Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-m9kch Total loading time: 0 Render date: 2024-05-08T06:09:03.238Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  05 June 2012

Kálmán Varga
Affiliation:
Vanderbilt University, Tennessee
Joseph A. Driscoll
Affiliation:
Vanderbilt University, Tennessee
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Computational Nanoscience
Applications for Molecules, Clusters, and Solids
, pp. 409 - 427
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Abramowitz, M., and Stegun, I. A. 1964. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Dover.Google Scholar
[2] Adamo, Carlo, Scuseria, Gustavo, E., and Barone, Vincenzo. 1999. Accurate excitation energies from time-dependent density functional theory: assessing the PBE0 model. J. Chem. Phys., 111(7), 2889–2899.CrossRefGoogle Scholar
[3] Adhikari, S. K. 2000. Numerical solution of the two-dimensional Gross–Pitaevskii equation for trapped interacting atoms. Phys. Lett. A, 265(1–2), 91–96.CrossRefGoogle Scholar
[4] Alemany, M. M. G., Jain, Manish, Kronik, Leeor, and Chelikowsky, James, R. 2004. Real-space pseudopotential method for computing the electronic properties of periodic systems. Phys. Rev. B, 69(7), 075 101.CrossRefGoogle Scholar
[5] Allen, M. P., and Tildesley, D. J. 1990. Computer Simulation of Liquids. Oxford University Press.Google Scholar
[6] Ammeter, J. H., Buergi, H. B., Thibeault, J. C., and Hoffmann, R. 1978. Counterintuitive orbital mixing in semiempirical and ab initio molecular orbital calculations. J. Amer. Chem. Soc., 100(12), 3686–3692.CrossRefGoogle Scholar
[7] Andersen, Hans, C. 1980. Molecular dynamics simulations at constant pressure and/or temperature. J. Chem. Phys., 72(4), 2384–2393.CrossRefGoogle Scholar
[8] Anderson, Alfred, B. 1975. Derivation of the extended Hückel method with corrections: one electron molecular orbital theory for energy level and structure determinations. J. Chem. Phys., 62(3), 1187–1188.CrossRefGoogle Scholar
[9] Anderson, Alfred, B., and Hoffmann, Roald 1974. Description of diatomic molecules using one electron configuration energies with two-body interactions. J. Chem. Phys., 60(11), 4271–4273.CrossRefGoogle Scholar
[10] Anderson, James, B. 1976. Quantum chemistry by random walk H2P, D3h, Be1 S. J. Chem. Phys., 65(10), 4121–4127.CrossRefGoogle Scholar
[11] Anderson, M. H., Ensher, J. R., Matthews, M. R., Wieman, C. E., and Cornell, E. A. 1995. Observation of Bose–Einstein condensation in a dilute atomic vapor. Science, 269(5221), 198–201.CrossRefGoogle Scholar
[12] Ando, T. 1991. Quantum point contacts in magnetic fields. Phys. Rev. B, 44(15), 8017–8027.CrossRefGoogle ScholarPubMed
[13] Arfken, G. B., and Weber, H. J. 2005. Mathematical Methods for Physicists. Academic Press.Google Scholar
[14] Ashcroft, N. W., and Mermin, N. D. 1976. Solid State Physics. Brooks Cole.Google Scholar
[15] Ashoori, R. C., Stormer, H. L., Weiner, J. S., Pfeiffer, L. N., Baldwin, K. W., and West, K. W. 1993. N-electron ground state energies of a quantum dot in magnetic field. Phys. Rev. Lett., 71(4), 613–616.CrossRefGoogle ScholarPubMed
[16] Askar, A., and Cakmak, A. S. 1978. Explicit integration method for the timedependent Schrödinger equation for collision problems. J. Chem. Phys., 68, 2794.CrossRefGoogle Scholar
