-associated lymphoid tissue (MALT) lymphoma: a practical guide for pathologists. Journal of Clinical Pathology. 2007;60(4):361–372.CrossRefGoogle ScholarPubMed
Peinert, S, Seymour, JF. Indolent lymphomas other than follicular and marginal zone lymphomas. Hematology/ Oncology Clinics of North America. 2008;22(5):903–940, viii.CrossRefGoogle ScholarPubMed
Zucca, E, Bertoni, F, Stathis, A, et al. Marginal zone lymphomas. Hematology/ Oncology Clinics of North America. 2008;22(5):883–901, viii.CrossRefGoogle ScholarPubMed
Claviez, A, Meyer, U, Dominick, C, et al. MALT lymphoma in children: a report from the NHL-BFM Study Group. Pediatric Blood and Cancer. 2006;47(2):210–214.CrossRefGoogle ScholarPubMed
Taddesse-Heath, L, Pittaluga, S, Sorbara, L, et al. Marginal zone B-cell lymphoma in children and young adults. American Journal of Surgical Pathology. 2003;27(4):522–531.CrossRefGoogle ScholarPubMed
Aghamohammadi, A, Parvaneh, N, Tirgari, F, et al. Lymphoma of mucosa-associated lymphoid tissue in common variable immunodeficiency. Leukemia and Lymphoma. 2006;47(2):343–346.CrossRefGoogle ScholarPubMed
Tiemann, M, Häring, S, Heidemann, M, Reichelt, J, Claviez, A. Mucosa- associated lymphoid tissue lymphoma in the conjunctiva of a child. Virchows Archiv. 2004;444(2):198–201.CrossRefGoogle Scholar
Mo, JQ, Dimashkieh, H, Mallery, SR, Swerdlow, SH, Bove, KE. MALT lymphoma in children: Case report and review of the literature. Pediatric and Developmental Pathology. 2004;7(4):407–413.CrossRefGoogle ScholarPubMed
Liang, X, Stork, LC, Albano, EA. Primary ocular adnexal lymphoma in pediatric patients: report of two cases and review of the literature. Pediatric and Developmental Pathology. 2003;6(5):458–463.CrossRefGoogle ScholarPubMed
Sharon, V, Mecca, PS, Steinherz, PG, Trippett, TM, Myskowski, PL. Two pediatric cases of primary cutaneous B-cell lymphoma and review of the literature. Pediatric Dermatology. 2009;26(1):34–39.CrossRefGoogle ScholarPubMed
Ryu, M, Han, S, Che, Z, et al. Pediatric mucosa-associated lymphoid tissue (MALT) lymphoma of lip: a case report and literature review. Oral surgery, Oral Medicine, Oral Pathology, Oral Radiology and Endodontics. 2009;107(3):393–397.CrossRefGoogle ScholarPubMed
Dargent, JL, Ferster, A, Andry, G, et al. Marginal zone B-cell lymphoma of the sinonasal tract in an eleven-year-old girl. Medical and Pediatric Oncology. 2003;40(6):393–395.CrossRefGoogle Scholar
Sroa, N, Magro, CM. Pediatric primary cutaneous marginal zone lymphoma: in association with chronic antihistamine use. Joural of Cutaneous Pathology. 2006;33(Suppl) 2:1–5.CrossRefGoogle ScholarPubMed
Dargent, JL, Devalck, C, De Mey, A, et al. Primary cutaneous marginal zone B-cell lymphoma of MALT type in a child. Pediatric and Developmental Pathology. 2006;9(6):468–473.CrossRefGoogle Scholar
Arcaini, L, Lucioni, M, Boveri, E, Paulli, M. Nodal marginal zone lymphoma: current knowledge and future directions of an heterogeneous disease. European Journal of Haematology. 2009;83(3):165–174.CrossRefGoogle ScholarPubMed
Spencer, J, Finn, T, Pulford, KA, Mason, DY, Isaacson, PG. The human gut contains a novel population of B lymphocytes which resemble marginal zone cells. Clinical and Experimental Immunology. 1985;62(3):607–612.Google ScholarPubMed
Dierlamm, J, Pittaluga, S, Wlodarska, I, et al. Marginal zone B-cell lymphomas of different sites share similar cytogenetic and morphologic features. Blood. 1996;87(1):299–307.Google ScholarPubMed
