Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-cnmwb Total loading time: 0 Render date: 2024-07-17T13:09:44.387Z Has data issue: false hasContentIssue false

22 - Pediatric mature T-cell and NK-cell non-Hodgkin lymphomas

from Section 2 - Neoplastic hematopathology

Published online by Cambridge University Press:  03 May 2011

Sherrie L. Perkins
Affiliation:
University of Utah Health Sciences Center
Maria A. Proytcheva
Affiliation:
Northwestern University Medical School, Illinois
Get access

Summary

Mature T-cell lymphomas in children and adolescents comprise about 10–15% of the non-Hodgkin lymphomas (NHLs) observed. Unlike adults, where there is a broad spectrum of T-cell neoplasms, most mature T-cell disease in this age group is ALK (anaplastic lymphoma kinase)-positive anaplastic large cell lymphoma (ALCL, ALK positive), with other subtypes of T-cell lymphomas being much more rarely observed (Tables 22.1 and 22.2). Similarly, although NK-cell neoplasms are rare in adults, comprising approximately 1–2% of NHL (although with higher frequency in Asia and Latin America), these neoplasms are extremely rare in children and most appear in the literature as single case reports or small series. As in adults, mature T- and NK-cell lymphomas tend to present with a broad spectrum of clinical disease including nodal, extranodal, and leukemic diseases, and are frequently associated with paraneoplastic phenomena such as hemophagocytosis, fevers, rashes, and other manifestations that may be, in part, attributable to cytokines produced by the neoplastic cells [1, 2].

Epidemiology

Mature T- and NK-cell lymphomas are rarer than B-cell disease in North American and European populations. However, there are significant differences in geographic distribution, with higher incidences of T/NK-cell lymphoma in adults in Asia and Latin American populations than are seen in the United States and Europe. In Asia, T-cell lymphomas in adults make up 30–70% of all NHLs, whereas in the pediatric population they make up about 37% of cases [3, 4].

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Swerdlow, SH, Campo, E, Harris, NL, et al. WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues (4th edn.). Lyon: IARC Press; 2008.Google Scholar
Lim, MS, Leval, L, Quintanilla-Martinez, L. Commentary on the 2008 WHO classification of mature T- and NK-cell neoplasms. Journal of Hematopathology. 2009;2(2):65–73.CrossRefGoogle Scholar
Jaffe, ES. Mature T-cell and NK-cell lymphomas in the pediatric age group. American Journal of Clinical Pathology. 2004;122(Suppl):S110–S121.Google ScholarPubMed
Gross, TG, Termuhlen, AM. Pediatric non-Hodgkin's lymphoma. Current Oncology Reports. 2007;9(6):459–465.CrossRefGoogle ScholarPubMed
Nava, VE, Jaffe, ES. The pathology of NK-cell lymphomas and leukemias. Advances in Anatomic Pathology. 2005;12(1):27–34.CrossRefGoogle ScholarPubMed
Raziuddin, S, Abu-Eshy, S, Sheikha, A. Peripheral T-cell lymphomas. Immunoregulatory cytokine (interleukin-2, interleukin-4, and interferon-gamma) abnormalities and autologous mixed lymphocyte reaction. Cancer. 1994;74(10):2843–2849.3.0.CO;2-O>CrossRefGoogle ScholarPubMed
Rezk, SA, Weiss, LM. Epstein-Barr virus-associated lymphoproliferative disorders. Human Pathology. 2007;38(9):1293–1304.CrossRefGoogle ScholarPubMed
Good, DJ, Gascoyne, RD. Classification of non-Hodgkin's lymphoma. Hematology/Oncology Clinics of North America. 2008;22(5):781–805, vii.CrossRefGoogle ScholarPubMed
Ben Barak, A, Elhasid, R, Ben Itzhak, O, et al. Infant anaplastic lymphoma: case report and review of the literature. Pediatr Hematological Oncology. 2007;24(5):379–385.CrossRefGoogle ScholarPubMed
Ohshima, K, Kimura, H, Yoshino, T, et al. Proposed categorization of pathological states of EBV-associated T/natural killer-cell lymphoproliferative disorder (LPD) in children and young adults: overlap with chronic active EBV infection and infantile fulminant EBV T-LPD. Pathology International. 2008;58(4):209–217.CrossRefGoogle Scholar
Suzuki, K, Ohshima, K, Karube, K, et al. Clinicopathological states of Epstein-Barr virus-associated T/NK-cell lymphoproliferative disorders (severe chronic active EBV infection) of children and young adults. International Journal of Oncology. 2004;24(5):1165–1174.Google ScholarPubMed
Quintanilla-Martinez, L, Kumar, S, Fend, F, et al. Fulminant EBV(+) T-cell lymphoproliferative disorder following acute/chronic EBV infection: a distinct clinicopathologic syndrome. Blood. 2000;96(2):443–451.Google ScholarPubMed
Imashuku, S. Systemic type Epstein-Barr virus-related lymphoproliferative diseases in children and young adults: challenges for pediatric hemato-oncologists and infectious disease specialists. Pediatric Hematological Oncology. 2007;24(8):563–568.CrossRefGoogle Scholar
Burg, G, Kempf, W, Cozzio, A, et al. WHO/EORTC classification of cutaneous lymphomas 2005: histological and molecular aspects. Journal of Cutaneous Pathology. 2005;32(10):647–674.CrossRefGoogle ScholarPubMed
Rodriguez-Abreu, D, Filho, VB, Zucca, E. Peripheral T-cell lymphomas, unspecified (or not otherwise specified): a review. Hematological Oncology. 2008;26(1):8–20.CrossRefGoogle ScholarPubMed
Suzuki, R, Takeuchi, K, Ohshima, K, Nakamura, S. Extranodal NK/T-cell lymphoma: diagnosis and treatment cues. Hematological Oncology. 2008;26(2):66–72.CrossRefGoogle ScholarPubMed
Savage, KJ. Peripheral T-cell lymphomas. Blood Reviews. 2007;21(4):201–216.CrossRefGoogle ScholarPubMed
Macintyre, EA, Delabesse, E. Molecular approaches to the diagnosis and evaluation of lymphoid malignancies. Seminars in Hematology. 1999;36(4):373–389.Google ScholarPubMed
Jones, D, Dorfman, DM. Phenotypic characterization of subsets of T cell lymphoma: towards a functional classification of T cell lymphoma. Leukemia and Lymphoma. 2001;40(5–6):449–459.CrossRefGoogle ScholarPubMed
Kanavaros, P, Boulland, ML, Petit, B, Arnulf, B, Gaulard, P. Expression of cytotoxic proteins in peripheral T-cell and natural killer-cell (NK) lymphomas: association with extranodal site, NK or Tgammadelta phenotype, anaplastic morphology and CD30 expression. Leukemia and Lymphoma. 2000;38(3–4):317–326.CrossRefGoogle ScholarPubMed
Hodges, VM, Molloy, GY, Wickramasinghe, SN. Genetic heterogeneity of congenital dyserythropoietic anemia type I. Blood. 1999;94(3):1139–1140.Google ScholarPubMed
Hochberg, J, Waxman, IM, Kelly, KM, Morris, E, Cairo, MS. Adolescent non-Hodgkin lymphoma and Hodgkin lymphoma: state of the science. British Journal of Haematology. 2009;144(1):24–40.CrossRefGoogle ScholarPubMed
Perkins, SL. Work-up and diagnosis of pediatric non-Hodgkin's lymphomas. Pediatric and Developmental Pathology. 2000;3(4):374–390.CrossRefGoogle ScholarPubMed
Alessandri, AJ, Pritchard, SL, Schultz, KR, Massing, BG. A population-based study of pediatric anaplastic large cell lymphoma. Cancer. 2002;94(6):1830–1835.CrossRefGoogle ScholarPubMed
Sandlund, JT, Downing, JR, Christ, WM. Non-Hodgkin's lymphoma in childhood. New England Journal of Medicine. 1996;334:1238–1248.CrossRefGoogle ScholarPubMed
Cairo, MS, Raetz, E, Perkins, SL. Non-Hodgkin lymphoma in children. In Kufe, D, Pollock, RE, Weishelbaum, RR, et al., eds. Cancer Medicine (6th edn.). London: BC Decker Inc.; 2003, 2337–2348.Google Scholar
Perkins, SL, Pickering, D, Lowe, EJ, et al. Childhood anaplastic large cell lymphoma has a high incidence of ALK gene rearrangement as determined by immunohistochemical staining and fluorescent in situ hybridisation: a genetic and pathological correlation. British Journal of Haematology. 2005;131(5):624–627.CrossRefGoogle Scholar
Jaffe, ES, Krenacs, L, Raffeld, M. Classification of cytotoxic T-cell and natural killer cell lymphomas. Seminars in Hematology. 2003;40(3):175–184.CrossRefGoogle ScholarPubMed
Burkhardt, B, Zimmermann, M, Oschlies, I, et al. The impact of age and gender on biology, clinical features and treatment outcome of non-Hodgkin lymphoma in childhood and adolescence. British Journal of Haematology. 2005;131(1):39–49.CrossRefGoogle ScholarPubMed
