Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-gvh9x Total loading time: 0 Render date: 2024-07-17T13:48:36.924Z Has data issue: false hasContentIssue false

26 - Cutaneous and subcutaneous lymphomas in children

from Section 2 - Neoplastic hematopathology

Published online by Cambridge University Press:  03 May 2011

Kenneth Chang
Affiliation:
University of Toronto
Elena Pope
Affiliation:
University of Toronto
Glenn Taylor
Affiliation:
Paediatric Laboratory Medicine
Maria A. Proytcheva
Affiliation:
Northwestern University Medical School, Illinois
Get access

Summary

Introduction

Classification of cutaneous lymphomas

The skin is the second most common site of extranodal lymphoma after the gastrointestinal tract [1]. The term primary cutaneous lymphoma refers to cutaneous lymphomas that present in the skin with no evidence of extracutaneous disease at the time of diagnosis [2].

This chapter adopts the 2005 WHO/EORTC classification (Table 26.1) for cutaneous lymphomas [2, 3]. Prior to its publication, the two classification schemes most widely used were the 2001 World Health Organization (WHO) classification [4] and the 1997 European Organization for the Research and Treatment of Cancer (EORTC) classification [5].

The 2005 WHO/EORTC classification is a consensus system based on the premise that primary cutaneous lymphomas often have a completely different clinical behavior and prognosis from histologically similar nodal lymphomas: therefore, they require different management strategies and treatment. This new classification is validated by clinical follow-up data on 1905 patients from the Dutch and Austrian registries for primary cutaneous lymphomas [6].

Epidemiology in the pediatric age group

Primary cutaneous lymphomas are extremely rare, with an incidence of approximately 0.36 per 100 000 [7] persons per year. Cutaneous T-cell lymphomas (CTCLs) account for approximately 75% of all cutaneous lymphomas in Europe [5] and >90% in North America. Although typically considered a disease of adulthood (approximately 75% of patients are diagnosed after 50 years of age [8]), pediatric cases make up from 4 to 11% of CTCL cases, and many adult patients report initial onset in childhood [8–10].

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

LeBoit, PE, Burg, G, Weedon, D, et al. (eds.). World Health Organization Classification of Tumours: Pathology and Genetics of Skin Tumours. Lyon: IARC Press; 2006.Google Scholar
Willemze, R, Jaffe, ES, Burg, G, et al. WHO-EORTC classification for cutaneous lymphomas. Blood. 2005;105:3768–3785.CrossRefGoogle ScholarPubMed
Burg, G, Kempf, W, Cozzio, A, et al. WHO/EORTC classification of cutaneous lymphomas 2005: histological and molecular aspects. Journal of Cutaneous Pathology. 2005;32:647–674.CrossRefGoogle ScholarPubMed
Jaffe, ES, Harris, NL, Stein, H, Vardiman, JW. Pathology and Genetics of Tumours of Haematopoietic and Lymphoid Tissues. Lyon: IARC Press; 2001.Google Scholar
Willemze, R, Kerl, H, Sterry, W, et al. EORTC classification for primary cutaneous lymphomas: a proposal from the Cutaneous Lymphoma Study Group of the European Organization for Research and Treatment of Cancer. Blood.1997;90:354–371.Google Scholar
Kadin, ME. Latest lymphoma classification is skin deep. Blood. 2005;105:3759.CrossRefGoogle Scholar
Weinstock, MA, Horm, JW. Population-based estimate of survival and determinants of prognosis in patients with mycosis fungoides. Cancer. 1988;62:1658–1661.3.0.CO;2-J>CrossRefGoogle ScholarPubMed
Weinstock, MA, Gardstein, B. Twenty-year trends in the reported incidence of mycosis fungoides and associated mortality. American Journal of Public Health. 1999;89:1240–1244.CrossRefGoogle ScholarPubMed
Wain, EM, Orchard, GE, Whittaker, SJ, Spittle, M, Russell-Jones, R. Outcome in 34 patients with juvenile-onset mycosis fungoides: a clinical, immunophenotypic, and molecular study. Cancer. 2003;98:2282–2290.CrossRefGoogle ScholarPubMed
Crowley, JJ, Nikko, A, Varghese, A, Hoppe, RT, Kim, YH. Mycosis fungoides in young patients: clinical characteristics and outcome. Journal of the American Academy of Dermatology. 1998;38:696–701.CrossRefGoogle ScholarPubMed
Criscione, VD, Weinstock, MA. Incidence of cutaneous T-cell lymphoma in the United States, 1973–2002. Archives of Dermatology. 2007;143:854–859.CrossRefGoogle ScholarPubMed
Fink-Puches, R, Chott, A, Ardigo, M, et al. The spectrum of cutaneous lymphomas in patients less than 20 years of age. Pediatric Dermatology. 2004;21:525–533.CrossRefGoogle Scholar
Koch, SE, Zackheim, HS, Williams, ML, Fletcher, V, LeBoit, PE. Mycosis fungoides beginning in childhood and adolescence. Journal of the American Academy of Dermatology. 1987;17:563–570.CrossRefGoogle ScholarPubMed
Peters, MS, Thibodeau, SN, White, JW. Jr., Winkelmann, RK. Mycosis fungoides in children and adolescents. Journal of the American Academy of Dermatology. 1990;22:1011–1018.CrossRefGoogle ScholarPubMed
Zackheim, HS, McCalmont, TH, Deanovic, FW, Odom, RB. Mycosis fungoides with onset before 20 years of age. Journal of the American Academy of Dermatology. 1997;36:557–562.CrossRefGoogle Scholar
Doorn, R, Haselen, CW, Voorst Vader, PC, et al. Mycosis fungoides: disease evolution and prognosis of 309 Dutch patients. Archives of Dermatology. 2000;136:504–510.Google ScholarPubMed
Zackheim, HS, Amin, S, Kashani-Sabet, M, McMillan, A. Prognosis in cutaneous T-cell lymphoma by skin stage: long-term survival in 489 patients. Journal of the American Academy of Dermatology. 1999;40:418–425.CrossRefGoogle ScholarPubMed
Tan, ES, Tang, MB, Tan, SH. Retrospective 5-year review of 131 patients with mycosis fungoides and Sezary syndrome seen at the National Skin Centre, Singapore. The Australasian Journal of Dermatology. 2006;47:248–252.CrossRefGoogle ScholarPubMed
Tan, E, Tay, YK, Giam, YC. Profile and outcome of childhood mycosis fungoides in Singapore. Pediatric Dermatology. 2000;17:352–356.CrossRefGoogle ScholarPubMed
Zackheim, HS, McCalmont, TH. Mycosis fungoides: the great imitator. Journal of the American Academy of Dermatology. 2002;47:914–918.CrossRefGoogle ScholarPubMed
Zackheim, HS. Treatment of mycosis fungoides/Sezary syndrome: the University of California, San Francisco (UCSF) approach. International Journal of Dermatology. 2003;42:53–56.CrossRefGoogle ScholarPubMed