[17] Auer, J., and Krotscheck, E. 1999. A rapidly converging algorithm for solving the Kohn–Sham and related equations in electronic structure theory. Comp. Phys. Commun., 118(2–3), 139–144.CrossRefGoogle Scholar
[18] Auer, J., Krotscheck, E., and Chin, Siu, A. 2001. A fourth-order real-space algorithm for solving local Schrödinger equations. J. Chem. Phys., 115(15), 6841–6846.CrossRefGoogle Scholar
[19] Auerbach, Scott, M., and Leforestier, Claude. 1993. A new computational algorithm for Green's functions: Fourier transform of the Newton polynomial expansion. Comp. Phys. Commun., 78(1–2), 55–66.CrossRefGoogle Scholar
[20] Baer, R. 2000. Accurate and efficient evolution of nonlinear Schrödinger equations. Phys. Rev. A, 62(6), 63 810.CrossRefGoogle Scholar
[21] Baer, Roi, and Neuhauser, Daniel 2004. Real-time linear response for time-dependent density-functional theory. J. Chem. Phys., 121(20), 9803–9807.CrossRefGoogle ScholarPubMed
[22] Bai, Z. 2000. Templates for the Solution of Algebraic Eigenvalue Problems. Society for Industrial Mathematics.CrossRefGoogle Scholar
[23] Baker, H. C. 1983. Non-Hermitian dynamics of multiphoton ionization. Phys. Rev. Lett., 50(20), 1579–1582.CrossRefGoogle Scholar
[24] Ballagh, R. J., Burnett, K., and Scott, T. F. 1997. Theory of an output coupler for Bose–Einstein condensed atoms. Phys. Rev. Lett., 78(9), 1607–1611.CrossRefGoogle Scholar
[25] Bao, W., Jin, S., and Markowich, P. A. 2002. On time-splitting spectral approximations for the Schrödinger equation in the semiclassical regime. J. Comp. Phys., 175(2), 487–524.CrossRefGoogle Scholar
[26] Baye, D., and Heenen, P.-H. 1986. Generalised meshes for quantum mechanical problems. J. Phys. A: Mathematical and General, 19(11), 2041–2059.CrossRefGoogle Scholar
[27] Baye, D., and Vincke, M. 1999. Lagrange meshes from nonclassical orthogonal polynomials. Phys. Rev. E, 59(6), 7195–7199.CrossRefGoogle ScholarPubMed
[28] Beck, Thomas, L. 2000. Real-space mesh techniques in density-functional theory. Rev. Mod. Phys., 72(4), 1041–1080.CrossRefGoogle Scholar
[29] Berman, M., Kosloff, R., and Tal-Ezer, H. 1992. Solution of the time-dependent Liouville–von-Neumann equation: dissipative evolution. J. Phys. A: Mathematical and General, 25, 1283–1307.CrossRefGoogle Scholar
[30] Bertsch, G. F., Iwata, J. I., Rubio, A., and Yabana, K. 2000. Real-space, real-time method for the dielectric function. Phys. Rev. B, 62(12), 7998–8002.CrossRefGoogle Scholar
[31] Bhatia, A. K. 1970. Transitions (1s2p)3P-(2p2)3Pe in He and (2s2p)3P-(2p2)3Pe in H-. Phys. Rev. A, 2(5), 1667–1668.CrossRefGoogle Scholar
[32] Blanes, S., Casas, F., Oteo, J. A., and Ros, J. 2009. The Magnus expansion and some of its applications. Phys. Rep., 470(5–6), 151–238.CrossRefGoogle Scholar
[33] Blum, V., Gehrke, R., Hanke, F., et al. 2009. Ab initio molecular simulations with numeric atom-centered orbitals. Comp. Phys. Commun., 180(11), 2175–2196.CrossRefGoogle Scholar
[34] Bockstedte, M., Kley, A., Neugebauer, J., and Scheffler, M. 1997. Density-functional theory calculations for poly-atomic systems: electronic structure, static and elastic properties and ab initio molecular dynamics. Comp. Phys. Commun., 107(1–3), 187–222.CrossRefGoogle Scholar