Kodama, K, Hokama, M, Kawaguchi, K, Tanaka, Y, Hongo, K. Primary ALK-1-negative anaplastic large cell lymphoma of the brain: case report and review of the literature. Neuropathology. 2009;29(2):166–171.CrossRefGoogle ScholarPubMed
Bakshi, NA, Ross, CW, Finn, WG, et al. ALK-positive anaplastic large cell lymphoma with primary bone involvement in children. American Journal of Clinical Pathology. 2006;125(1):57–63.CrossRefGoogle ScholarPubMed
Brugieres, L, Deley, MC, Pacquement, H, et al. CD30(+) anaplastic large-cell lymphoma in children: analysis of 82 patients enrolled in two consecutive studies of the French Society of Pediatric Oncology. Blood. 1998;92(10):3591–3598.Google ScholarPubMed
Grewal, JS, Smith, LB, Winegarden, JD, et al. Highly aggressive ALK-positive anaplastic large cell lymphoma with a leukemic phase and multi-organ involvement: a report of three cases and a review of the literature. Annals of Hematology. 2007;86(7):499–508.CrossRefGoogle Scholar
Takahashi, D, Nagatoshi, Y, Nagayama, J, et al. Anaplastic large cell lymphoma in leukemic presentation: a case report and a review of the literature. Journal of Pediatric Hematology/Oncology. 2008;30(9):696–700.CrossRefGoogle Scholar
Hinshaw, M, Trowers, AB, Kodish, E, et al. Three children with CD30 cutaneous anaplastic large cell lymphomas bearing the t(2;5)(p23;q35) translocation. Pediatric Dermatology. 2004;21(3):212–217.CrossRefGoogle Scholar
Stein, H, Mason, DY, Gerdes, J, et al. The expression of the Hodgkin's disease associated antigen Ki-1 in reactive and neoplastic lymphoid tissue: evidence that Reed-Sternberg cells and histiocytic malignancies are derived from activated lymphoid cells. Blood. 1985;66(4):848–858.Google ScholarPubMed
Stein, H, Foss, HD, Dürkop, H, et al. CD30(+) anaplastic large cell lymphoma: a review of its histopathologic, genetic, and clinical features. Blood. 2000;96(12):3681–3695.Google ScholarPubMed
Kadin, M. Anaplastic large cell lymphoma and its morphologic variants. Cancer Surveys. 1997;30:77–86.Google Scholar
Benharroch, D, Meguerian-Bedoyan, Z, Lamant, L, et al. ALK-positive lymphoma: a single disease with a broad spectrum of morphology. Blood. 1998;91(6):2076–2084.Google ScholarPubMed
Vassallo, J, Lamant, L, Brugieres, L, et al. ALK-positive anaplastic large cell lymphoma mimicking nodular sclerosis Hodgkin's lymphoma: report of 10 cases. American Journal of Surgical Pathology. 2006;30(2):223–229.CrossRefGoogle ScholarPubMed
Agnarrson, B, Kadin, M. Ki-1 positive large cell lymphoma. A morphologic and immunologic study of 19 cases. American Journal of Surgical Pathology. 1988;12:264–274.CrossRefGoogle Scholar
Kinney, MC, Kadin, ME. The pathologic and clinical spectrum of anaplastic large cell lymphoma and correlation with ALK gene dysregulation. American Journal of Clinical Pathology. 1999;111(1 Suppl 1):S56–S67.Google ScholarPubMed
Pileri, S, Falini, B, Delsol, G, et al. Lymphohistiocytic T-cell lymphoma (anaplastic large cell lymphoma CD30+/Ki-1 + with a high content of reactive histiocytes). Histopathology. 1990;16(4):383–391.CrossRefGoogle ScholarPubMed
Kinney, M, Collins, RD, Greer, JP, et al. A small-cell-predominant varaint of primary Ki-1 (CD30)+ T-cell lymphoma. American Journal of Surgical Pathology. 1993;17:859–868.CrossRefGoogle ScholarPubMed
Falini, B. Anaplastic large cell lymphoma: pathological, molecular and clinical features. British Journal of Haematology. 2001;114(4):741–760.CrossRefGoogle ScholarPubMed
Falini, B, Bigerna, B, Fizzotti, M, et al. ALK expression defines a distinct group of T/null lymphomas (“ALK lymphomas”) with a wide morphological spectrum. American Journal of Pathology. 1998;153(3):875–886.CrossRefGoogle Scholar
Medeiros, LJ, Elenitoba-Johnson, KS. Anaplastic large cell lymphoma. American Journal of Clinical Pathology. 2007;127(5):707–722.CrossRefGoogle ScholarPubMed
Chiarle, R, Podda, A, Prolla, G, et al. CD30 in normal and neoplastic cells. Clin Immunol. 1999;90(2):157–164.CrossRefGoogle ScholarPubMed
So, T, Lee, SW, Croft, M. Tumor necrosis factor/tumor necrosis factor receptor family members that positively regulate immunity. International Journal of Hematology. 2006;83(1):1–11.CrossRefGoogle ScholarPubMed
Higgin, JP, Warnke, RA. CD30 expression is common in mediastinal large B-cell lymphoma. American Journal of Clinical Pathology. 1999;112:241–247.CrossRefGoogle Scholar
Pileri, SA, Zinzani, PL, Gaidano, G, et al. Pathobiology of primary mediastinal B-cell lymphoma. Leukemia and Lymphoma. 2003;44(Suppl 3):S21–S26.CrossRefGoogle ScholarPubMed
Gardner, LJ, Polski, JM, Evans, HL, Perkins, SL, Dunphy, CH. CD30 expression in follicular lymphoma. Archives of Pathology and Laboratory Medicine. 2001;125(8):1036–1041.Google ScholarPubMed
Nakagawa, A, Nakamura, S, Ito, M, et al. CD30-positive anaplastic large cell lymphoma in childhood: expression of p80 npm/alk and absence of Epstein-Barr virus. Modern Pathology. 1997;10(3):210–215.Google Scholar
Herling, M, Rassidakis, GZ, Jones, D, et al. Absence of Epstein-Barr virus in anaplastic large cell lymphoma: a study of 64 cases classified according to World Health Organization criteria. Human Pathology. 2004;35(4):455–459.CrossRefGoogle ScholarPubMed
Tan, BT, Seo, K, Warnke, RA, Arber, DA. The frequency of immunoglobulin heavy chain gene and T-cell receptor gamma-chain gene rearrangements and Epstein-Barr virus in ALK+ and ALK- anaplastic large cell lymphoma and other peripheral T-cell lymphomas. Journal of Molecular Diagnostics. 2008;10(6):502–512.CrossRefGoogle ScholarPubMed
Chu, PG, Chang, KL, Arber, DA, Weiss, LM. Practical applications of immunohistochemistry in hematolymphoid neoplasms. Annals of Diagnostic Pathology. 1999;3:104–133.CrossRefGoogle ScholarPubMed
Amin, HM, Lai, R. Pathobiology of ALK + anaplastic large-cell lymphoma. Blood. 2007;110(7):2259–2267.CrossRefGoogle ScholarPubMed
Nascimento, AF, Pinkus, JL, Pinkus, GS. Clusterin, a marker for anaplastic large cell lymphoma immunohistochemical profile in hematopoietic and nonhematopoietic malignant neoplasms. American Journal of Clinical Pathology. 2004;121(5):709–717.CrossRefGoogle ScholarPubMed
Lae, ME, Ahmed, I, Macon, WR. Clusterin is widely expressed in systemic anaplastic large cell lymphoma but fails to differentiate primary from secondary cutaneous anaplastic large cell lymphoma. American Journal of Clinical Pathology. 2002;118(5):773–779.CrossRefGoogle ScholarPubMed
Dunphy, CH, DeMello, , Gale, GB. Pediatric CD56+ anaplastic large cell lymphoma: a review of the literature. Archives of Pathology and Laboratory Medicine. 2006;130(12):1859–1864.Google ScholarPubMed
Suzuki, R, Kagami, Y, Takeuchi, K, et al. Prognostic significance of CD56 expression for ALK-positive and ALK-negative anaplastic large-cell lymphoma of T/null cell phenotype. Blood. 2000;96(9):2993–3000.Google Scholar
Pulford, K, Morris, SW, Mason, DY. Anaplastic lymphoma kinase proteins and malignancy. Current Opinion in Hematology. 2001;8(4):231–236.CrossRefGoogle ScholarPubMed
Sherman, CG, Zielenska, M, Lorenzana, AN, et al. Morphological and phenotypic features in pediatric large cell lymphoma and their correlation with ALK expression and the t(2;5)(p23;q35) translocation. Pediatric and Developmental Pathology. 2001;4(2):129–137.CrossRefGoogle Scholar
Pulford, K, Lamant, L, Morris, SW, et al. Detection of anaplastic lymphoma kinase (ALK) and nucleolar protein nucleophosmin (NPM)-ALK proteins in normal and neoplastic cells with the monoclonal antibody ALK1. Blood. 1997;89(4):1394–1404.Google ScholarPubMed
Duyster, J, Bai, RY, Morris, SW. Translocations involving anaplastic lymphoma kinase (ALK). Oncogene. 2001;20(40):5623–5637.CrossRefGoogle Scholar
Oertel, J, Huhn, D. Immunocytochemical methods in haematology and oncology. Journal of Cancer Research and Clinical Oncology. 2000;126(8):425–440.Google ScholarPubMed
Chiarle, R, Voena, C, Ambrogio, C, Piva, R, Inghirami, G. The anaplastic lymphoma kinase in the pathogenesis of cancer. Nature Reviews, Cancer. 2008;8(1):11–23.CrossRefGoogle Scholar
Borisch, B, Yerly, S, Cerato, Ch, et al. ALK-positive anaplastic large-cell lymphoma: strong T and B anti-tumour responses may cause hypocellular aspects of lymph nodes mimicking inflammatory lesions. European Journal of Haematology. 2003;71(4):243–249.CrossRefGoogle Scholar