Pimpinelli, N, Olsen, EA, Santucci, M, et al. Defining early mycosis fungoides. Journal of the American Academy of Dermatology. 2005;53:1053–1063.CrossRefGoogle ScholarPubMed
Ben-Amitai, D, Michael, D, Feinmesser, M, Hodak, E. Juvenile mycosis fungoides diagnosed before 18 years of age. Acta Dermato-Venereologica. 2003;83:451–456.CrossRefGoogle ScholarPubMed
Quaglino, P, Zaccagna, A, Verrone, A, Dardano, F, Bernengo, MG. Mycosis fungoides in patients under 20 years of age: report of 7 cases, review of the literature and study of the clinical course. Dermatology. 1999;199:8–14.CrossRefGoogle ScholarPubMed
Neuhaus, IM, Ramos-Caro, FA, Hassanein, AM. Hypopigmented mycosis fungoides in childhood and adolescence. Pediatric Dermatology. 2000;17:403–406.CrossRefGoogle ScholarPubMed
Abha, G, Lam, J, Weitzman, S, Pope, E. Cutaneous T-cell lymphoma (CTCL) in children: report from an international registry (abstract). Pediatric Blood and Cancer. 2006;46:846 (A37).Google Scholar
Werner, B, Brown, S, Ackerman, AB. “Hypopigmented mycosis fungoides” is not always mycosis fungoides! The American Journal of Dermatopathology. 2005;27:56–67.CrossRefGoogle Scholar
Liu, V, McKee, PH. Cutaneous T-cell lymphoproliferative disorders: approach for the surgical pathologist: recent advances and clarification of confused issues. Advances in Anatomic Pathology. 2002;9:79–100.CrossRefGoogle ScholarPubMed
Smoller, BR, Santucci, M, Wood, G, Whittaker, SJ. Histopathology and genetics of cutaneous T-cell lymphoma. Hematology/Oncology Clinics of North America. 2003;17:1277–1311.CrossRefGoogle ScholarPubMed
Smoller, BR, Detwiler, SP, Kohler, S, Hoppe, RT, Kim, YH. Role of histology in providing prognostic information in mycosis fungoides. Journal of Cutaneous Pathology. 1998;25:311–315.CrossRefGoogle ScholarPubMed
Sanchez, JL, Ackerman, AB. The patch stage of mycosis fungoides. Criteria for histologic diagnosis. The American Journal of Dermatopathology. 1979;1:5–26.CrossRefGoogle ScholarPubMed
Massone, C, Kodama, K, Kerl, H, Cerroni, L. Histopathologic features of early (patch) lesions of mycosis fungoides: a morphologic study on 745 biopsy specimens from 427 patients. The American Journal of Surgical Pathology. 2005;29:550–560.CrossRefGoogle ScholarPubMed
Nickoloff, BJ. Light-microscopic assessment of 100 patients with patch/plaque-stage mycosis fungoides. The American Journal of Dermatopathology. 1988;10:469–477.CrossRefGoogle ScholarPubMed
Horiuchi, Y, Tone, T, Umezawa, A, Takezaki, S. Large cell mycosis fungoides at the tumor stage. Unusual T8, T4, T6 phenotypic expression. The American Journal of Dermatopathology. 1988;10:54–58.CrossRefGoogle ScholarPubMed
Cerroni, L, Rieger, E, Hodl, S, Kerl, H. Clinicopathologic and immunologic features associated with transformation of mycosis fungoides to large-cell lymphoma. American Journal of Surgical Pathology. 1992;16:543–552.CrossRefGoogle ScholarPubMed
Salhany, KE, Cousar, JB, Greer, JP, et al. Transformation of cutaneous T cell lymphoma to large cell lymphoma. A clinicopathologic and immunologic study. American Journal of Pathology. 1988;132:265–277.Google ScholarPubMed
Vergier, B, de Muret, A, Beylot-Barry, M, et al. Transformation of mycosis fungoides: clinicopathological and prognostic features of 45 cases. French Study Group of Cutaneous Lymphomas. Blood. 2000;95:2212–2218.Google Scholar
Diamandidou, E, Colome-Grimmer, M, Fayad, L, Duvic, M, Kurzrock, R. Transformation of mycosis fungoides/Sezary syndrome: clinical characteristics and prognosis. Blood. 1998;92:1150–1159.Google ScholarPubMed
Olsen, E, Vonderheid, E, Pimpinelli, N, et al. Revisions to the staging and classification of mycosis fungoides and Sezary syndrome: a proposal of the International Society for Cutaneous Lymphomas (ISCL) and the Cutaneous Lymphoma Task Force of the European Organization of Research and Treatment of Cancer (EORTC). Blood. 2007;110:1713–1722.CrossRefGoogle Scholar
Agnarsson, BA, Vonderheid, EC, Kadin, ME. Cutaneous T cell lymphoma with suppressor/cytotoxic (CD8) phenotype: identification of rapidly progressive and chronic subtypes. Journal of the American Academy of Dermatology. 1990;22:569–577.CrossRefGoogle ScholarPubMed
Berti, E, Tomasini, D, Vermeer, MH, et al. Primary cutaneous CD8-positive epidermotropic cytotoxic T cell lymphomas. A distinct clinicopathological entity with an aggressive clinical behavior. The American Journal of Pathology. 1999;155:483–492.CrossRefGoogle ScholarPubMed
Whittam, LR, Calonje, E, Orchard, G, et al. CD8-positive juvenile onset mycosis fungoides: an immunohistochemical and genotypic analysis of six cases. The British Journal of Dermatology. 2000;143:1199–1204.CrossRefGoogle ScholarPubMed
Lu, D, Patel, KA, Duvic, M, Jones, D. Clinical and pathological spectrum of CD8-positive cutaneous T-cell lymphomas. Journal of Cutaneous Pathology. 2002;29:465–472.CrossRefGoogle ScholarPubMed
El-Shabrawi-Caelen, L, Cerroni, L, Medeiros, LJ, McCalmont, TH. Hypopigmented mycosis fungoides: frequent expression of a CD8+ T-cell phenotype. The American Journal of Surgical Pathology. 2002;26:450–457.CrossRefGoogle ScholarPubMed
Hodak, E, David, M, Maron, L, et al. CD4/CD8 double-negative epidermotropic cutaneous T-cell lymphoma: an immunohistochemical variant of mycosis fungoides. Journal of the American Academy of Dermatology. 2006;55:276–284.CrossRefGoogle ScholarPubMed
Santucci, M, Pimpinelli, N, Massi, D, et al. Cytotoxic/natural killer cell cutaneous lymphomas. Report of EORTC Cutaneous Lymphoma Task Force Workshop. Cancer. 2003;97:610–627.CrossRefGoogle ScholarPubMed
Ohshima, A, Tokura, Y, Misawa, J, Yagi, H, Takigawa, M. Erythrodermic cutaneous T-cell lymphoma with CD8+CD56+ leukaemic T cells in a young woman. The British Journal of Dermatology. 2003;149:891–893.CrossRefGoogle Scholar
Wain, EM, Orchard, GE, Mayou, S, et al. Mycosis fungoides with a CD56+ immunophenotype. Journal of the American Academy of Dermatology. 2005;53:158–163.CrossRefGoogle ScholarPubMed
Karenko, L, Hyytinen, E, Sarna, S, Ranki, A. Chromosomal abnormalities in cutaneous T-cell lymphoma and in its premalignant conditions as detected by G-banding and interphase cytogenetic methods. The Journal of Investigative Dermatology. 1997;108:22–29.CrossRefGoogle ScholarPubMed
Fung, MA, Murphy, MJ, Hoss, DM, Grant-Kels, JM. Practical evaluation and management of cutaneous lymphoma. Journal of the American Academy of Dermatology. 2002;46:325–357; quiz, 58–60.CrossRefGoogle ScholarPubMed