[35] Bolton, F. 1996. Fixed-phase quantum Monte Carlo method applied to interacting electrons in a quantum dot. Phys. Rev. B, 54(7), 4780–4793.CrossRefGoogle Scholar
[36] Bongs, K., Burger, S., Birkl, G., et al. 1999. Coherent evolution of bouncing Bose–Einstein condensates. Phys. Rev. Lett., 83(18), 3577–3580.CrossRefGoogle Scholar
[37] Boyd, J. P. 2001. Chebyshev and Fourier Spectral Methods, Second Edition. Dover Publications.Google Scholar
[38] Bradley, C. C., Sackett, C. A., and Hulet, R. G. 1997. Bose–Einstein condensation of lithium: observation of limited condensate number. Phys. Rev. Lett., 78(6), 985–989.CrossRefGoogle Scholar
[39] Briggs, E. L., Sullivan, D. J., and Bernholc, J. 1996. Real-space multigrid-based approach to large-scale electronic structure calculations. Phys. Rev. B, 54(20), 14362–14375.CrossRefGoogle ScholarPubMed
[40] Broeckhove, J., Lathouwers, L., Kesteloot, E., and Van Leuven, P. 1988. On the equivalence of time-dependent variational principles. Chem. Phys. Lett., 149(5–6), 547–550.CrossRefGoogle Scholar
[41] Brouard, S., Macias, D., and Muga, J. G. 1994. Perfect absorbers for stationary and wavepacket scattering. J. Phys. A: Mathematical and General, 27, L439–L445.CrossRefGoogle Scholar
[42] Bruce, N. A., and Maksym, P. A. 2000. Quantum states of interacting electrons in a real quantum dot. Phys. Rev. B, 61(7), 4718–4726.CrossRefGoogle Scholar
[43] Bubin, Sergiy, and Adamowicz, Ludwik 2006. Nonrelativistic variational calculations of the positronium molecule and the positronium hydride. Phys. Rev. A, 74(5), 052 502.CrossRefGoogle Scholar
[44] Burdick, W. R., Saad, Y., Kronik, L., Vasiliev, I., Jain, M., and Chelikowsky, J. R. 2003. Parallel implementation of time-dependent density functional theory. Comp. Phys. Commun., 156(1), 22–42.CrossRefGoogle Scholar
[45] Burke, Kieron, Werschnik, Jan, and Gross, E. K. U. 2005. Time-dependent density functional theory: past, present, and future. J. Chem. Phys., 123(6), 062 206.CrossRefGoogle ScholarPubMed
[46] Büttiker, M., Thomas, H., and Prêtre, A. 1994. Current partition in multiprobe conductors in the presence of slowly oscillating external potentials. Z. Phys. B, Condensed Matter, 94(1), 133–137.CrossRefGoogle Scholar
[47] Calzaferri, G., Forss, L., and Kamber, I. 1989. Molecular geometries by the extended Hückel molecular orbital (EHMO) method. J. Phys. Chem., 93(14), 5366–5371.CrossRefGoogle Scholar
[48] Calzolari, Arrigo, Cavazzoni, Carlo, and Nardelli, Marco 2004. Electronic and transport properties of artificial gold chains. Phys. Rev. Lett., 93(9), 096 404.CrossRefGoogle ScholarPubMed
[49] Cann, Natalie Mary, and Thakkar, Ajit, J. 1992. Oscillator strengths for S–P and P–D transitions in heliumlike ions. Phys. Rev. A, 46(9), 5397–5405.CrossRefGoogle Scholar
[50] Canning, A., Wang, L. W., Williamson, A., and Zunger, A. 2000. Parallel empirical pseudopotential electronic structure calculations for million atom systems. J. Comp. Phys., 160(1), 29–41.CrossRefGoogle Scholar
[51] Casida, M. E., Jamorski, C., Casida, K. C., and Salahub, D. R. 1998. Molecular excitation energies to high-lying bound states from time-dependent density-functional response theory: characterization and correction of the time-dependent local density approximation ionization threshold. J. Chem. Phys., 108(11), 4439–4449.CrossRefGoogle Scholar