Kremer, M, Quintanilla-Martínez, L, Nährig, J, Schilling, C, Fend, F. Immunohistochemistry in bone marrow pathology: a useful adjunct for morphologic diagnosis. Virchows Archiv. 2005;447(6):920–937.CrossRefGoogle ScholarPubMed
Mussolin, L, Pillon, M, d'Amore, ES, et al. Prevalence and clinical implications of bone marrow involvement in pediatric anaplastic large cell lymphoma. Leukemia. 2005;19(9):1643–1647.CrossRefGoogle ScholarPubMed
Kalinova, M, Krskova, L, Brizova, H, et al. Quantitative PCR detection of NPM/ALK fusion gene and CD30 gene expression in patients with anaplastic large cell lymphoma – residual disease monitoring and a correlation with the disease status. Leukemia Research. 2008;32(1):25–32.CrossRefGoogle Scholar
Damm-Welk, C, Busch, K, Burkhardt, B, et al. Prognostic significance of circulating tumor cells in bone marrow or peripheral blood as detected by qualitative and quantitative PCR in pediatric NPM-ALK-positive anaplastic large-cell lymphoma. Blood. 2007;110(2):670–677.CrossRefGoogle ScholarPubMed
Janik, JE, Morris, JC, Pittaluga, S, et al. Elevated serum soluble interleukin-2 receptor levels in patients with anaplastic large cell lymphoma. Blood. 2004;104 (10):3355–3357.CrossRefGoogle ScholarPubMed
Zinzani, PL, Pileri, S, Bendandi, M, et al. Clinical implications of serum levels of soluble CD30 in 70 adult anaplastic large-cell lymphoma patients. Journal of Clinical Oncology. 1998;16(4):1532–1537.CrossRefGoogle ScholarPubMed
Goldsby, RE, Carroll, WL. The molecular biology of pediatric lymphomas. Journal of Pediatric Hematology/Oncology. 1998;20(4):282–296.CrossRefGoogle ScholarPubMed
Drexler, HG, Gignac, SM, Wasielewski, R, Werner, M, Dirks, WG. Pathobiology of NPM-ALK and variant fusion genes in anaplastic large cell lymphoma and other lymphomas. Leukemia. 2000;14(9):1533–1559.CrossRefGoogle ScholarPubMed
Damm-Welk, C, Klapper, W, Oschlies, I, et al. Distribution of NPM1-ALK and X-ALK fusion transcripts in paediatric anaplastic large cell lymphoma: a molecular-histological correlation. British Journal of Haematology. 2009;146:306–309.CrossRefGoogle ScholarPubMed
Morris, SW, Kirstein, MN, Valentine, MB, et al. Fusion of a kinase gene, ALK, to a nucleolar protein gene, NPM, in non-Hodgkin's lymphoma. Science. 1994;263(5151):1281–1284.CrossRefGoogle ScholarPubMed
Pulford, K, Lamant, L, Espinos, E, et al. The emerging normal and disease-related roles of anaplastic lymphoma kinase. Cellular and Molecular Life Sciences. 2004;61(23):2939–2953.CrossRefGoogle ScholarPubMed
Cataldo, KA, Jalal, SM, Law, ME, et al. Detection of t(2;5) in anaplastic large cell lymphoma: comparison of immunohistochemical studies, FISH, and RT-PCR in paraffin-embedded tissue. American Journal of Surgical Pathology. 1999;23(11):1386–1392.CrossRefGoogle Scholar
Mathew, P, Sanger, WG, Weisenburger, DD, et al. Detection of the t(2;5)(p23;q35) and NPM-ALK fusion in non-Hodgkin's lymphoma by two-color fluorescence in situ hybridization. Blood. 1997;89(5):1678–1685.Google Scholar
Waggott, W, Lo, YM, Bastard, C, et al. Detection of NPM-ALK DNA rearrangement in CD30 positive anaplastic large cell lymphoma. British Journal of Haematology. 1995;89(4):905–907.CrossRefGoogle ScholarPubMed
Gascoyne, RD, Aoun, P, Wu, D, et al. Prognostic significance of anaplastic lymphoma kinase (ALK) protein expression in adults with anaplastic large cell lymphoma. Blood. 1999;93(11):3913–3921.Google ScholarPubMed
Brugieres, L, Deley, MC, Rosolen, A, et al. Impact of the methotrexate administration dose on the need for intrathecal treatment in children and adolescents with anaplastic large-cell lymphoma: results of a randomized trial of the EICNHL Group. Journal of Clinical Oncology. 2009;27(6):897–903.CrossRefGoogle ScholarPubMed
Lowe, EJ, Sposto, R, Perkins, SL, et al. Intensive chemotherapy for systemic anaplastic large cell lymphoma in children and adolescents: final results of Children's Cancer Group Study 5941. Pediatric Blood and Cancer. 2009;52(3):335–339.CrossRefGoogle ScholarPubMed
Borer, RA, Lehner, CF, Eppenberger, HM, Nigg, EA. Major nucleolar proteins shuttle between nucleus and cytoplasm. Cell. 1989;56(3):379–90.CrossRefGoogle ScholarPubMed
Schmidt-Zachmann, MS, Franke, WW. DNA cloning and amino acid sequence determination of a major constituent protein of mammalian nucleoli. Correspondence of the nucleoplasmin-related protein NO38 to mammalian protein B23. Chromosoma. 1988;96(6):417–426.CrossRefGoogle Scholar
Schmidt-Zachmann, MS, Hugle-Dorr, B, Franke, WW. A constitutive nucleolar protein identified as a member of the nucleoplasmin family. EMBO Journal. 1987;6(7):1881–1890.Google ScholarPubMed
Okuda, M, Horn, HF, Tarapore, P, et al. Nucleophosmin/B23 is a target of CDK2/cyclin E in centrosome duplication. Cell. 2000;103(1):127–140.CrossRefGoogle Scholar
Colombo, E, Marine, JC, Danovi, D, Falini, B, Pelicci, PG. Nucleophosmin regulates the stability and transcriptional activity of p53. Nature Cell Biology. 2002;4(7):529–533.CrossRefGoogle ScholarPubMed
Kurki, S, Peltonen, K, Latonen, L, et al. Nucleolar protein NPM interacts with HDM2 and protects tumor suppressor protein p53 from HDM2-mediated degradation. Cancer Cell. 2004;5(5):465–75.CrossRefGoogle ScholarPubMed
Iwatsubo, T. The gamma-secretase complex: machinery for intramembrane proteolysis. Current Opinion in Neurobiology. 2004;14(3):379–383.CrossRefGoogle ScholarPubMed
Morris, SW, Naeve, C, Mathew, P, et al. ALK, the chromosome 2 gene locus altered by the t(2;5) in non-Hodgkin's lymphoma, encodes a novel neural receptor tyrosine kinase that is highly related to leukocyte tyrosine kinase (LTK). Oncogene. 1997;14(18):2175–2188.CrossRefGoogle Scholar
Fujimoto, J, Shiota, M, Iwahara, T, et al. Characterization of the transforming activity of p80, a hyperphosphorylated protein in a Ki-1 lymphoma cell line with chromosomal translocation t(2;5). Proceedings of the National Academy of Sciences of the United States of America. 1996;93(9):4181–4186.CrossRefGoogle Scholar
Kuefer, MU, Look, AT, Pulford, K, et al. Retrovirus-mediated gene transfer of NPM-ALK causes lymphoid malignancy in mice. Blood. 1997;90(8):2901–2910.Google ScholarPubMed
Chiarle, R, Gong, JZ, Guasparri, I, et al. NPM-ALK transgenic mice spontaneously develop T-cell lymphomas and plasma cell tumors. Blood. 2003;101(5):1919–1927.CrossRefGoogle ScholarPubMed
Cook, JR, Dehner, LP, Collins, MH, et al. Anaplastic lymphoma kinase (ALK) expression in the inflammatory myofibroblastic tumor: a comparative immunohistochemical study. American Journal of Surgical Pathology. 2001;25(11):1364–1371.CrossRefGoogle ScholarPubMed
Thompson, MA, Stumph, J, Henrickson, SE, et al. Differential gene expression in anaplastic lymphoma kinase-positive and anaplastic lymphoma kinase-negative anaplastic large cell lymphomas. Human Pathology. 2005;36(5):494–504.CrossRefGoogle ScholarPubMed
Lamant, L, Reyniès, A, Duplantier, MM, et al. Gene-expression profiling of systemic anaplastic large-cell lymphoma reveals differences based on ALK status and two distinct morphologic ALK+ subtypes. Blood. 2007;109(5):2156–2164.CrossRefGoogle ScholarPubMed
Zettl, A, Rüdiger, T, Konrad, MA, et al. Genomic profiling of peripheral T-cell lymphoma, unspecified, and anaplastic large T-cell lymphoma delineates novel recurrent chromosomal alterations. American Journal of Pathology. 2004;164(5):1837–1848.CrossRefGoogle ScholarPubMed
Seidemann, K, Tiemann, M, Schrappe, M, et al. Short-pulse B-non-Hodgkin lymphoma-type chemotherapy is efficacious treatment for pediatric anaplastic large cell lymphoma: a report of the Berlin-Frankfurt-Munster Group Trial NHL-BFM 90. Blood. 2001;97(12):3699–3706.CrossRefGoogle ScholarPubMed
Rosolen, A, Pillon, M, Garaventa, A, et al. Anaplastic large cell lymphoma treated with a leukemia-like therapy: report of the Italian Association of Pediatric Hematology and Oncology (AIEOP) LNH-92 protocol. Cancer. 2005;104(10):2133–2140.CrossRefGoogle ScholarPubMed