Apisarnthanarax, N, Talpur, R, Ward, S, et al. Tazarotene 0.1% gel for refractory mycosis fungoides lesions: an open-label pilot study. Journal of the American Academy of Dermatology. 2004;50:600–607.CrossRefGoogle ScholarPubMed
Quatrebarbes, J, Esteve, E, Bagot, M, et al. Treatment of early-stage mycosis fungoides with twice-weekly applications of mechlorethamine and topical corticosteroids: a prospective study. Archives of Dermatology. 2005;141:1117–1120.CrossRefGoogle ScholarPubMed
Deeths, MJ, Chapman, JT, Dellavalle, RP, Zeng, C, Aeling, JL. Treatment of patch and plaque stage mycosis fungoides with imiquimod 5% cream. Journal of the American Academy of Dermatology. 2005;52:275–280.CrossRefGoogle ScholarPubMed
Ramsay, DL, Meller, JA, Zackheim, HS. Topical treatment of early cutaneous T-cell lymphoma. Hematology/Oncology Clinics of North America. 1995;9:1031–1056.CrossRefGoogle ScholarPubMed
Zackheim, HS. Topical carmustine (BCNU) for patch/plaque mycosis fungoides. Seminars in Dermatology. 1994;13:202–206.Google ScholarPubMed
Zackheim, HS. Cutaneous T cell lymphoma: update of treatment. Dermatology. 1999;199:102–105.CrossRefGoogle Scholar
Zackheim, HS, Kashani-Sabet, M, Amin, S. Topical corticosteroids for mycosis fungoides. Experience in 79 patients. Archives of Dermatology. 1998;134:949–954.CrossRefGoogle ScholarPubMed
Doorn, R, Scheffer, E, Willemze, R. Follicular mycosis fungoides, a distinct disease entity with or without associated follicular mucinosis: a clinicopathologic and follow-up study of 51 patients. Archives of Dermatology. 2002;138:191–198.Google ScholarPubMed
Hess Schmid, M, Dummer, R, Kempf, W, Hilty, N, Burg, G. Mycosis fungoides with mucinosis follicularis in childhood. Dermatology. 1999;198:284–287.CrossRefGoogle ScholarPubMed
Gibson, , Muller, SA, Peters, MS. Follicular mucinosis of childhood and adolescence. Pediatric Dermatology. 1988;5:231–235.CrossRefGoogle ScholarPubMed
Gerami, P, Rosen, S, Kuzel, T, Boone, SL, Guitart, J. Folliculotropic mycosis fungoides: an aggressive variant of cutaneous T-cell lymphoma. Archives of Dermatology. 2008;144:738–746.CrossRefGoogle ScholarPubMed
Woringer, F, Kolopp, P. Lésion érythémato-squameuse polycyclique de l'avant-bras évoluant depuis 6 ans chez un garçonnet de 13 an: Histologiquement infiltrat intra-épidermique d'apparence tumorale. Annales de Dermatologie et de Vénéréologie.1939;10:945–958.Google Scholar
Cohen, EL. Woringer–Kolopp disease (pagetoid reticulosis). Clinical and Experimental Dermatology. 1978;3:447–450.CrossRefGoogle Scholar
Jones, RR, Chu, A. Pagetoid reticulosis and solitary mycosis fungoides. Distinct clinicopathological entities. Journal of Cutaneous Pathology. 1981;8:40–51.CrossRefGoogle ScholarPubMed
Mandojana, RM, Helwig, EB. Localized epidermotropic reticulosis (Woringer-Kolopp disease). Journal of the American Academy of Dermatology. 1983;8:813–829.CrossRefGoogle Scholar
MacDonald, DM. Pagetoid reticulosis – is it a disease entity? The British Journal of Dermatology. 1982;107:603–604.CrossRefGoogle ScholarPubMed
Wood, WS, Killby, VA, Stewart, WD. Pagetoid reticulosis (Woringer-Kolopp disease). Journal of Cutaneous Pathology. 1979;6:113–123.CrossRefGoogle Scholar
Haghighi, B, Smoller, BR, LeBoit, PE, et al. Pagetoid reticulosis (Woringer-Kolopp disease): an immunophenotypic, molecular, and clinicopathologic study. Modern Pathology. 2000;13:502–510.CrossRefGoogle ScholarPubMed
Mielke, V, Wolff, HH, Winzer, M, Sterry, W. Localized and disseminated pagetoid reticulosis. Diagnostic immunophenotypical findings. Archives of Dermatology. 1989;125:402–406.CrossRefGoogle ScholarPubMed
Burns, MK, Chan, LS, Cooper, KD. Woringer-Kolopp disease (localized pagetoid reticulosis) or unilesional mycosis fungoides? An analysis of eight cases with benign disease. Archives of Dermatology. 1995;131:325–329.CrossRefGoogle ScholarPubMed
Smoller, BR, Stewart, M, Warnke, R. A case of Woringer-Kolopp disease with Ki-1 (CD30)+ cytotoxic/suppressor cells. Archives of Dermatology. 1992;128:526–529.CrossRefGoogle ScholarPubMed
Drillenburg, P, Bronkhorst, CM, Wal, AC, et al. Expression of adhesion molecules in pagetoid reticulosis (Woringer-Kolopp disease). The British Journal of Dermatology.1997;136:613–616.CrossRefGoogle Scholar
LeBoit, PE. Granulomatous slack skin. Dermatologic Clinics. 1994;12:375–389.Google ScholarPubMed
Tsang, WY, Chan, JK, Loo, KT, Wong, KF, Lee, AW. Granulomatous slack skin. Histopathology. 1994;25:49–55.CrossRefGoogle ScholarPubMed
Noto, G, Pravata, G, Miceli, S, Arico, M. Granulomatous slack skin: report of a case associated with Hodgkin's disease and a review of the literature. The British Journal of Dermatology. 1994;131:275–279.CrossRefGoogle Scholar
LeBoit, PE, Beckstead, JH, Bond, B, et al. Granulomatous slack skin: clonal rearrangement of the T-cell receptor beta gene is evidence for the lymphoproliferative nature of a cutaneous elastolytic disorder. The Journal of Investigative Dermatology. 1987;89:183–186.CrossRefGoogle ScholarPubMed
Convit, J, Kerdel, F, Goihman, M, Rondon, AJ, Soto, JM. Progressive, atrophying, chronic granulomatous dermohypodermitis. Autoimmune disease? Archives of Dermatology. 1973;107:271–274.CrossRefGoogle ScholarPubMed
Helm, KF, Cerio, R, Winkelmann, RK. Granulomatous slack skin: a clinicopathological and immunohistochemical study of three cases. The British Journal of Dermatology. 1992;126:142–147.CrossRefGoogle ScholarPubMed
Camacho, FM, Burg, G, Moreno, JC, Campora, RG, Villar, JL. Granulomatous slack skin in childhood. Pediatric Dermatology. 1997;14:204–208.CrossRefGoogle ScholarPubMed
DeGregorio, R, Fenske, NA, Glass, LF. Granulomatous slack skin: a possible precursor of Hodgkin's disease. Journal of the American Academy of Dermatology. 1995;33:1044–1047.CrossRefGoogle ScholarPubMed
Clarijs, M, Poot, F, Laka, A, Pirard, C, Bourlond, A. Granulomatous slack skin: treatment with extensive surgery and review of the literature. Dermatology. 2003;206:393–397.CrossRefGoogle ScholarPubMed
Vonderheid, EC, Bernengo, MG, Burg, G, et al. Update on erythrodermic cutaneous T-cell lymphoma: report of the International Society for Cutaneous Lymphomas. Journal of the American Academy of Dermatology. 2002;46:95–106.CrossRefGoogle ScholarPubMed