Jaffe, ES, Harris, NL, Stein, H, Isaacson, PG. Classification of lymphoid neoplasms: the microscope as a tool for disease discovery. Blood. 2008;112(12):4384–4399.CrossRefGoogle ScholarPubMed
Roulland, S, Suarez, F, Hermine, O, Nadel, B. Pathophysiological aspects of memory B-cell development. Trends in Immunology. 2008;29(1):25–33.CrossRefGoogle ScholarPubMed
Shaye, OS, Levine, AM. Marginal zone lymphoma. Journal of the National Comprehensive Cancer Network. 2006;4(3):311–318.CrossRefGoogle ScholarPubMed
Wotherspoon, AC,Ortiz-Hidalgo, C, Falzon, MR, Isaacson, PG. Helicobacter pylori-associated gastritis and primary B-cell gastric lymphoma. Lancet. 1991;338(8776):1175–1176.CrossRefGoogle ScholarPubMed
Thieblemont, C. Non-MALT marginal zone lymphomas. Annals of Oncology. 2008;19(Suppl 4):iv70–73.CrossRefGoogle ScholarPubMed
Ghesquières, H, Berger, F, Felman, P, et al. Clinicopathologic characteristics and outcome of diffuse large B-cell lymphomas presenting with an associated low-grade component at diagnosis. Journal of Clinical Oncology. 2006;24(33):5234–5241.CrossRefGoogle ScholarPubMed
Landgren, O,Tilly, H. Epidemiology, pathology and treatment of non-follicular indolent lymphomas. Leukemia and Lymphoma. 2008;49(Suppl 1):35–42.CrossRefGoogle ScholarPubMed
Attygalle, AD, Liu, H, Shirali, S, et al. Atypical marginal zone hyperplasia of mucosa-associated lymphoid tissue: a reactive condition of childhood showing immunoglobulin lambda light-chain restriction. Blood. 2004;104(10):3343–3348.CrossRefGoogle ScholarPubMed
Lynch, EF, Jones, PA, Swerdlow, SH. CD43 and CD5 antibodies define four normal and neoplastic B-cell subsets: a three-color flow cytometric study. Cytometry. 1995;22(3):223–231.CrossRefGoogle ScholarPubMed
Du, MQ. MALT lymphoma: recent advances in aetiology and molecular genetics. Journal of Clinical and Experimental Hematopathology. 2007;47(2):31–42.CrossRefGoogle ScholarPubMed
Farinha, P, Gascoyne, RD. Molecular pathogenesis of mucosa-associated lymphoid tissue lymphoma. Journal of Clinical Oncology. 2005;23(26):6370–6378.CrossRefGoogle ScholarPubMed
Inamdar, KV, Bueso-Ramos, CE. Pathology of chronic lymphocytic leukemia: an update. Annals of Diagnostic Pathology. 2007;11(5):363–389.CrossRefGoogle ScholarPubMed
Zent, CS, Kay, NE. Chronic lymphocytic leukemia: biology and current treatment. Current Oncology Reports. 2007;9(5):345–352.CrossRefGoogle ScholarPubMed
Smock, K, Yaish, HM, Cairo, MS, et al. Mantle cell lymphoma presenting with unusual morphology in an adolescent female: A case report and review of the literature. Pediatric and Developmental Pathology, 2007;10 (5):403–408.CrossRefGoogle Scholar
Bertoni, F, Zucca, E, Cavalli, F. Mantle cell lymphoma. Current Opinion in Hematology. 2004;11(6):411–418.CrossRefGoogle ScholarPubMed
Ghielmini, M, Zucca, E. How I treat mantle cell lymphoma. Blood. 2009;114(8):1469–1476.CrossRefGoogle Scholar
Schmidt, C, Dreyling, M. Therapy of mantle cell lymphoma: current standards and future strategies. Hematology/Oncology Clinics of North America. 2008;22(5):953–963, ix.CrossRefGoogle ScholarPubMed
Smith, MR. Mantle cell lymphoma: advances in biology and therapy. Current Opinion in Hematology. 2008;15(4):415–421.CrossRefGoogle Scholar
Dumesnil, C, Schneider, P, Dolgopolov, I, et al. Solitary bone plasmocytoma of the spine in an adolescent. Pediatric Blood and Cancer. 2006;47(3):335–338.CrossRefGoogle Scholar
Bertoni-Salateo, R, Camargo, B, Soares, F, Chojniak, R, Penna, V. Solitary plasmocytoma of bone in an adolescent. Journal of Pediatric Hematology/Oncology. 1998;20(6):574–576.CrossRefGoogle Scholar