Woessmann, W, Peters, C, Lenhard, M, et al. Allogeneic haematopoietic stem cell transplantation in relapsed or refractory anaplastic large cell lymphoma of children and adolescents – a Berlin-Frankfurt-Munster group report. British Journal of Haematology. 2006;133(2):176–182.CrossRefGoogle ScholarPubMed
Zhang, M, Yao, Z, Zhang, Z, et al. Effective therapy for a murine model of human anaplastic large-cell lymphoma with the anti-CD30 monoclonal antibody, HeFi-1, does not require activating Fc receptors. Blood. 2006;108(2):705–710.CrossRefGoogle Scholar
Galkin, AV, Melnick, JS, Kim, S, et al. Identification of NVP-TAE684, a potent, selective, and efficacious inhibitor of NPM-ALK. Proceedings of the National Academy of Sciences of the United States of America. 2007;104(1):270–275.CrossRefGoogle ScholarPubMed
Li, R, Morris, SW. Development of anaplastic lymphoma kinase (ALK) small-molecule inhibitors for cancer therapy. Medicinal Research Reviews. 2008;28(3):372–412.CrossRefGoogle ScholarPubMed
Lin, KH, Su, IJ, Chen, RL, et al. Peripheral T-cell lymphoma in childhood: a report of five cases in Taiwan. Medical and Pediatric Oncology. 1994;23(1):26–35.CrossRefGoogle ScholarPubMed
Leake, J, Kellie, SJ, Pritchard, J, Chessells, JM, Risdon, RA. Peripheral T-cell lymphoma in childhood: a clinicopathologic study of six cases. Histopathology. 1989;14:255–268.CrossRefGoogle Scholar
Schulz, L, Twite, M, Liang, X, Lovell, M, Stork, L. A case of childhood peripheral T-cell lymphoma with massive cardiac infiltration. Journal of Pediatric Hematology/Oncology. 2004;26(1):48–51.CrossRefGoogle ScholarPubMed
Massimino, M, Perotti, D, Spreafico, F, et al. Non-ALC peripheral T-cell lymphomas in children: report on two cases and review of the literature. Haematologica. 2000;85(10):1109–1111.Google ScholarPubMed
Agnarsson, B, Kadin, M. Peripheral T-cell lymphomas in children. Seminars in Diagnostic Pathology. 1995;12:314–324.Google ScholarPubMed
Gordon, BG, Weisenburger, DD, Warkentin, PI, et al. Peripheral T-cell lymphoma in childhood and adolescence. A clinicopathologic study of 22 patients. Cancer. 1993;71(1):257–263.3.0.CO;2-B>CrossRefGoogle ScholarPubMed
Lee, SH, Su, IJ, Chen, RL, et al. A pathologic study of childhood lymphoma in Taiwan with special reference to peripheral T-cell lymphoma and the association with Epstein-Barr viral infection. Cancer. 1991;68(9):1954–1962.3.0.CO;2-E>CrossRefGoogle ScholarPubMed
Hutchison, RE, Laver, JH, Chang, M, et al. Non-anaplastic peripheral T-cell lymphoma in childhood and adolescence: a Children's Oncology Group study. Pediatric Blood and Cancer. 2008;51(1):29–33.CrossRefGoogle ScholarPubMed
Kluin, PM, Feller, A, Gaulard, P, et al. Peripheral T/NK-cell lymphoma: a report of the IXth Workshop of the European Association for Haematopathology. Histopathology. 2001;38(3):250–270.CrossRefGoogle ScholarPubMed
Anderson, JR, Armitage, JO, Weisenburger, DD. Epidemiology of the non-Hodgkin's lymphomas: distributions of the major subtypes differ by geographic locations. Non-Hodgkin's Lymphoma Classification Project. Annals of Oncology. 1998;9(7):717–720.CrossRefGoogle ScholarPubMed
Reiser, M, Josting, A, Soltani, M, et al. T-cell non-Hodgkin's lymphoma in adults: clinicopathological characteristics, response to treatment and prognostic factors. Leukemia and Lymphoma. 2002;43(4):805–811.CrossRefGoogle ScholarPubMed
Rudiger, T, Gascoyne, RD, Jaffe, ES, et al. Workshop on the relationship between nodular lymphocyte predominant Hodgkin's lymphoma and T cell/histiocyte-rich B cell lymphoma. Annals of Oncology. 2002;13(Suppl 1):44–51.CrossRefGoogle ScholarPubMed
Zucca, E, Zinzani, PL. Understanding the group of peripheral T-cell lymphomas, unspecified. Current Hematology Reports. 2005;4(1):23–30.Google Scholar
Dearden, CE, Foss, FM. Peripheral T-cell lymphomas: diagnosis and management. Hematology/Oncology Clinics of North America. 2003;17(6):1351–1366.CrossRefGoogle ScholarPubMed
Dongen, JJ, Langerak, AW, Brüggemann, M, et al. Design and standardization of PCR primers and protocols for detection of clonal immunoglobulin and T-cell receptor gene recombinations in suspect lymphoproliferations: report of the BIOMED-2 Concerted Action BMH4-CT98–3936. Leukemia. 2003;17(12):2257–2317.CrossRefGoogle ScholarPubMed
Smith, JL, Hodges, E, Howell, WM, Jones, DB. Genotypic heterogeneity of node based peripheral T-cell lymphoma. Leukemia and Lymphoma. 1993;10(4–5):273–279.CrossRefGoogle ScholarPubMed
Gordon, BG, Weisenburger, DD, Sanger, WG, Armitage, JO, Coccia, PF. Peripheral T-cell lymphoma in children and adolescents: role of bone marrow transplantation. Leukemia and Lymphoma. 1994;14(1–2):1–10.CrossRefGoogle ScholarPubMed
Laver, JH, Kraveka, JM, Hutchison, RE, et al. Advanced-stage large-cell lymphoma in children and adolescents: results of a randomized trial incorporating intermediate-dose methotrexate and high-dose cytarabine in the maintenance phase of the APO regimen: a Pediatric Oncology Group phase III trial. Journal of Clinical Oncology. 2005;23(3):541–547.CrossRefGoogle ScholarPubMed
Mora, J, Filippa, DA, Thaler, HT, et al. Large cell non-Hodgkin lymphoma of childhood: Analysis of 78 consecutive patients enrolled in 2 consecutive protocols at the Memorial Sloan-Kettering Cancer Center. Cancer. 2000;88(1):186–197.3.0.CO;2-5>CrossRefGoogle ScholarPubMed
Geha, RS, Perez Atayde, AR, Griscom, T, Vawter, GF. A 10-year-old boy with progressive lymphadenopathy, fever, and rash. Annals of Allergy. 1984;53(5):381–389.Google ScholarPubMed
Howarth, CB, Bird, CC. Immunoblastic sarcoma arising in child with immunoblastic lymphadenopathy. Lancet. 1976;2(7988):747–748.CrossRefGoogle ScholarPubMed
Kissane, JM, Gephardt, GN. Lymphadenopathy in childhood: long term follow-up in patients with nondiagnostic lymph node biopsies. Human Pathology. 1974;5(4):431–439.CrossRefGoogle ScholarPubMed
Nakazono, S, Kitahara, T, Takezaki, T, et al. Immunoblastic lymphadenopathy (IBL)-like T-cell lymphoma in a child. Acta Paediatrica Japonica. 1991;33(3):398–407.CrossRefGoogle Scholar
Nezelof, C, Virelizier, JL. Long lasting lymphadenopathy in childhood as an expression of a severe hyperimmune B lymphocyte disorder. Hematological Oncology. 1983;1(3):227–242.CrossRefGoogle ScholarPubMed
Stensvold, K, Brandtzaeg, P, Kvaløy, S, Seip, M, Lie, SO. Immunoblastic lymphadenopathy with early onset in two boys: immunohistochemical study and indication of decreased proportion of circulating T-helper cells. British Journal of Haematology. 1984;56(3):417–430.CrossRefGoogle ScholarPubMed
Dogan, A, Isaacson, PG. Splenic marginal zone lymphoma. Seminars in Diagnostic Pathology. 2003;20(2):121–127.CrossRefGoogle ScholarPubMed
Ferry, JA. Angioimmunoblastic T-cell lymphoma. Advances in Anatomic Pathology. 2002;9(5):273–279.CrossRefGoogle ScholarPubMed
Iannitto, E, Ferreri, AJ, Minardi, V, Tripodo, C, Kreipe, HH. Angioimmunoblastic T-cell lymphoma. Critical Reviews in Oncology/Hematology. 2008;68(3):264–271.CrossRefGoogle ScholarPubMed
Dunleavy, K, Wilson, WH. Angioimmunoblastic T-cell lymphoma: immune modulation as a therapeutic strategy. Leukemia and Lymphoma. 2007;48(3):449–451.CrossRefGoogle ScholarPubMed
Cotta, CV, Hsi, ED. Pathobiology of mature T-cell lymphomas. Clinical Lymphoma and Myeloma. 2008;8(Suppl 5):S168–S179.CrossRefGoogle ScholarPubMed
Attygalle, AD, Liu, H, Shirali, S, et al. Atypical marginal zone hyperplasia of mucosa-associated lymphoid tissue: a reactive condition of childhood showing immunoglobulin lambda light-chain restriction. Blood. 2004;104(10):3343–3348.CrossRefGoogle ScholarPubMed
Alizadeh, AA, Advani, RH. Evaluation and management of angioimmunoblastic T-cell lymphoma: a review of current approaches and future strategies. Clinical Advances in Hematology and Oncology. 2008;6(12):899–909.Google ScholarPubMed
Merchant, SH, Amin, MB, Viswanatha, DS. Morphologic and immunophenotypic analysis of angioimmunoblastic T-cell lymphoma: Emphasis on phenotypic aberrancies for early diagnosis. American Journal of Clinical Pathology. 2006;126(1):29–38.CrossRefGoogle ScholarPubMed
Attygalle, A, Al-Jehani, R, Diss, TC, et al. Neoplastic T cells in angioimmunoblastic T-cell lymphoma express CD10. Blood. 2002;99(2):627–633.CrossRefGoogle ScholarPubMed