Meister, L, Duarte, AM, Davis, J, Perez, JL, Schachner, . Sezary syndrome in an 11-year-old girl. Journal of the American Academy of Dermatology. 1993;28:93–95.CrossRefGoogle Scholar
LeBoit, PE, Abel, EA, Cleary, ML, et al. Clonal rearrangement of the T cell receptor beta gene in the circulating lymphocytes of erythrodermic follicular mucinosis. Blood. 1988;71:1329–1333.Google Scholar
Setoyama, M, Katahira, Y, Kanzaki, T. Clinicopathologic analysis of 124 cases of adult T-cell leukemia/lymphoma with cutaneous manifestations: the smouldering type with skin manifestations has a poorer prognosis than previously thought. The Journal of Dermatology. 1999;26:785–790.CrossRefGoogle Scholar
DiCaudo, DJ, Perniciaro, C, Worrell, JT, White, JW Jr., Cockerell, CJ. Clinical and histologic spectrum of human T-cell lymphotropic virus type I-associated lymphoma involving the skin. Journal of the American Academy of Dermatology. 1996;34:69–76.CrossRefGoogle Scholar
Nicot, C. Current views in HTLV-I-associated adult T-cell leukemia/lymphoma. American Journal of Hematology. 2005;78:232–239.CrossRefGoogle ScholarPubMed
Yamaguchi, T, Ohshima, K, Karube, K, et al. Clinicopathological features of cutaneous lesions of adult T-cell leukaemia/lymphoma. The British Journal of Dermatology. 2005;152:76–81.CrossRefGoogle ScholarPubMed
Uchiyama, T, Yodoi, J, Sagawa, K, Takatsuki, K, Uchino, H. Adult T-cell leukemia: clinical and hematologic features of 16 cases. Blood. 1977;50:481–492.Google ScholarPubMed
Lin, BT, Musset, M, Szekely, AM, et al. Human T-cell lymphotropic virus-1-positive T-cell leukemia/lymphoma in a child. Report of a case and review of the literature. Archives of Pathology & Laboratory Medicine. 1997;121:1282–1286.Google Scholar
Bittencourt, AL, Primo, J, Oliveira, MF. Manifestations of the human T-cell lymphotropic virus type I infection in childhood and adolescence. Jornal de Pediatria. 2006;82:411–420.CrossRefGoogle ScholarPubMed
Shimoyama, M. Diagnostic criteria and classification of clinical subtypes of adult T-cell leukaemia-lymphoma. A report from the Lymphoma Study Group (1984–87). British Journal of Haematology. 1991;79:428–437.CrossRefGoogle Scholar
Gerami, P, Guitart, J. The spectrum of histopathologic and immunohistochemical findings in folliculotropic mycosis fungoides. The American Journal of Surgical Pathology. 2007;31:1430–1438.CrossRefGoogle ScholarPubMed
Willemze, R, Beljaards, RC. Spectrum of primary cutaneous CD30 (Ki-1)-positive lymphoproliferative disorders. A proposal for classification and guidelines for management and treatment. Journal of the American Academy of Dermatology. 1993;28:973–980.CrossRefGoogle ScholarPubMed
Magro, CM, Crowson, AN, Kovatich, AJ, Burns, F. Drug-induced reversible lymphoid dyscrasia: a clonal lymphomatoid dermatitis of memory and activated T cells. Human Pathology. 2003;34:119–129.CrossRefGoogle ScholarPubMed
Kennedy, MK, Willis, CR, Armitage, RJ. Deciphering CD30 ligand biology and its role in humoral immunity. Immunology. 2006;118:143–152.CrossRefGoogle ScholarPubMed
Macaulay, WL. Lymphomatoid papulosis. A continuing self-healing eruption, clinically benign – histologically malignant. Archives of Dermatology. 1968;97:23–30.CrossRefGoogle ScholarPubMed
Wang, HH, Lach, L, Kadin, ME. Epidemiology of lymphomatoid papulosis. Cancer. 1992;70:2951–2957.3.0.CO;2-7>CrossRefGoogle ScholarPubMed
Nijsten, T, Curiel-Lewandrowski, C, Kadin, ME. Lymphomatoid papulosis in children: a retrospective cohort study of 35 cases. Archives of Dermatology. 2004;140:306–312.CrossRefGoogle ScholarPubMed
Thomsen, K, Wantzin, GL. Lymphomatoid papulosis. A follow-up study of 30 patients. Journal of the American Academy of Dermatology. 1987;17:632–636.CrossRefGoogle ScholarPubMed
Thomas, GJ, Conejo-Mir, JS, Ruiz, AP, et al. Lymphomatoid papulosis in childhood with exclusive acral involvement. Pediatric Dermatology. 1998;15:146–147.CrossRefGoogle ScholarPubMed
El Shabrawi-Caelen, L, Kerl, H, Cerroni, L. Lymphomatoid papulosis: reappraisal of clinicopathologic presentation and classification into subtypes A, B, and C. Archives of Dermatology. 2004;140:441–447.CrossRefGoogle ScholarPubMed
Scarisbrick, JJ, Evans, AV, Woolford, AJ, Black, MM, Russell-Jones, R. Regional lymphomatoid papulosis: a report of four cases. The British Journal of Dermatology. 1999;141:1125–1128.CrossRefGoogle ScholarPubMed
Bekkenk, MW, Geelen, FA, Voorst Vader, PC, et al. Primary and secondary cutaneous CD30(+) lymphoproliferative disorders: a report from the Dutch Cutaneous Lymphoma Group on the long-term follow-up data of 219 patients and guidelines for diagnosis and treatment. Blood. 2000;95:3653–3661.Google ScholarPubMed
Kempf, W. CD30+ lymphoproliferative disorders: histopathology, differential diagnosis, new variants, and simulators. Journal of Cutaneous Pathology. 2006;33(Suppl 1):58–70.CrossRefGoogle ScholarPubMed
Kadin, ME. Common activated helper-T-cell origin for lymphomatoid papulosis, mycosis fungoides, and some types of Hodgkin's disease. Lancet. 1985;2:864–865.CrossRefGoogle ScholarPubMed
Kaudewitz, P, Burg, G, Stein, H, et al. Monoclonal antibody patterns in lymphomatoid papulosis. Dermatologic Clinics. 1985;3:749–757.Google ScholarPubMed
Varga, FJ, Vonderheid, EC, Olbricht, SM, Kadin, ME. Immunohistochemical distinction of lymphomatoid papulosis and pityriasis lichenoides et varioliformis acuta. The American Journal of Pathology. 1990;136:979–987.Google ScholarPubMed
Kummer, JA, Vermeer, MH, Dukers, D, Meijer, CJ, Willemze, R. Most primary cutaneous CD30-positive lymphoproliferative disorders have a CD4-positive cytotoxic T-cell phenotype. The Journal of Investigative Dermatology. 1997;109:636–640.CrossRefGoogle ScholarPubMed
Harvell, J, Vaseghi, M, Natkunam, Y, Kohler, S, Kim, Y. Large atypical cells of lymphomatoid papulosis are CD56-negative: a study of 18 cases. Journal of Cutaneous Pathology. 2002;29:88–92.CrossRefGoogle ScholarPubMed
Wang, HH, Myers, T, Lach, LJ, Hsieh, CC, Kadin, ME. Increased risk of lymphoid and nonlymphoid malignancies in patients with lymphomatoid papulosis. Cancer. 1999;86:1240–1245.3.0.CO;2-X>CrossRefGoogle ScholarPubMed
Wantzin, GL, Thomsen, K. PUVA-treatment in lymphomatoid papulosis. The British Journal of Dermatology. 1982;107:687–690.CrossRefGoogle ScholarPubMed
Lynch, PJ, Saied, NK. Methotrexate treatment of pityriasis lichenoides and lymphomatoid papulosis. Cutis. 1979;23:634–636.Google ScholarPubMed