Mann, G, Trebo, MM, Minkov, M, et al. Extramedullary plasmacytoma of the adenoids. Pediatric Blood and Cancer. 2007;48(3):361–362.CrossRefGoogle ScholarPubMed
Dannenberg, C, Haupt, R, Mantovani, L, Skuballa, A, Körholz, D. Primary high-grade non-Hodgkin lymphoma of the trachea in an adolescent. Pediatric Hematological Oncology. 2003;20(5):399–402.CrossRefGoogle Scholar
Rawal, A, Finn, WG, Schnitzer, B, Valdez, R. Site-specific morphologic differences in extranodal marginal zone B-cell lymphomas. Archives of Pathology and Laboratory Medicine. 2007;131(11):1673–1678.Google ScholarPubMed
Tcheng, WY, Said, J, Hall, T, et al. Post-transplant multiple myeloma in a pediatric renal transplant patient. Pediatric Blood and Cancer. 2006;47(2):218–223.CrossRefGoogle Scholar
Gitelson, E, Al-Saleem, T, Smith, MR. Review: lymphomatoid granulomatosis: challenges in diagnosis and treatment. Clinical Advances in Hematology and Oncology. 2009;7(1):68–70.Google ScholarPubMed
Kendi, AT, McKinney, AM, Clark, HB, Kieffer, SA. A pediatric case of low-grade lymphomatoid granulomatosis presenting with a cerebellar mass. American Journal of Neuroradiology. 2007;28(9):1803–1805.CrossRefGoogle ScholarPubMed
Rezk, SA, Weiss, LM. Epstein-Barr virus-associated lymphoproliferative disorders. Human Pathology. 2007;38(9):1293–1304.CrossRefGoogle ScholarPubMed
Mazzie, JP, Price, AP, Khullar, P, et al. Lymphomatoid granulomatosis in a pediatric patient. Clinical Imaging. 2004;28(3):209–213.CrossRefGoogle Scholar
Hareema, A. Lymphomatoid granulomatosis: unusual presentation in a pediatric patient. Pediatric and Developmental Pathology. 2003;6(2):106–107.CrossRefGoogle Scholar
Oren, H, Irken, G, Kargi, A, et al. A pediatric case of lymphomatoid granulomatosis with onset after completion of chemotherapy for acute myeloid leukemia. Journal of Pediatric Hematology/Oncology. 2003;25(2):163–166.CrossRefGoogle ScholarPubMed
Erdur, B, Yilmaz, S, Oren, H, et al. Evaluating pulmonary complications in childhood acute leukemias. Journal of Pediatric Hematology/Oncology. 2008;30(7):522–526.CrossRefGoogle ScholarPubMed
Hu, X, Selbs, E, Drexler, S. An 18-year-old man with persistent cough and bilateral lower lung infiltration. Epstein-Barr virus-positive lymphoproliferative disorder consistent with lymphomatoid granulomatosis. Archives of Pathology and Laboratory Medicine. 2006;130(3):e44–e46.Google ScholarPubMed
Lee, JS, Tuder, R, Lynch, DA. Lymphomatoid granulomatosis: radiologic features and pathologic correlations. American Journal of Roentgenology. 2000;175(5):1335–1339.CrossRefGoogle ScholarPubMed
Lehman, TJ, Church, JA, Isaacs, H. Lymphomatoid granulomatosis in a 13-month-old infant. Journal of Roentgenology. 1989;16(2):235–238.Google Scholar
Moertel, CL, Carlson-Green, B, Watterson, J, Simonton, SC. Lymphomatoid granulomatosis after childhood acute lymphoblastic leukemia: report of effective therapy. Pediatrics. 2001;107(5):E82.CrossRefGoogle ScholarPubMed
Sebire, NJ, Haselden, S, Malone, M, Davies, EG, Ramsay, AD. Isolated EBV lymphoproliferative disease in a child with Wiskott-Aldrich syndrome manifesting as cutaneous lymphomatoid granulomatosis and responsive to anti-CD20 immunotherapy. Journal of Clinical Pathology. 2003;56(7):555–557.CrossRefGoogle Scholar
Karnak, I, Ciftci, AO, Talim, B, Kale, G, Senocak, ME. Pulmonary lymphomatoid granulomatosis in a 4 year old. Journal of Pediatric Surgery. 1999;34(6):1033–1035.CrossRefGoogle Scholar