Attygalle, AD, Chuang, SS, Diss, TC, et al. Distinguishing angioimmunoblastic T-cell lymphoma from peripheral T-cell lymphoma, unspecified, using morphology, immunophenotype and molecular genetics. Histopathology. 2007;50(4):498–508.CrossRefGoogle ScholarPubMed
Sonnen, R, Schmidt, WP, Müller-Hermelink, HK, Schmitz, N. The International Prognostic Index determines the outcome of patients with nodal mature T-cell lymphomas. British Journal of Haematology. 2005;129(3):366–372.CrossRefGoogle ScholarPubMed
Mackey, AC, Green, L, Liang, LC, Dinndorf, P, Avigan, M. Hepatosplenic T cell lymphoma associated with infliximab use in young patients treated for inflammatory bowel disease. Journal of Pediatric Gastroenterology and Nutrition. 2007;44(2):265–267.CrossRefGoogle ScholarPubMed
Thayu, M, Markowitz, JE, Mamula, P, et al. Hepatosplenic T-cell lymphoma in an adolescent patient after immunomodulator and biologic therapy for Crohn disease. Journal of Pediatric Gastroenterology and Nutrition. 2005;40(2):220–222.CrossRefGoogle Scholar
Mackey, AC, Green, L, Leptak, C, Avigan, M. Hepatosplenic T cell lymphoma associated with infliximab use in young patients treated for inflammatory bowel disease: update. Journal of Pediatric Gastroenterology and Nutrition. 2009;48(3):386–388.CrossRefGoogle ScholarPubMed
Shale, M, Kanfer, E, Panaccione, R, Ghosh, S. Hepatosplenic T cell lymphoma in inflammatory bowel disease. Gut. 2008;57(12):1639–1641.CrossRefGoogle ScholarPubMed
Veres, G, Baldassano, RN, Mamula, P. Infliximab therapy for pediatric Crohn's disease. Expert Opinion on Biological Therapy. 2007;7(12):1869–1880.CrossRefGoogle ScholarPubMed
Khan, WA, Yu, L, Eisenbrey, AB, et al. Hepatosplenic gamma/delta T-cell lymphoma in immunocompromised patients. Report of two cases and review of literature. American Journal of Clinical Pathology. 2001;116(1):41–50.CrossRefGoogle ScholarPubMed
Belhadj, K, Reyes, F, Farcet, JP, et al. Hepatosplenic gammadelta T-cell lymphoma is a rare clinicopathologic entity with poor outcome: report on a series of 21 patients. Blood. 2003;102(13):4261–4269.CrossRefGoogle ScholarPubMed
Weidmann, E. Hepatosplenic T cell lymphoma. A review on 45 cases since the first report describing the disease as a distinct lymphoma entity in 1990. Leukemia. 2000;14(6):991–997.CrossRefGoogle ScholarPubMed
Falchook, GS, Vega, F, Dang, NH, et al. Hepatosplenic gamma-delta T-cell lymphoma: clinicopathological features and treatment. Annals of Oncology. 2009;20(6):1080–1085.CrossRefGoogle ScholarPubMed
Coventry, S, Punnett, HH, Tomczak, EZ, et al. Consistency of isochromosome 7q and trisomy 8 in hepatosplenic gammadelta T-cell lymphoma: detection by fluorescence in situ hybridization of a splenic touch-preparation from a pediatric patient. Pediatric and Developmental Pathology. 1999;2(5):478–483.CrossRefGoogle ScholarPubMed
Rossbach, HC, Chamizo, W, Dumont, DP, Barbosa, JL, Sutcliffe, MJ. Hepatosplenic gamma/delta T-cell lymphoma with isochromosome 7q, translocation t(7;21), and tetrasomy 8 in a 9-year-old girl. Journal of Pediatric Hematology/Oncology. 2002;24(2):154–157.CrossRefGoogle Scholar
Domm, JA, Thompson, M, Kuttesch, JF, Acra, S, Frangoul, H. Allogeneic bone marrow transplantation for chemotherapy-refractory hepatosplenic gammadelta T-cell lymphoma: case report and review of the literature. Journal of Pediatric Hematology/Oncology. 2005;27(11):607–610.CrossRefGoogle ScholarPubMed
Garcia-Sanchez, F,Menárguez, J, Cristobal, E, et al. Hepatosplenic gamma-delta T-cell malignant lymphoma: report of the first case in childhood, including molecular minimal residual disease follow-up. British Journal of Haematology. 1995;90(4):943–946.CrossRefGoogle ScholarPubMed
Vega, F, Medeiros, LJ, Gaulard, P. Hepatosplenic and other gammadelta T-cell lymphomas. American Journal of Clinical Pathology. 2007;127(6):869–880.CrossRefGoogle ScholarPubMed
Cooke, CB, Krenacs, L, Stetler-Stevenson, M, et al. Hepatosplenic T-cell lymphoma: a distinct clinicopathologic entity of cytotoxic gamma delta T-cell origin. Blood. 1996;88(11):4265–4274.Google ScholarPubMed
Macon, WR, Levy, NB, Kurtin, PJ, et al. Hepatosplenic alpha beta T-cell lymphomas: a report of 14 cases and comparison with hepatosplenic gamma delta T-cell lymphomas. American Journal of Surgical Pathology. 2001;25(3):285–296.CrossRefGoogle Scholar
Feldman, AL, Law, M, Grogg, KL, et al. Incidence of TCR and TCL1 gene translocations and isochromosome 7q in peripheral T-cell lymphomas using fluorescence in situ hybridization. American Journal of Clinical Pathology. 2008;130(2):178–185.CrossRefGoogle ScholarPubMed
Wang, CC, Tien, HF, Lin, MT, et al. Consistent presence of isochromosome 7q in hepatosplenic T gamma/delta lymphoma: a new cytogenetic-clinicopathologic entity. Genes, Chromosomes and Cancer. 1995;12(3):161–164.CrossRefGoogle Scholar
Shetty, S, Mansoor, A, Roland, B. Ring chromosome 7 with amplification of 7q sequences in a pediatric case of hepatosplenic T-cell lymphoma. Cancer Genetics and Cytogenetics. 2006;167(2):161–163.CrossRefGoogle Scholar
Leich, E, Haralambieva, E, Zettl, A, et al. Tissue microarray-based screening for chromosomal breakpoints affecting the T-cell receptor gene loci in mature T-cell lymphomas. Journal of Pathology. 2007;213(1):99–105.CrossRefGoogle ScholarPubMed
Humphreys, MR, Cino, M, Quirt, I, Barth, D, Kukreti, V. Long-term survival in two patients with hepatosplenic T cell lymphoma treated with interferon-alpha. Leukemia and Lymphoma. 2008;49(7):1420–1423.CrossRefGoogle ScholarPubMed
Jiang, L, Yuan, CM, Hubacheck, J, et al. Variable CD52 expression in mature T cell and NK cell malignancies: implications for alemtuzumab therapy. British Journal of Haematology. 2009;145(2):173–179.CrossRefGoogle ScholarPubMed
Jaeger, G, Bauer, F, Brezinschek, R, et al. Hepatosplenic gamma delta T-cell lymphoma successfully treated with a combination of alemtuzumab and cladribine. Annals of Oncology. 2008;19(5):1025–1026.CrossRefGoogle ScholarPubMed
Meresse, B, Ripoche, J, Heyman, M, Cerf-Bensussan, N. Celiac disease: from oral tolerance to intestinal inflammation, autoimmunity and lymphomagenesis. Mucosal Immunology. 2009;2(1):8–23.CrossRefGoogle ScholarPubMed
Li, B, Shi, YK, He, XH, et al. Primary non-Hodgkin lymphomas in the small and large intestine: clinicopathological characteristics and management of 40 patients. International Journal of Hematology. 2008;87(4):375–381.CrossRefGoogle ScholarPubMed
Di Sabatino, A, Corazza, GR. Coeliac disease. Lancet. 2009;373(9673):1480–1493.CrossRefGoogle ScholarPubMed
Howell, WM, Leung, ST, Jones, DB, et al. HLA-DRB, -DQA, and -DQB polymorphism in celiac disease and enteropathy-associated T-cell lymphoma. Common features and additional risk factors for malignancy. Human Immunology. 1995;43(1):29–37.CrossRefGoogle ScholarPubMed
Chott, A, Vesely, M, Simonitsch, I, Mosberger, I, Hanak, H. Classification of intestinal T-cell neoplasms and their differential diagnosis. American Journal of Clinical Pathology. 1999;111(1 Suppl 1):S68–S74.Google ScholarPubMed
Catassi, C, Bearzi, I, Holmes, GK. Association of celiac disease and intestinal lymphomas and other cancers. Gastroenterology. 2005;128(4 Suppl 1):S79–S86.CrossRefGoogle ScholarPubMed
Arnaud-Battandier, F, Schmitz, J, Ricour, C, Rey, J. Intestinal malignant lymphoma in a child with familial celiac disease. Journal of Pediatric Gastroenterology and Nutrition. 1983;2(2):320–323.CrossRefGoogle Scholar
Zettl, A, deLeeuw, R, Haralambieva, E, Mueller-Hermelink, H-K. Enteropathy-type T-cell lymphoma. American Journal of Clinical Pathology. 2007;127(5):701–706.CrossRefGoogle ScholarPubMed
Muram-Zborovski, T, Loeb, D, Sun, T. Primary intestinal intraepithelial natural killer-like T-cell lymphoma: case report of a distinct clinicopathologic entity. Archives of Pathology and Laboratory Medicine. 2009;133(1):133–137.Google ScholarPubMed
Verbeek, WH, Blomberg, BM, Scholten, PE, et al. The presence of small intestinal intraepithelial gamma/delta T-lymphocytes is inversely correlated with lymphoma development in refractory celiac disease. American Journal of Gastroenterology. 2008;103(12):3152–3158.CrossRefGoogle ScholarPubMed