Kumar, S, Pittaluga, S, Raffeld, M, et al. Primary cutaneous CD30-positive anaplastic large cell lymphoma in childhood: report of 4 cases and review of the literature. Pediatric and Developmental Pathology. 2005;8:52–60.CrossRefGoogle ScholarPubMed
Bruin, PC, Beljaards, RC, Heerde, P, et al. Differences in clinical behaviour and immunophenotype between primary cutaneous and primary nodal anaplastic large cell lymphoma of T-cell or null cell phenotype. Histopathology. 1993;23:127–135.CrossRefGoogle ScholarPubMed
Hazneci, E, Aydin, NE, Dogan, G, Turhan, IO. Primary cutaneous anaplastic large cell lymphoma in a young girl. Journal of the European Academy of Dermatology and Venereology. 2001;15:366–367.Google Scholar
Tomaszewski, MM, Moad, JC, Lupton, GP. Primary cutaneous Ki-1(CD30) positive anaplastic large cell lymphoma in childhood. Journal of the American Academy of Dermatology. 1999;40:857–861.CrossRefGoogle ScholarPubMed
Beljaards, RC, Kaudewitz, P, Berti, E, et al. Primary cutaneous CD30-positive large cell lymphoma: definition of a new type of cutaneous lymphoma with a favorable prognosis. A European Multicenter Study of 47 patients. Cancer. 1993;71:2097–2104.3.0.CO;2-7>CrossRefGoogle ScholarPubMed
Gould, JW, Eppes, RB, Gilliam, AC, et al. Solitary primary cutaneous CD30+ large cell lymphoma of natural killer cell phenotype bearing the t(2;5)(p23;q35) translocation and presenting in a child. The American Journal of Dermatopathology. 2000;22:422–428.CrossRefGoogle Scholar
Kadin, ME, Sako, D, Berliner, N, et al. Childhood Ki-1 lymphoma presenting with skin lesions and peripheral lymphadenopathy. Blood. 1986;68:1042–1049.Google ScholarPubMed
Nakamura, S, Takagi, N, Kojima, M, et al. Clinicopathologic study of large cell anaplastic lymphoma (Ki-1-positive large cell lymphoma) among the Japanese. Cancer. 1991;68:118–129.3.0.CO;2-R>CrossRefGoogle ScholarPubMed
Paulli, M, Berti, E, Rosso, R, et al. CD30/Ki-1-positive lymphoproliferative disorders of the skin – clinicopathologic correlation and statistical analysis of 86 cases: a multicentric study from the European Organization for Research and Treatment of Cancer Cutaneous Lymphoma Project Group. Journal of Clinical Oncology. 1995;13:1343–1354.CrossRefGoogle ScholarPubMed
Kaudewitz, P, Stein, H, Dallenbach, F, et al. Primary and secondary cutaneous Ki-1+ (CD30+) anaplastic large cell lymphomas. Morphologic, immunohistologic, and clinical-characteristics. The American Journal of Pathology. 1989;135:359–367.Google ScholarPubMed
Wood, GS, Hardman, DL, Boni, R, et al. Lack of the t(2;5) or other mutations resulting in expression of anaplastic lymphoma kinase catalytic domain in CD30+ primary cutaneous lymphoproliferative disorders and Hodgkin's disease. Blood.1996;88:1765–1770.Google ScholarPubMed
Lae, ME, Ahmed, I, Macon, WR. Clusterin is widely expressed in systemic anaplastic large cell lymphoma but fails to differentiate primary from secondary cutaneous anaplastic large cell lymphoma. American Journal of Clinical Pathology. 2002;118:773–779.CrossRefGoogle ScholarPubMed
Saffer, H, Wahed, A, Rassidakis, GZ, Medeiros, LJ. Clusterin expression in malignant lymphomas: a survey of 266 cases. Modern Pathology. 2002;15:1221–1226.CrossRefGoogle ScholarPubMed
Natkunam, Y, Warnke, RA, Haghighi, B, et al. Co-expression of CD56 and CD30 in lymphomas with primary presentation in the skin: clinicopathologic, immunohistochemical and molecular analyses of seven cases. Journal of Cutaneous Pathology. 2000;27:392–399.CrossRefGoogle ScholarPubMed
DeCoteau, JF, Butmarc, JR, Kinney, MC, Kadin, ME. The t(2;5) chromosomal translocation is not a common feature of primary cutaneous CD30+ lymphoproliferative disorders: comparison with anaplastic large-cell lymphoma of nodal origin. Blood. 1996;87:3437–3441.Google Scholar
Liu, HL, Hoppe, RT, Kohler, S, et al. CD30+ cutaneous lymphoproliferative disorders: the Stanford experience in lymphomatoid papulosis and primary cutaneous anaplastic large cell lymphoma. Journal of the American Academy of Dermatology. 2003;49:1049–1058.CrossRefGoogle ScholarPubMed
Jaffe, ES, Ralfkier, E. Subcutaneous panniculitis-like T cell lymphoma. In Jaffe, ES, Harris, NL, Stein, H, Vardiman, J. (eds.). World Health Organization Classification of Tumours: Pathology and Genetics of Tumours of Haematopoietic and Lymphoid Tissues. Lyon: IARC Press; 2001, 212–215.Google Scholar
Lozzi, GP, Massone, C, Citarella, L, Kerl, H, Cerroni, L. Rimming of adipocytes by neoplastic lymphocytes: a histopathologic feature not restricted to subcutaneous T-cell lymphoma. The American Journal of Dermatopathology. 2006;28:9–12.CrossRefGoogle Scholar
Salhany, KE, Macon, WR, Choi, JK, et al. Subcutaneous panniculitis-like T-cell lymphoma: clinicopathologic, immunophenotypic, and genotypic analysis of alpha/beta and gamma/delta subtypes. The American Journal of Surgical Pathology. 1998;22:881–893.CrossRefGoogle ScholarPubMed
Ikeda, E, Endo, M, Uchigasaki, S, et al. Phagocytized apoptotic cells in subcutaneous panniculitis-like T-cell lymphoma. Journal of the European Academy of Dermatology and Venereology. 2001;15:159–162.CrossRefGoogle ScholarPubMed
Magro, CM, Crowson, AN, Mihm, MCJ. The Cutaneous Lymphoid Proliferations: A Comprehensive Textbook of Lymphocytic Infiltrates of the Skin. Hoboken, NJ: John Wiley & Sons, Inc.; 2007.CrossRefGoogle Scholar
Magro, CM, Crowson, AN, Byrd, JC, Soleymani, AD, Shendrik, I. Atypical lymphocytic lobular panniculitis. Journal of Cutaneous Pathology. 2004;31:300–306.CrossRefGoogle ScholarPubMed
Guitart, J, Magro, C. Cutaneous T-cell lymphoid dyscrasia: a unifying term for idiopathic chronic dermatoses with persistent T-cell clones. Archives of Dermatology. 2007;143:921–932.CrossRefGoogle ScholarPubMed
Kumar, S, Krenacs, L, Medeiros, J, et al. Subcutaneous panniculitic T-cell lymphoma is a tumor of cytotoxic T lymphocytes. Human Pathology. 1998;29:397–403.CrossRefGoogle ScholarPubMed
Hoque, SR, Child, FJ, Whittaker, SJ, et al. Subcutaneous panniculitis-like T-cell lymphoma: a clinicopathological, immunophenotypic and molecular analysis of six patients. The British Journal of Dermatology. 2003;148:516–525.CrossRefGoogle ScholarPubMed
Massone, C, Chott, A, Metze, D, et al. Subcutaneous, blastic natural killer (NK), NK/T-cell, and other cytotoxic lymphomas of the skin: a morphologic, immunophenotypic, and molecular study of 50 patients. The American Journal of Surgical Pathology. 2004;28:719–735.CrossRefGoogle ScholarPubMed