LeSueur, BW, Ellsworth, L, Bangert, JL, Hansen, RC. Lymphomatoid granulomatosis in a 4-year-old boy. Pediatric Dermatology. 2000;17(5):369–372.CrossRefGoogle Scholar
Kleinschmidt-DeMasters, BK, Filley, CM, Bitter, MA. Central nervous system angiocentric, angiodestructive T-cell lymphoma (lymphomatoid granulomatosis). Surgical Neurology. 1992;37(2):130–137.CrossRefGoogle ScholarPubMed
Drut, R, Drut, RM. Angiocentric immunoproliferative lesion and angiocentric lymphoma of lymph node in children. A report of two cases. Journal of Clinical Pathology. 2005;58(5):550–552.CrossRefGoogle ScholarPubMed
Hu, YH, Liu, CY, Chiu, CH, Hsiao, LT. Successful treatment of elderly advanced lymphomatoid granulomatosis with rituximab-CVP combination therapy. European Journal of Haematology. 2007;78(2):176–177.CrossRefGoogle ScholarPubMed
Hasserjian, RP, Ott, G, Elenitoba-Johnson, KS, et al. Commentary on the WHO classification of tumors of lymphoid tissues (2008): “Gray zone” lymphomas overlapping with Burkitt lymphoma or classical Hodgkin lymphoma. Journal of Hematopathology. 2009; 2(2):89–95.CrossRefGoogle ScholarPubMed
Traverse-Glehen, A, Pittaluga, S, Gaulard, P, et al. Mediastinal gray zone lymphoma: the missing link between classic Hodgkin's lymphoma and mediastinal large B-cell lymphoma. American Journal of Surgical Pathology. 2005;29(11):1411–1421.CrossRefGoogle ScholarPubMed
Dogan, A. Gray zone lymphomas. Hematology. 2005;10(Suppl 1):190–192.CrossRefGoogle ScholarPubMed
Haralambieva, E, Boerma, EJ, Imhoff, GW, et al. Clinical, immunophenotypic, and genetic analysis of adult lymphomas with morphologic features of Burkitt lymphoma. American Journal of Surgical Pathology. 2005;29(8):1086–1094.Google ScholarPubMed
Rodig, SJ, Vergilio, JA, Shahsafaei, A, Dorfman, DM. Characteristic expression patterns of TCL1, CD38, and CD44 identify aggressive lymphomas harboring a MYC translocation. American Journal of Surgical Pathology. 2008;32(1):113–122.CrossRefGoogle ScholarPubMed
Dunphy, C, Tang, W. Usefulness of routine conventional cytogenetic analysis in tissues submitted for “lymphoma work-up”. Leukemia and Lymphoma. 2008;49(1):75–80.CrossRefGoogle Scholar
Zhao, XF, Hassan, A, Perry, A, et al. C-MYC rearrangements are frequent in aggressive mature B-cell lymphoma with atypical morphology. International Journal of Clinical and Experimental Pathology. 2008;1(1):65–74.Google ScholarPubMed
McClure, RF, Remstein, ED, Macon, WR, et al. Adult B-cell lymphomas with Burkitt-like morphology are phenotypically and genotypically heterogeneous with aggressive clinical behavior. American Journal of Surgical Pathology. 2005;29(12):1652–1660.CrossRefGoogle ScholarPubMed
Kanungo, A, Medeiros, LJ, Abruzzo, LV, Lin, P. Lymphoid neoplasms associated with concurrent t(14;18) and 8q24/c-MYC translocation generally have a poor prognosis. Modern Pathology. 2006;19(1):25–33.CrossRefGoogle Scholar
Waite, E, Laraque, D. Pediatric organ transplant patients and long-term care: a review. The Mount Sinai Journal of Medicine, New York. 2006;73(8):1148–1155.Google ScholarPubMed
Buell, JF, Gross, TG, Thomas, MJ, et al. Malignancy in pediatric transplant recipients. Seminars in Pediatric Surgery. 2006;15(3):179–187.CrossRefGoogle ScholarPubMed
Gross, TG. Treatment for Epstein-Barr virus-associated PTLD. Herpes. 2009;5(3):64–67.Google Scholar
Schubert, S, Abdul-Khaliq, H, Lehmkuhl, HB, et al. Diagnosis and treatment of post-transplantation lymphoproliferative disorder in pediatric heart transplant patients. Pediatric Transplantation. 2009;13(1):54–62.CrossRefGoogle ScholarPubMed