Murray, A, Cuevas, EC, Jones, DB, Wright, DH. Study of the immunohistochemistry and T cell clonality of enteropathy-associated T cell lymphoma. American Journal of Pathology. 1995;146(2):509–519.Google Scholar
Isaacson, PG, Du, MQ. Gastrointestinal lymphoma: where morphology meets molecular biology. Journal of Pathology. 2005;205(2):255–274.CrossRefGoogle ScholarPubMed
Ilyas, M, Niedobitek, G, Agathanggelou, A, et al. Non-Hodgkin's lymphoma, coeliac disease, and Epstein-Barr virus: a study of 13 cases of enteropathy-associated T- and B-cell lymphoma. Journal of Pathology. 1995;177(2):115–122.CrossRefGoogle Scholar
Quintanilla-Martinez, L, Lome-Maldonado, C, Ott, G, et al. Primary intestinal non-Hodgkin's lymphoma and Epstein-Barr virus: high frequency of EBV-infection in T-cell lymphomas of Mexican origin. Leukemia and Lymphoma. 1998;30(1–2):111–121.CrossRefGoogle ScholarPubMed
Foss, HD, Stein, H. Pathology of intestinal lymphomas. Recent Results in Cancer Research. 2000;156:33–41.CrossRefGoogle ScholarPubMed
Bishton, MJ, Haynes, AP. Combination chemotherapy followed by autologous stem cell transplant for enteropathy-associated T cell lymphoma. British Journal of Haematology. 2007;136(1):111–113.CrossRefGoogle ScholarPubMed
Molina, AM, Horwitz, SM. Rare T-cell lymphomas. Cancer Treatment and Research, 2008;142:331–347.Google ScholarPubMed
Jaffe, ES, Chan, JK, Su, IJ, et al. Report of the Workshop on Nasal and Related Extranodal Angiocentric T/Natural Killer Cell Lymphomas. Definitions, differential diagnosis, and epidemiology. American Journal of Surgical Pathology. 1996;20(1):103–111.CrossRefGoogle ScholarPubMed
Shaw, PH, Cohn, SL, Morgan, ER, et al. Natural killer cell lymphoma: report of two pediatric cases, therapeutic options, and review of the literature. Cancer. 2001;91(4):642–646.3.0.CO;2-2>CrossRefGoogle ScholarPubMed
Kwong, YL. Natural killer-cell malignancies: diagnosis and treatment. Leukemia. 2005;19(12):2186–2194.CrossRefGoogle ScholarPubMed
Drut, R, Drut, RM. Primary angiocentric T-cell intestinal lymphoma with Epstein-Barr virus in a 5-year-old boy. International Journal of Surgical Pathology. 2001;9(2):163–168.CrossRefGoogle Scholar
Weiss, RL, Lazarus, KH, Macon, WR, Gulley, ML, Kjeldsberg, CR. Natural killer-like T-cell lymphoma in the small intestine of a child without evidence of enteropathy. American Journal of Surgical Pathology. 1997;21:964–969.CrossRefGoogle ScholarPubMed
Chan, JK, Sin, VC, Wong, KF, et al. Nonnasal lymphoma expressing the natural killer cell marker CD56: a clinicopathologic study of 49 cases of an uncommon aggressive neoplasm. Blood. 1997;89(12):4501–4513.Google ScholarPubMed
Di Cataldo, A, Bertuna, G, Mirabile, E, et al. Natural killer lymphoma/leukemia: an uncommon pediatric case with indolent course. Leukemia and Lymphoma. 2004;45(8):1687–1689.CrossRefGoogle ScholarPubMed
Willemze, R, Beljaards, RC. Spectrum of primary cutaneous CD30 (Ki-1)-positive lymphoproliferative disorders. A proposal for classification and guidelines for management and treatment. Journal of the American Academy of Dermatology. 1993;28(6):973–980.CrossRefGoogle ScholarPubMed
Willemze, R, Jaffe, ES, Burg, G. WHO-EORTC classification for cutaneous lymphomas. Blood. 2005;105(10):3768–3785.CrossRefGoogle ScholarPubMed
Kumar, S, Pittaluga, S, Raffeld, M, et al. Primary cutaneous CD30-positive anaplastic large cell lymphoma in childhood: report of 4 cases and review of the literature. Pediatric and Developmental Pathology. 2005;8(1):52–60.CrossRefGoogle ScholarPubMed
Tomaszewski, MM, Moad, JC, Lupton, GP. Primary cutaneous Ki-1(CD30) positive anaplastic large cell lymphoma in childhood. Journal of the American Academy of Dermatology. 1999;40(5 Pt 2):857–861.CrossRefGoogle ScholarPubMed
Hazneci, E, Aydin, NE, Dogan, G, Turhan, IO. Primary cutaneous anaplastic large cell lymphoma in a young girl. Journal of the European Academy of Dermatology and Venereology. 2001;15(4):366–367.Google Scholar
Hung, TY, Lin, YC, Sun, HL, Liu, MC. Primary cutaneous anaplastic large cell lymphoma in a young child. European Journal of Pediatrics. 2008;167(1):111–113.CrossRefGoogle Scholar
Kadin, ME, Carpenter, C. Systemic and primary cutaneous anaplastic large cell lymphomas. Seminars in Hematology. 2003;40(3):244–256.CrossRefGoogle ScholarPubMed
Willemze, R, Meijer, CJ. Primary cutaneous CD30-positive lymphoproliferative disorders. Hematology/Oncology Clinics of North America. 2003;17(6):1319–1332, vii–viii.CrossRefGoogle ScholarPubMed
Kinney, MC, Jones, D. Cutaneous T-cell and NK-cell lymphomas: the WHO-EORTC classification and the increasing recognition of specialized tumor types. American Journal of Clinical Pathology. 2007;127(5):670–686.CrossRefGoogle ScholarPubMed
Querfeld, C, Kuzel, TM, Guitart, J, Rosen, ST. Primary cutaneous CD30 +lymphoproliferative disorders: new insights into biology and therapy. Oncology (Williston Park). 2007;21(6):689–696; discussion 699–700.Google ScholarPubMed
Burg, G, Kempf, W, Kazakov, DV, et al. Pyogenic lymphoma of the skin: a peculiar variant of primary cutaneous neutrophil-rich CD30+ anaplastic large-cell lymphoma. Clinicopatho-logical study of four cases and review of the literature. British Journal of Dermatology. 2003;148(3):580–586.CrossRefGoogle Scholar
Massone, C, El-Shabrawi-Caelen, L, Kerl, H, Cerroni, L. The morphologic spectrum of primary cutaneous anaplastic large T-cell lymphoma: a histopathologic study on 66 biopsy specimens from 47 patients with report of rare variants. Journal of Cutaneous Pathology. 2008;35(1):46–53.Google ScholarPubMed
Wellmann, A, Thieblemont, C, Pittaluga, S, et al. Detection of differentially expressed genes in lymphomas using cDNA arrays: identification of clusterin as a new diagnostic marker for anaplastic large-cell lymphomas. Blood. 2000;96(2):398–404.Google ScholarPubMed
Greisser, J, Palmedo, G, Sander, C, et al. Detection of clonal rearrangement of T-cell receptor genes in the diagnosis of primary cutaneous CD30 lymphoproliferative disorders. Journal of Cutaneous Pathology. 2006;33(11):711–715.CrossRefGoogle Scholar
Liu, HL, Hoppe, RT, Kohler, S, et al. CD30+ cutaneous lymphoproliferative disorders: the Stanford experience in lymphomatoid papulosis and primary cutaneous anaplastic large cell lymphoma. Journal of the American Academy of Dermatology. 2003;49(6):1049–1058.CrossRefGoogle ScholarPubMed
Kunishige, JH, McDonald, H, Alvarez, G, et al. Lymphomatoid papulosis and associated lymphomas: a retrospective case series of 84 patients. Clinical and Experimental Dermatology. 2009;34(5):576–581.CrossRefGoogle ScholarPubMed
El Shabrawi-Caelen, L, Kerl, H, Cerroni, L. Lymphomatoid papulosis: reappraisal of clinicopathologic presentation and classification into subtypes A, B, and C. Archives of Dermatology. 2004;140(4):441–447.CrossRefGoogle ScholarPubMed
Chott, A, Vonderheid, EC, Olbricht, S, et al. The dominant T cell clone is present in multiple regressing skin lesions and associated T cell lymphomas of patients with lymphomatoid papulosis. Journal of Investigative Dermatology. 1996;106(4):696–700.CrossRefGoogle ScholarPubMed
Peters, K, Knoll, JH, Kadin, ME. Cytogenetic findings in regressing skin lesions of lymphomatoid papulosis. Cancer Genetics and Cytogenetics. 1995;80(1):13–16.CrossRefGoogle ScholarPubMed
Nijsten, T, Curiel-Lewandrowski, C, Kadin, ME. Lymphomatoid papulosis in children: a retrospective cohort study of 35 cases. Archives of Dermatology. 2004;140(3):306–312.CrossRefGoogle ScholarPubMed
Bekkenk, MW, Geelen, FA, Voorst Vader, PC, et al. Primary and secondary cutaneous CD30(+) lymphoproliferative disorders: a report from the Dutch Cutaneous Lymphoma Group on the long-term follow-up data of 219 patients and guidelines for diagnosis and treatment. Blood. 2000;95(12):3653–3661.Google ScholarPubMed
Cabanillas, F, Armitage, J, Pugh, WC, Weisenburger, D, Duvic, M. Lymphomatoid papulosis: a T-cell dyscrasia with a propensity to transform into malignant lymphoma. Annals of Internal Medicine. 1995;122(3):210–217.CrossRefGoogle ScholarPubMed