Harada, H, Iwatsuki, K, Kaneko, F. Detection of Epstein-Barr virus genes in malignant lymphoma with clinical and histologic features of cytophagic histiocytic panniculitis. Journal of the American Academy of Dermatology. 1994;31:379–383.CrossRefGoogle ScholarPubMed
Go, RS, Wester, SM. Immunophenotypic and molecular features, clinical outcomes, treatments, and prognostic factors associated with subcutaneous panniculitis-like T-cell lymphoma: a systematic analysis of 156 patients reported in the literature. Cancer. 2004;101:1404–1413.CrossRefGoogle ScholarPubMed
Shani-Adir, A, Lucky, AW, Prendiville, J, et al. Subcutaneous panniculitic T-cell lymphoma in children: response to combination therapy with cyclosporine and chemotherapy. Journal of the American Academy of Dermatology. 2004;50:S18–S22.CrossRefGoogle ScholarPubMed
Mraz-Gernhard, S, Natkunam, Y, Hoppe, RT, et al. Natural killer/natural killer-like T-cell lymphoma, CD56+, presenting in the skin: an increasingly recognized entity with an aggressive course. Journal of Clinical Oncology. 2001;19:2179–2188.CrossRefGoogle ScholarPubMed
Gniadecki, R, Rossen, K, Ralfkier, E, et al. CD56+ lymphoma with skin involvement: clinicopathologic features and classification. Archives of Dermatology. 2004;140:427–436.CrossRefGoogle ScholarPubMed
Stokkermans-Dubois, J, Jouary, T, Vergier, B, Delaunay, MM, Taieb, A. A case of primary cutaneous nasal type NK/T-cell lymphoma and review of the literature. Dermatology. 2006;213:345–349.CrossRefGoogle ScholarPubMed
Chan, JK, Sin, VC, Wong, KF, et al. Nonnasal lymphoma expressing the natural killer cell marker CD56: a clinicopathologic study of 49 cases of an uncommon aggressive neoplasm. Blood. 1997;89:4501–4513.Google ScholarPubMed
Ko, YH, Cho, EY, Kim, JE, et al. NK and NK-like T-cell lymphoma in extranasal sites: a comparative clinicopathological study according to site and EBV status. Histopathology. 2004;44:480–489.CrossRefGoogle ScholarPubMed
Pol-Rodriguez, MM, Fox, LP, Sulis, ML, Miller, IJ, Garzon, MC. Extranodal nasal-type natural killer T-cell lymphoma in an adolescent from Bangladesh. Journal of the American Academy of Dermatology. 2006;54:S192–S197.CrossRefGoogle Scholar
Shaw, PH, Cohn, SL, Morgan, ER, et al. Natural killer cell lymphoma: report of two pediatric cases, therapeutic options, and review of the literature. Cancer. 2001;91:642–646.3.0.CO;2-2>CrossRefGoogle ScholarPubMed
Barrionuevo, C, Anderson, VM, Zevallos-Giampietri, E, et al. Hydroa-like cutaneous T-cell lymphoma: a clinicopathologic and molecular genetic study of 16 pediatric cases from Peru. Applied Immunohistochemistry & Molecular Morphology. 2002;10:7–14.CrossRefGoogle ScholarPubMed
Chen, HH, Hsiao, CH, Chiu, HC. Hydroa vacciniforme-like primary cutaneous CD8-positive T-cell lymphoma. The British Journal of Dermatology. 2002;147:587–591.CrossRefGoogle ScholarPubMed
Iwatsuki, K, Satoh, M, Yamamoto, T, et al. Pathogenic link between hydroa vacciniforme and Epstein-Barr virus-associated hematologic disorders. Archives of Dermatology. 2006;142:587–595.CrossRefGoogle ScholarPubMed
Magana, M, Sangueza, P, Gil-Beristain, J, et al. Angiocentric cutaneous T-cell lymphoma of childhood (hydroa-like lymphoma): a distinctive type of cutaneous T-cell lymphoma. Journal of the American Academy of Dermatology. 1998;38:574–579.CrossRefGoogle ScholarPubMed
Cho, KH, Kim, CW, Lee, DY, et al. An Epstein-Barr virus-associated lymphoproliferative lesion of the skin presenting as recurrent necrotic papulovesicles of the face. The British Journal of Dermatology. 1996;134:791–796.CrossRefGoogle Scholar
Wu, YH, Chen, HC, Hsiao, PF, et al. Hydroa vacciniforme-like Epstein-Barr virus-associated monoclonal T-lymphoproliferative disorder in a child. International Journal of Dermatology. 2007;46:1081–1086.CrossRefGoogle Scholar
Friedmann, D, Wechsler, J, Delfau, MH, et al. Primary cutaneous pleomorphic small T-cell lymphoma. A review of 11 cases. The French Study Group on Cutaneous Lymphomas. Archives of Dermatology. 1995;131:1009–1015.CrossRefGoogle Scholar
Beljaards, RC, Meijer, CJ, Putte, SC, et al. Primary cutaneous T-cell lymphoma: clinicopathological features and prognostic parameters of 35 cases other than mycosis fungoides and CD30-positive large cell lymphoma. The Journal of Pathology. 1994;172:53–60.CrossRefGoogle ScholarPubMed
Sterry, W, Siebel, A, Mielke, V. HTLV-1-negative pleomorphic T-cell lymphoma of the skin: the clinicopathological correlations and natural history of 15 patients. The British Journal of Dermatology. 1992;126:456–462.CrossRefGoogle ScholarPubMed
den Driesch, P, Coors, EA. Localized cutaneous small to medium-sized pleomorphic T-cell lymphoma: a report of 3 cases stable for years. Journal of the American Academy of Dermatology. 2002;46:531–535.CrossRefGoogle Scholar
Taddesse-Heath, L, Pittaluga, S, Sorbara, L, et al. Marginal zone B-cell lymphoma in children and young adults. The American Journal of Surgical Pathology. 2003;27:522–531.CrossRefGoogle ScholarPubMed
Cerroni, L, Zochling, N, Putz, B, Kerl, H. Infection by Borrelia burgdorferi and cutaneous B-cell lymphoma. Journal of Cutaneous Pathology. 1997;24:457–461.CrossRefGoogle ScholarPubMed
Goodlad, JR, Davidson, MM, Hollowood, K, et al. Primary cutaneous B-cell lymphoma and Borrelia burgdorferi infection in patients from the Highlands of Scotland. The American Journal of Surgical Pathology. 2000;24:1279–1285.CrossRefGoogle Scholar
Li, C, Inagaki, H, Kuo, TT, et al. Primary cutaneous marginal zone B-cell lymphoma: a molecular and clinicopathologic study of 24 asian cases. The American Journal of Surgical Pathology. 2003;27:1061–1069.CrossRefGoogle ScholarPubMed
Wood, GS, Kamath, NV, Guitart, J, et al. Absence of Borrelia burgdorferi DNA in cutaneous B-cell lymphomas from the United States. Journal of Cutaneous Pathology. 2001;28:502–507.CrossRefGoogle ScholarPubMed
Suarez, F, Lortholary, O, Hermine, O, Lecuit, M. Infection-associated lymphomas derived from marginal zone B-cells: a model of antigen-driven lymphoproliferation. Blood. 2006;107:3034–3044.CrossRefGoogle ScholarPubMed
Sroa, N, Magro, CM. Pediatric primary cutaneous marginal zone lymphoma: in association with chronic antihistamine use. Journal of Cutaneous Pathology. 2006;33(Suppl 2):1–5.CrossRefGoogle ScholarPubMed