Fernandez, MC, Bes, D, Dávila, M, et al. Post-transplant lymphoproliferative disorder after pediatric liver transplantation: characteristics and outcome. Pediatric Transplantation. 2009;13(3):307–310.CrossRefGoogle ScholarPubMed
Dharnidharka, VR, Araya, CE. Post-transplant lymphoproliferative disease. Pediatric Nephrology. 2009;24(4):731–736.CrossRefGoogle ScholarPubMed
Nalesnik, MA. Clinicopathologic characteristics of post-transplant lymphoproliferative disorders. Recent Results in Cancer Research. 2002;159:9–18.CrossRefGoogle ScholarPubMed
Yang, F, Li, Y, Braylan, R, Hunger, SP, Yang, LJ. Pediatric T-cell post- transplant lymphoproliferative disorder after solid organ transplantation. Pediatric Blood and Cancer. 2008;50(2):415–418.CrossRefGoogle ScholarPubMed
LaCasce, AS. Post-transplant lymphoproliferative disorders. Oncologist. 2006;11(6):674–680.CrossRefGoogle ScholarPubMed
Green, M, Michaels, MG, Webber, SA, Rowe, D, Reyes, J. The management of Epstein-Barr virus associated post-transplant lymphoproliferative disorders in pediatric solid-organ transplant recipients. Pediatric Transplantation. 1999;3(4):271–281.CrossRefGoogle ScholarPubMed
Smets, F, Sokal, EM. Epstein-Barr virus-related lymphoproliferation in children after liver transplant: role of immunity, diagnosis, and management. Pediatric Transplantation. 2002;6(4):280–287.CrossRefGoogle Scholar
Holmes, RD, Sokol, RJ. Epstein-Barr virus and post-transplant lymphoproliferative disease. Pediatric Transplantation. 2002;6(6):456–464.CrossRefGoogle ScholarPubMed
Mowry, SE, Strocker, AM, Chan, J, et al. Immunohistochemical analysis and Epstein-Barr virus in the tonsils of transplant recipients and healthy controls. Archives of Otolaryngology, Head and Neck Surgery. 2008;134(9):936–939.CrossRefGoogle ScholarPubMed
Lones, MA, Kirov, I, Said, JW, Shintaku, IP, Neudorf, S. Post-transplant lymphoproliferative disorder after autologous peripheral stem cell transplantation in a pediatric patient. Bone Marrow Transplant. 2000;26(9):1021–1024.CrossRefGoogle Scholar
Ocheni, S, Kroeger, N, Zabelina, T, et al. EBV reactivation and post transplant lymphoproliferative disorders following allogeneic SCT. Bone Marrow Transplant. 2008;42(3):181–186.CrossRefGoogle ScholarPubMed
Faye, A, Vilmer, E. Post-transplant lymphoproliferative disorder in children: incidence, prognosis, and treatment options. Paediatric Drugs. 2005;7(1):55–65.CrossRefGoogle ScholarPubMed
Bakker, NA, Imhoff, GW, Verschuuren, EA, Son, WJ. Presentation and early detection of post-transplant lymphoproliferative disorder after solid organ transplantation. Transplant International. 2007;20(3):207–218.CrossRefGoogle ScholarPubMed
Taylor, AL, Marcus, R, Bradley, JA. Post-transplant lymphoproliferative disorders (PTLD) after solid organ transplantation. Critical Reviews in Oncology/Hematology. 2005;56(1):155–167.CrossRefGoogle ScholarPubMed
Pescovitz, MD. The use of rituximab, anti-CD20 monoclonal antibody, in pediatric transplantation. Pediatric Transplantation. 2004;8(1):9–21.CrossRefGoogle ScholarPubMed
Oertel, SH, Riess, H. Immunosurveillance, immunodeficiency and lymphoproliferations. Recent Results in Cancer Research. 2002;159:1–8.CrossRefGoogle ScholarPubMed
Biggar, RJ, Frisch, M, Goedert, JJ. Risk of cancer in children with AIDS. AIDS-Cancer Match Registry Study Group. Journal of the American Medical Society. 2000;284(2):205–209.Google ScholarPubMed