Wain, EM, Orchard, GE, Whittaker, SJ, et al. Outcome in 34 patients with juvenile-onset mycosis fungoides: a clinical, immunophenotypic, and molecular study. Cancer. 2003;98(10):2282–2290.CrossRefGoogle ScholarPubMed
Tsianakas, A, Kienast, AK, Hoeger, PH. Infantile-onset cutaneous T-cell lymphoma. British Journal of Dermatology. 2008;159(6):1338–1341.CrossRefGoogle ScholarPubMed
Fink-Puches, R, Chott, A, Ardigó, M, et al. The spectrum of cutaneous lymphomas in patients less than 20 years of age. Pediatric Dermatology. 2004;21(5):525–533.CrossRefGoogle Scholar
Lansigan, F, Choi, J, Foss, FM. Cutaneous T-cell lymphoma. Hematology/Oncology Clinics of North America. 2008;22(5):979–996, x.CrossRefGoogle ScholarPubMed
Smoller, BR. Mycosis fungoides: what do/do not we know? Journal of Cutaneous Pathology. 2008;35(Suppl 2):35–39.CrossRefGoogle Scholar
Zinzani, PL, Ferreri, AJ, Cerroni, L. Mycosis fungoides. Critical Reviews in Oncology/Hematology. 2008;65(2):172–182.CrossRefGoogle ScholarPubMed
Ben-Amitai, D, Michael, D, Feinmesser, M, Hodak, E. Juvenile mycosis fungoides diagnosed before 18 years of age. Acta Dermato-Venereologica. 2003;83(6):451–456.CrossRefGoogle ScholarPubMed
Hanna, S, Walsh, N, D'Intino, Y, Langley, RG. Mycosis fungoides presenting as pigmented purpuric dermatitis. Pediatric Dermatology. 2006;23(4):350–354.CrossRefGoogle ScholarPubMed
Robson, A. The pathology of cutaneous T-cell lymphoma. Oncology (Williston Park). 2007;21(2 Suppl 1):9–12.Google ScholarPubMed
Diamandidou, E, Colome-Grimmer, M, Fayad, L, Duvic, M, Kurzrock, R. Transformation of mycosis fungoides/Sezary syndrome: clinical characteristics and prognosis. Blood. 1998;92(4):1150–1159.Google ScholarPubMed
Scheffer, E, Meijer, CJ, Vloten, WA, Willemze, R. A histologic study of lymph nodes from patients with the Sezary syndrome. Cancer. 1986;57(12):2375–2380.3.0.CO;2-I>CrossRefGoogle ScholarPubMed
Florell, SR, Cessna, M, Lundell, RB, et al. Usefulness (or lack thereof) of immunophenotyping in atypical cutaneous T-cell infiltrates. American Journal of Clinical Pathology. 2006;125(5):727–736.CrossRefGoogle ScholarPubMed
Karenko, L, Hahtola, S, Ranki, A. Molecular cytogenetics in the study of cutaneous T-cell lymphomas (CTCL). Cytogenetic and Genome Research. 2007;118(2–4):353–361.CrossRefGoogle Scholar
Parveen, Z, Thompson, K. Subcutaneous panniculitis-like T-cell lymphoma: redefinition of diagnostic criteria in the recent World Health Organization-European Organization for Research and Treatment of Cancer classification for cutaneous lymphomas. Archives of Pathology and Laboratory Medicine. 2009;133(2):303–308.Google ScholarPubMed
Shani-Adir, A, Lucky, AW, Prendiville, J, et al. Subcutaneous panniculitic T-cell lymphoma in children: response to combination therapy with cyclosporine and chemotherapy. Journal of the American Academy of Dermatology. 2004;50(2 Suppl):S18–S22.CrossRefGoogle ScholarPubMed
Imaizumi, M, Ichinohasama, R, Sato, A, et al. Primary cutaneous T-cell lymphoma involving the cheek: an infant case with a unique clinicopathologic feature. Leukemia and Lymphoma. 1998;31(1–2):225–229.CrossRefGoogle ScholarPubMed
Yim, JH, Kim, MY, Kim, HO, et al. Subcutaneous panniculitis-like T-cell lymphoma in a 26-month-old child with a review of the literature. Pediatric Dermatology. 2006;23(6):537–540.CrossRefGoogle Scholar
Windsor, R, Stiller, C, Webb, D. Peripheral T-cell lymphoma in childhood: population-based experience in the United Kingdom over 20 years. Pediatric Blood and Cancer. 2008;50(4):784–787.CrossRefGoogle ScholarPubMed
Hung, IJ, Kuo, TT, Sun, CF. Subcutaneous panniculitic T-cell lymphoma developing in a child with idiopathic myelofibrosis. Journal of Pediatric Hematology/Oncology. 1999;21:38–41.CrossRefGoogle Scholar
Willemze, R, Jansen, PM, Cerroni, L, et al. Subcutaneous panniculitis-like T-cell lymphoma: definition, classification, and prognostic factors: an EORTC Cutaneous Lymphoma Group Study of 83 cases. Blood. 2008;111(2):838–845.CrossRefGoogle ScholarPubMed
Kong, YY, Dai, B, Kong, JC, et al. Subcutaneous panniculitis-like T-cell lymphoma: a clinicopathologic, immunophenotypic, and molecular study of 22 Asian cases according to WHO-EORTC classification. American Journal of Surgical Pathology. 2008;32(10):1495–1502.CrossRefGoogle ScholarPubMed
Hoque, SR, Child, FJ, Whittaker, SJ, et al. Subcutaneous panniculitis-like T-cell lymphoma: a clinicopathological, immunophenotypic and molecular analysis of six patients. British Journal of Dermatology. 2003;148(3):516–525.CrossRefGoogle ScholarPubMed
Massone, C, Chott, A, Metze, D, et al. Subcutaneous, blastic natural killer (NK), NK/T-cell, and other cytotoxic lymphomas of the skin: a morphologic, immunophenotypic, and molecular study of 50 patients. American Journal of Surgical Pathology. 2004;28(6):719–735.CrossRefGoogle ScholarPubMed
Kao, GF, Resh, B, McMahon, C, et al. Fatal subcutaneous panniculitis-like T-cell lymphoma gamma/delta subtype (cutaneous gamma/delta T-cell lymphoma): report of a case and review of the literature. American Journal of Dermatopathology. 2008;30(6):593–599.CrossRefGoogle ScholarPubMed
Gonzalez, EG, Selvi, E, Lorenzini, S, et al. Subcutaneous panniculitis-like T-cell lymphoma misdiagnosed as lupus erythematosus panniculitis. Clinical Rheumatology. 2007;26(2):244–246.CrossRefGoogle ScholarPubMed
Fraga, J, Garcia-Diez, A. Lupus erythematosus panniculitis. Dermatological Clinics. 2008;26(4):453–463, vi.CrossRefGoogle ScholarPubMed
Kim, D, Ko, Y, Suh, Y, et al. Characteristics of Epstein-Barr virus associated childhood non-Hodgkin's lymphoma in the Republic of Korea. Virchows Archiv. 2005;447(3):593–596.CrossRefGoogle ScholarPubMed
Ohnuma, K, Toyoda, Y, Nishihira, H, et al. Aggressive natural killer (NK) cell lymphoma: report of a pediatric case and review of the literature. Leukemia and Lymphoma. 1997;25(3–4):387–392.CrossRefGoogle ScholarPubMed
Chou, WC, Chiang, IP, Tang, JL, et al. Clonal disease of natural killer large granular lymphocytes in Taiwan. British Journal of Haematology. 1998;103(4):1124–1128.CrossRefGoogle ScholarPubMed
Mori, N, Yamashita, Y, Tsuzuki, T, et al. Lymphomatous features of aggressive NK cell leukaemia/lymphoma with massive necrosis, haemophagocytosis and EB virus infection. Histopathology. 2000;37(4):363–371.CrossRefGoogle ScholarPubMed
Liang, X, Graham, DK. Natural killer cell neoplasms. Cancer. 2008;112(7):1425–1436.CrossRefGoogle ScholarPubMed
Alekshun, TJ, Sokol, L. Diseases of large granular lymphocytes. Cancer Control. 2007;14(2):141–150.CrossRefGoogle ScholarPubMed
Macon, WR, Williams, ME, Greer, JP, et al. Natural killer-like T-cell lymphomas: aggressive lymphomas of T-large granular lymphocytes. Blood. 1996;87(4):1474–1483.Google ScholarPubMed
Siu, LL, Chan, V, Chan, JK, et al. Consistent patterns of allelic loss in natural killer cell lymphoma. American Journal of Pathology. 2000;157(6):1803–1809.CrossRefGoogle ScholarPubMed
Petterson, TE, Bosco, AA, Cohn, RJ. Aggressive natural killer cell leukemia presenting with hemophagocytic lymphohistiocytosis. Pediatric Blood and Cancer. 2008;50(3):654–657.CrossRefGoogle ScholarPubMed
Ryder, J, Wang, X, Bao, L, et al. Aggressive natural killer cell leukemia: report of a Chinese series and review of the literature. International Journal of Hematology. 2007;85(1):18–25.CrossRefGoogle ScholarPubMed
Siu, LL, Wong, KF, Chan, JK, Kwong, YL. Comparative genomic hybridization analysis of natural killer cell lymphoma/leukemia. Recognition of consistent patterns of genetic alterations. American Journal of Pathology. 1999;155(5):1419–1425.CrossRefGoogle ScholarPubMed
Siu, LL, Chan, JK, Kwong, YL. Natural killer cell malignancies: clinicopathologic and molecular features. Histology and Histopathology. 2002;17(2):539–554.Google ScholarPubMed
Kwong, YL, Wong, KF, Chan, LC, et al. Large granular lymphocyte leukemia. A study of nine cases in a Chinese population. American Journal of Clinical Pathology. 1995;103(1):76–81.CrossRefGoogle ScholarPubMed
Ito, T, Makishima, H, Nakazawa, H, et al. Promising approach for aggressive NK cell leukaemia with allogeneic haematopoietic cell transplantation. European Journal of Haematology. 2008;81(2):107–111.CrossRefGoogle ScholarPubMed