Baldassano, MF, Bailey, EM, Ferry, JA, Harris, NL, Duncan, LM. Cutaneous lymphoid hyperplasia and cutaneous marginal zone lymphoma: comparison of morphologic and immunophenotypic features. The American Journal of Surgical Pathology. 1999;23:88–96.CrossRefGoogle ScholarPubMed
Dargent, JL, Devalck, C, Mey, A, et al. Primary cutaneous marginal zone B-cell lymphoma of MALT type in a child. Pediatric and Developmental Pathology. 2006;9:468–473.CrossRefGoogle Scholar
Cerroni, L, Signoretti, S, Hofler, G, et al. Primary cutaneous marginal zone B-cell lymphoma: a recently described entity of low-grade malignant cutaneous B-cell lymphoma. The American Journal of Surgical Pathology. 1997;21:1307–1315.CrossRefGoogle ScholarPubMed
Leval, L, Harris, NL, Longtine, J, Ferry, JA, Duncan, LM. Cutaneous b-cell lymphomas of follicular and marginal zone types: use of Bcl-6, CD10, Bcl-2, and CD21 in differential diagnosis and classification. The American Journal of Surgical Pathology. 2001;25:732–741.CrossRefGoogle ScholarPubMed
Falini, B, Tiacci, E, Pucciarini, A, et al. Expression of the IRTA1 receptor identifies intraepithelial and subepithelial marginal zone B-cells of the mucosa-associated lymphoid tissue (MALT). Blood. 2003;102:3684–3692.CrossRefGoogle Scholar
Streubel, B, Lamprecht, A, Dierlamm, J, et al. t(14;18)(q32;q21) involving IGH and MALT1 is a frequent chromosomal aberration in MALT lymphoma. Blood. 2003;101:2335–2339.CrossRefGoogle Scholar
Streubel, B, Vinatzer, U, Lamprecht, A, Raderer, M, Chott, A. t(3;14)(p14.1;q32) involving IGH and FOXP1 is a novel recurrent chromosomal aberration in MALT lymphoma. Leukemia. 2005;19:652–658.CrossRefGoogle Scholar
Akagi, T, Motegi, M, Tamura, A, et al. A novel gene, MALT1 at 18q21, is involved in t(11;18)(q21;q21) found in low-grade B-cell lymphoma of mucosa-associated lymphoid tissue. Oncogene. 1999;18:5785–5794.CrossRefGoogle Scholar
Dierlamm, J, Baens, M, Wlodarska, I, et al. The apoptosis inhibitor gene API2 and a novel 18q gene, MLT, are recurrently rearranged in the t(11;18)(q21;q21) associated with mucosa-associated lymphoid tissue lymphomas. Blood. 1999;93:3601–3609.Google Scholar
Morgan, JA, Yin, Y, Borowsky, AD, et al. Breakpoints of the t(11;18)(q21;q21) in mucosa-associated lymphoid tissue (MALT) lymphoma lie within or near the previously undescribed gene MALT1 in chromosome 18. Cancer Research. 1999;59:6205–6213.Google ScholarPubMed
Gronbaek, K, Ralfkiaer, E, Kalla, J, Skovgaard, GL, Guldberg, P. Infrequent somatic Fas mutations but no evidence of Bcl10 mutations or t(11;18) in primary cutaneous MALT-type lymphoma. The Journal of Pathology. 2003;201:134–140.CrossRefGoogle ScholarPubMed
Soda, R, Costanzo, A, Cantonetti, M, et al. Systemic therapy of primary cutaneous B-cell lymphoma, marginal zone type, with rituximab, a chimeric anti-CD20 monoclonal antibody. Acta Dermato-Venereologica. 2001;81:207–208.Google ScholarPubMed
Wollina, U, Hahnfeld, S, Kosmehl, H. Primary cutaneous marginal center lymphoma – complete remission induced by interferon alpha2a. Journal of Cancer Research and Clinical Oncology. 1999;125:305–308.CrossRefGoogle ScholarPubMed
Ghislanzoni, M, Gambini, D, Perrone, T, Alessi, E, Berti, E. Primary cutaneous follicular center cell lymphoma of the nose with maxillary sinus involvement in a pediatric patient. Journal of the American Academy of Dermatology. 2005;52:S73–S75.CrossRefGoogle Scholar
Cerroni, L, Arzberger, E, Putz, B, et al. Primary cutaneous follicle center cell lymphoma with follicular growth pattern. Blood. 2000;95:3922–3928.Google ScholarPubMed
Hoefnagel, JJ, Vermeer, MH, Jansen, PM, et al. Bcl-2, Bcl-6 and CD10 expression in cutaneous B-cell lymphoma: further support for a follicle centre cell origin and differential diagnostic significance. The British Journal of Dermatology. 2003;149:1183–1191.CrossRefGoogle ScholarPubMed
Cerroni, L, Volkenandt, M, Rieger, E, Soyer, HP, Kerl, H. bcl-2 protein expression and correlation with the interchromosomal 14;18 translocation in cutaneous lymphomas and pseudolymphomas. The Journal of Investigative Dermatology. 1994;102:231–235.CrossRefGoogle ScholarPubMed
Hoefnagel, JJ, Dijkman, R, Basso, K, et al. Distinct types of primary cutaneous large B-cell lymphoma identified by gene expression profiling. Blood. 2005;105:3671–3678.CrossRefGoogle ScholarPubMed
Bergman, R, Kurtin, PJ, Gibson, , et al. Clinicopathologic, immunophenotypic, and molecular characterization of primary cutaneous follicular B-cell lymphoma. Archives of Dermatology. 2001;137:432–439.Google ScholarPubMed
Streubel, B, Scheucher, B, Valencak, J, et al. Molecular cytogenetic evidence of t(14;18)(IGH;BCL2) in a substantial proportion of primary cutaneous follicle center lymphomas. The American Journal of Surgical Pathology. 2006;30:529–536.CrossRefGoogle Scholar
Aguilera, NS, Tomaszewski, MM, Moad, JC, et al. Cutaneous follicle center lymphoma: a clinicopathologic study of 19 cases. Modern Pathology. 2001;14:828–835.CrossRefGoogle ScholarPubMed
Vermeer, MH, Geelen, FA, Haselen, CW, et al. Primary cutaneous large B-cell lymphomas of the legs. A distinct type of cutaneous B-cell lymphoma with an intermediate prognosis. Dutch Cutaneous Lymphoma Working Group. Archives of Dermatology. 1996;132:1304–1308.CrossRefGoogle ScholarPubMed
Hallermann, C, Niermann, C, Fischer, RJ, Schulze, HJ. New prognostic relevant factors in primary cutaneous diffuse large B-cell lymphomas. Journal of the American Academy of Dermatology. 2007;56:588–597.CrossRefGoogle ScholarPubMed
Kodama, K, Massone, C, Chott, A, et al. Primary cutaneous large B-cell lymphomas: clinicopathologic features, classification, and prognostic factors in a large series of patients. Blood. 2005;106:2491–2497.CrossRefGoogle Scholar
Goodlad, JR, Krajewski, AS, Batstone, PJ, et al. Primary cutaneous diffuse large B-cell lymphoma: prognostic significance of clinicopathological subtypes. The American Journal of Surgical Pathology. 2003;27:1538–1545.CrossRefGoogle ScholarPubMed
Ponzoni, M, Ferreri, AJ, Campo, E, et al. Definition, diagnosis, and management of intravascular large B-cell lymphoma: proposals and perspectives from an international consensus meeting. Journal of Clinical Oncology. 2007;25:3168–3173.CrossRefGoogle ScholarPubMed