Sinfield, RL, Molyneux, EM, Banda, K, et al. Spectrum and presentation of pediatric malignancies in the HIV era: experience from Blantyre, Malawi, 1998–2003. Pediatric Blood and Cancer. 2007;48(5):515–20.CrossRefGoogle ScholarPubMed
Tran, H, Nourse, J, Hall, S, et al. Immunodeficiency-associated lymphomas. Blood Reviews. 2008;22(5):261–281.CrossRefGoogle ScholarPubMed
Nadal, D, Caduff, R, Frey, E, et al. Non-Hodgkin's lymphoma in four children infected with the human immunodeficiency virus. Association with Epstein-Barr virus and treatment. Cancer. 1994;73(1):224–230.3.0.CO;2-D>CrossRefGoogle ScholarPubMed
Fluri, S, Ammann, R, Lüthy, AR, et al. High-dose therapy and autologous stem cell transplantation for children with HIV-associated non-Hodgkin lymphoma. Pediatric Blood and Cancer. 2007;49(7):984–987.CrossRefGoogle ScholarPubMed
Elenitoba-Johnson, KS, Jaffe, ES. Lymphoproliferative disorders associated with congenital immunodeficiencies. Seminars in Diagnostic Pathology. 1997;14(1):35–47.Google ScholarPubMed
Paller, AS. Immunodeficiency syndromes. X-linked agammaglobulinemia, common variable immunodeficiency, Chediak-Higashi syndrome, Wiskott-Aldrich syndrome, and X-linked lymphoproliferative disorder. Dermatological Clinics. 1995;13(1):65–71.Google ScholarPubMed
Nichols, KE. X-linked lymphoproliferative disease: genetics and biochemistry. Reviews in Immunogenetics. 2000;2(2):256–266.Google ScholarPubMed
Filipovich, AH, Mathur, A, Kamat, D, Kersey, JH, Shapiro, RS. Lymphoproliferative disorders and other tumors complicating immunodeficiencies. Immunodeficiency. 1994;5(2):91–112.Google ScholarPubMed
Dembowska-Baginska, B, Perek, D, Brozyna, A, et al. Non-Hodgkin lymphoma (NHL) in children with Nijmegen Breakage syndrome (NBS). Pediatric Blood and Cancer. 2009;52(2):186–190.CrossRefGoogle ScholarPubMed
Gladkowska-Dura, M, Dzierzanowska- Fangrat, K, Dura, WT, et al. Unique morphological spectrum of lymphomas in Nijmegen breakage syndrome (NBS) patients with high frequency of consecutive lymphoma formation. Journal of Pathology. 2008;216(3):337–344.CrossRefGoogle ScholarPubMed
Okano, M, Gross, TG. A review of Epstein-Barr virus infection in patients with immunodeficiency disorders. American Journal of the Medical Sciences. 2000;319(6):392–396.CrossRefGoogle ScholarPubMed
Poppema, S, Maggio, E, Berg, A. Development of lymphoma in Autoimmune Lymphoproliferative Syndrome (ALPS) and its relationship to Fas gene mutations. Leukemia and Lymphoma. 2004;45(3):423–431.CrossRefGoogle ScholarPubMed
Straus, SE, Jaffe, ES, Puck, JM, et al. The development of lymphomas in families with autoimmune lymphoproliferative syndrome with germline Fas mutations and defective lymphocyte apoptosis. Blood. 2001;98(1):194–200.CrossRefGoogle ScholarPubMed
Fleisher, TA. The autoimmune lymphoproliferative syndrome: an experiment of nature involving lymphocyte apoptosis. Immunologic Research. 2008;40(1):87–92.CrossRefGoogle ScholarPubMed
Canioni, D, Jabado, N, MacIntyre, E, et al. Lymphoproliferative disorders in children with primary immunodeficiencies: immunological status may be more predictive of the outcome than other criteria. Histopathology. 2001;38(2):146–159.CrossRefGoogle ScholarPubMed
Shabbat, S, Aharoni, J, Sarid, L, Ben-Harush, M, Kapelushnik, J. Rituximab as monotherapy and in addition to reduced CHOP in children with primary immunodeficiency and non-Hodgkin lymphoma. Pediatric Blood and Cancer. 2009;52(5):664–666.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×