Jaccard, A, Petit, B, Girault, S, et al. L-asparaginase-based treatment of 15 western patients with extranodal NK/T-cell lymphoma and leukemia and a review of the literature. Annals of Oncology. 2009;20(1):110–116.CrossRefGoogle Scholar
Boztug, K, Baumann, U, Ballmaier, M, et al. Large granular lymphocyte proliferation and revertant mosaicism: two rare events in a Wiskott-Aldrich syndrome patient. Haematologica. 2007;92(3):e43–e45.CrossRefGoogle Scholar
Kitchen, BJ, Boxer, . Large granular lymphocyte leukemia (LGL) in a child with hyper IgM syndrome and autoimmune hemolytic anemia. Pediatric Blood and Cancer. 2008;50(1):142–145.CrossRefGoogle Scholar
O'Malley, DP. T-cell large granular leukemia and related proliferations. American Journal of Clinical Pathology. 2007;127(6):850–859.CrossRefGoogle ScholarPubMed
Rose, MG, Berliner, N. T-cell large granular lymphocyte leukemia and related disorders. Oncologist. 2004;9(3):247–258.CrossRefGoogle ScholarPubMed
Lamy, T, Loughran, TP Jr.Clinical features of large granular lymphocyte leukemia. Seminars in Hematology. 2003;40(3):185–195.CrossRefGoogle ScholarPubMed
Manola, KN, Sambani, C, Karakasis, D, et al. Leukemias associated with Turner syndrome: report of three cases and review of the literature. Leukemia Research. 2008;32(3):481–486.CrossRefGoogle ScholarPubMed
Dhodapkar, MV, Li, CY, Lust, JA, Tefferi, A, Phyliky, RL. Clinical spectrum of clonal proliferations of T-large granular lymphocytes: a T-cell clonopathy of undetermined significance?Blood. 1994;84(5):1620–1627.Google ScholarPubMed
Osuji, N, Matutes, E, Catovsky, D, Lampert, I, Wotherspoon, A. Histopathology of the spleen in T-cell large granular lymphocyte leukemia and T-cell prolymphocytic leukemia: a comparative review. American Journal of Surgical Pathology. 2005;29(7):935–941.CrossRefGoogle ScholarPubMed
Morice, WG, Kurtin, PJ, Leibson, PJ, Tefferi, A, Hanson, CA. Demonstration of aberrant T-cell and natural killer-cell antigen expression in all cases of granular lymphocytic leukaemia. British Journal of Haematology. 2003;120(6):1026–1036.CrossRefGoogle ScholarPubMed
Morice, WG. The immunophenotypic attributes of NK cells and NK-cell lineage lymphoproliferative disorders. American Journal of Clinical Pathology. 2007;127(6):881–886.CrossRefGoogle ScholarPubMed
Lundell, R, Hartung, L, Hill, S, Perkins, SL, Bahler, DW. T-cell large granular lymphocyte leukemias have multiple phenotypic abnormalities involving pan-T-cell antigens and receptors for MHC molecules. American Journal of Clinical Pathology. 2005;124(6):937–946.CrossRefGoogle ScholarPubMed
Gorczyca, W, Weisberger, J, Liu, Z, et al. An approach to diagnosis of T-cell lymphoproliferative disorders by flow cytometry. Cytometry. 2002;50(3):177–190.CrossRefGoogle ScholarPubMed
Morice, WG, Kimlinger, T, Katzmann, JA, et al. Flow cytometric assessment of TCR-Vbeta expression in the evaluation of peripheral blood involvement by T-cell lymphoproliferative disorders: a comparison with conventional T-cell immunophenotyping and molecular genetic techniques. American Journal of Clinical Pathology. 2004;121(3):373–383.CrossRefGoogle ScholarPubMed
Man, C, Au, WY, Pang, A, Kwong, YL. Deletion 6q as a recurrent chromosomal aberration in T-cell large granular lymphocyte leukemia. Cancer Genetics and Cytogenetics. 2002;139(1):71–74.CrossRefGoogle ScholarPubMed
Ohtsuka, R, Abe, Y, Sada, E, et al. Adult patient with Epstein-Barr virus (EBV)-associated lymphoproliferative disorder: chronic active EBV infection or de novo extranodal natural killer (NK)/T-cell lymphoma, nasal type?Internal Medicine. 2009;48(6):471–474.CrossRefGoogle ScholarPubMed
Tazawa, Y, Nishinomiya, F, Noguchi, H, et al. A case of fatal infectious mononucleosis presenting with fulminant hepatic failure associated with an extensive CD8-positive lymphocyte infiltration in the liver. Human Pathology. 1993;24(10):1135–1139.CrossRefGoogle ScholarPubMed
Su, IJ, Hsieh, HC, Lin, KH, et al. Aggressive peripheral T-cell lymphomas containing Epstein-Barr viral DNA: a clinicopathologic and molecular analysis. Blood. 1991;77(4):799–808.Google ScholarPubMed
Millard, TP, Hawk, JL. Photosensitivity disorders: cause, effect and management. American Journal of Clinical Dermatology. 2002;3(4):239–246.CrossRefGoogle ScholarPubMed
Tabata, N, Aiba, S, Ichinohazama, R, et al. Hydroa vacciniforme-like lymphomatoid papulosis in a Japanese child: a new subset. Journal of the American Academy of Dermatology. 1995;32(2 Pt 2):378–381.CrossRefGoogle Scholar
Kazakov, DV, Burg, G, Dummer, R, Kempf, W. Cutaneous lymphomas and pseudolymphomas: newly described entities. Recent Results in Cancer Research. 2002;160:283–293.CrossRefGoogle ScholarPubMed
Wu, YH, Chen, HC, Hsiao, PF, et al. Hydroa vacciniforme-like Epstein-Barr virus-associated monoclonal T-lymphoproliferative disorder in a child. International Journal of Dermatology. 2007;46(10):1081–1086.CrossRefGoogle Scholar
Barrionuevo, C, Anderson, VM, Zevallos-Giampietri, E, et al. Hydroa-like cutaneous T-cell lymphoma: a clinicopathologic and molecular genetic study of 16 pediatric cases from Peru. Applied Immunohistochemistry and Molecular Morphology. 2002;10(1):7–14.CrossRefGoogle ScholarPubMed
Chen, HH, Hsiao, CH, Chiu, HC. Hydroa vacciniforme-like primary cutaneous CD8-positive T-cell lymphoma. British Journal of Dermatology. 2002;147(3):587–591.CrossRefGoogle ScholarPubMed
Zhang, Y, Nagata, H, Ikeuchi, T, et al. Common cytological and cytogenetic features of Epstein-Barr virus (EBV)-positive natural killer (NK) cells and cell lines derived from patients with nasal T/NK-cell lymphomas, chronic active EBV infection and hydroa vacciniforme-like eruptions. British Journal of Haematology. 2003;121(5):805–814.CrossRefGoogle ScholarPubMed
Magaña, M, Sangüeza, P, Gil-Beristain, J, et al. Angiocentric cutaneous T-cell lymphoma of childhood (hydroa-like lymphoma): a distinctive type of cutaneous T-cell lymphoma. Journal of the American Academy of Dermatology. 1998;38(4):574–579.CrossRefGoogle ScholarPubMed
Park, S, Kim, K, Kim, WS, et al. Systemic EBV+ T-cell lymphoma in elderly patients: comparison with children and young adult patients. Virchows Archiv. 2008;453(2):155–163.CrossRefGoogle ScholarPubMed
Feng, S, Jin, P, Zeng, X. Hydroa vacciniforme-like primary cutaneous CD8-positive T-cell lymphoma. European Journal of Dermatology. 2008;18(3):364–365.Google ScholarPubMed
Swerdlow, SH. T-cell and NK-cell posttransplantation lymphoproliferative disorders. American Journal of Clinical Pathology. 2007;127(6):887–895.CrossRefGoogle ScholarPubMed
Carbone, A, Gloghini, A, Dotti, G. EBV-associated lymphoproliferative disorders: classification and treatment. Oncologist. 2008;13(5):577–585.CrossRefGoogle ScholarPubMed
Jamali, FR, Otrock, ZK, Soweid, AM, et al. An overview of the pathogenesis and natural history of post-transplant T-cell lymphoma (corrected and republished article originally printed in Leukemia and Lymphoma, June 2007; 48(6): 1237–1241). Leukemia and Lymphoma. 2007;48(9):1780–1784.CrossRefGoogle Scholar
Yang, F, Li, Y, Braylan, R, Hunger, SP, Yang, LJ. Pediatric T-cell post-transplant lymphoproliferative disorder after solid organ transplantation. Pediatric Blood and Cancer. 2008;50(2):415–418.CrossRefGoogle ScholarPubMed
Salama, S. Primary “cutaneous” T-cell anaplastic large cell lymphoma, CD30+, neutrophil-rich variant with subcutaneous panniculitic lesions, in a post-renal transplant patient: report of unusual case and literature review. American Journal of Dermatopathology. 2005;27(3):217–223.CrossRefGoogle Scholar
Coyne, JD, Banerjee, SS, Bromley, M, et al. Post-transplant T-cell lymphoproliferative disorder/T-cell lymphoma: a report of three cases of T-anaplastic large-cell lymphoma with cutaneous presentation and a review of the literature. Histopathology. 2004;44(4):387–393.CrossRefGoogle Scholar
Costes-Martineau, V, Delfour, C, Obled, S, et al. Anaplastic lymphoma kinase (ALK) protein expressing lymphoma after liver transplantation: case report and literature review. Journal of Clinical Pathology. 2002;55(11):868–871.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×