Nakamura, S, Murase, T, Kinoshita, T. Intravascular large B-cell lymphoma: the heterogeneous clinical manifestations of its classical and hemophagocytosis-related forms. Haematologica. 2007;92:434–436.CrossRefGoogle ScholarPubMed
Ferreri, AJ, Campo, E, Seymour, JF, et al. Intravascular lymphoma: clinical presentation, natural history, management and prognostic factors in a series of 38 cases, with special emphasis on the ‘cutaneous variant’. British Journal of Haematology. 2004;127:173–183.CrossRefGoogle Scholar
Murase, T, Yamaguchi, M, Suzuki, R, et al. Intravascular large B-cell lymphoma (IVLBCL): a clinicopathologic study of 96 cases with special reference to the immunophenotypic heterogeneity of CD5. Blood. 2007;109:478–485.CrossRefGoogle ScholarPubMed
Stroup, RM, Sheibani, K, Moncada, A, Purdy, LJ, Battifora, H. Angiotropic (intravascular) large cell lymphoma. A clinicopathologic study of seven cases with unique clinical presentations. Cancer. 1990;66:1781–1788.3.0.CO;2-5>CrossRefGoogle ScholarPubMed
Glass, J, Hochberg, FH, Miller, DC. Intravascular lymphomatosis. A systemic disease with neurologic manifestations. Cancer. 1993;71:3156–3164.3.0.CO;2-O>CrossRefGoogle ScholarPubMed
Reyes-Castro, M, Vega-Memije, E. Intravascular large cell lymphoma. International Journal of Dermatology. 2007;46:619–621.CrossRefGoogle ScholarPubMed
Chan, JKC, Jaffe, ES, Ralfkiaer, E. Blastic NK-cell lymphoma. In Jaffe, ES, Harris, NL, Stein, H, Vardiman, J. (eds.). World Health Organization Classification of Tumours: Pathology and Genetics of Tumours of Haematopoietic and Lymphoid Tissues. Lyon: IARC Press; 2001, 214–215.Google Scholar
Grouard, G, Rissoan, MC, Filgueira, L, et al. The enigmatic plasmacytoid T cells develop into dendritic cells with interleukin (IL)-3 and CD40-ligand. Journal of Experimental Medicine. 1997;185:1101–1111.CrossRefGoogle ScholarPubMed
Herling, M, Jones, D. CD4+/CD56+ hematodermic tumor: the features of an evolving entity and its relationship to dendritic cells. American Journal of Clinical Pathology. 2007;127:687–700.CrossRefGoogle ScholarPubMed
Petrella, T, Comeau, MR, Maynadie, M, et al. ‘Agranular CD4+ CD56+ hematodermic neoplasm’ (blastic NK-cell lymphoma) originates from a population of CD56+ precursor cells related to plasmacytoid monocytes. The American Journal of Surgical Pathology. 2002;26:852–862.CrossRefGoogle ScholarPubMed
Chang, SE, Choi, HJ, Huh, J, et al. A case of primary cutaneous CD56+, TdT+, CD4+, blastic NK-cell lymphoma in a 19-year-old woman. The American Journal of Dermatopathology. 2002;24:72–75.CrossRefGoogle Scholar
Ruggiero, A, Maurizi, P, Larocca, LM, Arlotta, A, Riccardi, R. Childhood CD4+/CD56+ hematodermic neoplasm: case report and review of the literature. Haematologica. 2006;91(12 Suppl):ECR48.Google ScholarPubMed
DiGiuseppe, JA, Louie, DC, Williams, JE, et al. Blastic natural killer cell leukemia/lymphoma: a clinicopathologic study. The American Journal of Surgical Pathology. 1997;21:1223–1230.CrossRefGoogle ScholarPubMed
Petrella, T, Dalac, S, Maynadie, M, et al. CD4+ CD56+ cutaneous neoplasms: a distinct hematological entity? Groupe Francais d'Etude des Lymphomes Cutanes (GFELC). The American Journal of Surgical Pathology. 1999;23:137–146.CrossRefGoogle Scholar
Chaperot, L, Bendriss, N, Manches, O, et al. Identification of a leukemic counterpart of the plasmacytoid dendritic cells. Blood. 2001;97:3210–3217.CrossRefGoogle ScholarPubMed
Herling, M, Teitell, MA, Shen, RR, Medeiros, LJ, Jones, D. TCL1 expression in plasmacytoid dendritic cells (DC2s) and the related CD4+ CD56+ blastic tumors of skin. Blood. 2003;101:5007–5009.CrossRefGoogle Scholar
Brody, JP, Allen, S, Schulman, P, et al. Acute agranular CD4-positive natural killer cell leukemia. Comprehensive clinicopathologic studies including virologic and in vitro culture with inducing agents. Cancer. 1995;75:2474–2483.3.0.CO;2-Y>CrossRefGoogle ScholarPubMed
Hallermann, C, Middel, P, Griesinger, F, et al. CD4+ CD56+ blastic tumor of the skin: cytogenetic observations and further evidence of an origin from plasmocytoid dendritic cells. European Journal of Dermatology. 2004;14:317–322.Google ScholarPubMed
Feuillard, J, Jacob, MC, Valensi, F, et al. Clinical and biologic features of CD4(+)CD56(+) malignancies. Blood. 2002;99:1556–1563.CrossRefGoogle ScholarPubMed
Rossi, JG, Felice, MS, Bernasconi, AR, et al. Acute leukemia of dendritic cell lineage in childhood: incidence, biological characteristics and outcome. Leukemia & Lymphoma. 2006;47:715–725.CrossRefGoogle ScholarPubMed
Lin, P, Jones, D, Dorfman, DM, Medeiros, LJ. Precursor B-cell lymphoblastic lymphoma: a predominantly extranodal tumor with low propensity for leukemic involvement. The American Journal of Surgical Pathology. 2000;24:1480–1490.CrossRefGoogle ScholarPubMed
Sander, CA, Medeiros, LJ, Abruzzo, LV, Horak, ID, Jaffe, ES. Lymphoblastic lymphoma presenting in cutaneous sites. A clinicopathologic analysis of six cases. Journal of the American Academy of Dermatology. 1991;25:1023–1031.CrossRefGoogle Scholar
Chimenti, S, Fink-Puches, R, Peris, K, et al. Cutaneous involvement in lymphoblastic lymphoma. Journal of Cutaneous Pathology. 1999;26:379–385.CrossRefGoogle ScholarPubMed
Link, MP, Roper, M, Dorfman, RF, et al. Cutaneous lymphoblastic lymphoma with pre-B markers. Blood. 1983;61:838–841.Google ScholarPubMed
Kahwash, SB, Qualman, SJ. Cutaneous lymphoblastic lymphoma in children: report of six cases with precursor B-cell lineage. Pediatric and Developmental Pathology. 2002;5:45–53.CrossRefGoogle ScholarPubMed
Pittaluga, S, Raffeld, M, Lipford, EH, Cossman, J. 3A1 (CD7) expression precedes T beta gene rearrangements in precursor T (lymphoblastic) neoplasms. Blood. 1986;68:134–139.Google Scholar
Maitra, A, McKenna, RW, Weinberg, AG, Schneider, NR, Kroft, SH. Precursor B-cell lymphoblastic lymphoma. A study of nine cases lacking blood and bone marrow involvement and review of the literature. American Journal of Clinical Pathology. 2001;115:868–875.CrossRefGoogle ScholarPubMed
Hsiao, CH, Su, IJ. Primary cutaneous pre-B lymphoblastic lymphoma immunohistologically mimics Ewing's sarcoma/primitive neuroectodermal tumor. Journal of the Formosan Medical Association. 2003;102:193–197.Google ScholarPubMed
Ko, CJ. The new World Health Organization-European Organization for Research and Treatment of Cancer classification of cutaneous lymphomas. Advances in Dermatology. 2006;22:259–277.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×