[52] Castro, Alberto, Marques, Miguel, A. L., and Rubio, Angel 2004. Propagators for the time-dependent Kohn–Sham equations. J. Chem. Phys., 121(8), 3425–3433.CrossRefGoogle ScholarPubMed
[53] Cencek, Wojciech, and Kutzelnigg, Werner 1996. Accurate relativistic energies of oneand two-electron systems using Gaussian wave functions. J. Chem. Phys., 105(14), 5878–5885.CrossRefGoogle Scholar
[54] Cencek, Wojciech, Komasa, Jacek, and Rychlewski, Jacek 1995. Benchmark calculations for two-electron systems using explicitly correlated Gaussian functions. Chem. Phys. Lett., 246(4–5), 417–420.CrossRefGoogle Scholar
[55] Ceperley, D., Chester, G. V., and Kalos, M. H. 1977. Monte Carlo simulation of a many-fermion study. Phys. Rev. B, 16(7), 3081–3099.CrossRefGoogle Scholar
[56] Ceperley, D. M., and Alder, B. J. 1984. Quantum Monte Carlo for molecules: Green's function and nodal release. J. Chem. Phys., 81(12), 5833–5844.CrossRefGoogle Scholar
[57] Cerimele, M. M., Chiofalo, M. L., Pistella, F., Succi, S., and Tosi, M. P. 2000a. Numerical solution of the Gross–Pitaevskii equation using an explicit finite-difference scheme: an application to trapped Bose–Einstein condensates. Phys. Rev. E, 62(1), 1382–1389.CrossRefGoogle ScholarPubMed
[58] Cerimele, M. M., Pistella, F., and Succi, S. 2000b. Particle-inspired scheme for the Gross–Pitaevski equation: an application to Bose–Einstein condensation. Comp. Phys. Commun., 129(1–3), 82–90.CrossRefGoogle Scholar
[59] Chelikowsky, James, R., and Louie, Steven, G. 1984. First-principles linear combination of atomic orbitals method for the cohesive and structural properties of solids: application to diamond. Phys. Rev. B, 29(6), 3470–3481.CrossRefGoogle Scholar
[60] Chelikowsky, J. R., Troullier, N., and Saad, Y. 1994. Finite-difference-pseudopotential method: electronic structure calculations without a basis. Phys. Rev. Lett., 72(8), 1240–1243.CrossRefGoogle ScholarPubMed
[61] Chelikowsky, J. R., Troullier, N., Wu, K., and Saad, Y. 1994. Higher-order finitedifference pseudopotential method: an application to diatomic molecules. Phys. Rev. B, 50(16), 11 355–11 364.CrossRefGoogle Scholar
[62] Chicone, Carmen 1999. Ordinary Differential Equations with Applications. Springer-Verlag.Google Scholar
[63] Child, M. S. 1991. Analysis of a complex absorbing barrier. Molecular Phys., 72(1), 89–93.CrossRefGoogle Scholar
[64] Chin, Siu, A. 1997. Symplectic integrators from composite operator factorizations. Phys. Lett. A, 226(6), 344–348.CrossRefGoogle Scholar
[65] Chu, Xi, and Chu, Shih-I. 2001. Time-dependent density-functional theory for molecular processes in strong fields: study of multiphoton processes and dynamical response of individual valence electrons of N2 in intense laser fields. Phys. Rev. A, 64(6), 063 404.CrossRefGoogle Scholar
[66] Condon, E. U. 1937. Theories of optical rotatory power. Rev. Mod. Phys., 9(4), 432–457.CrossRefGoogle Scholar
[67] Dalfovo, F., and Stringari, S. 1996. Bosons in anisotropic traps: ground state and vortices. Phys. Rev. A, 53(4), 2477–2485.CrossRefGoogle ScholarPubMed
[68] Dalfovo, F., Giorgini, S., Pitaevskii, L. P., and Stringari, S. 1999. Theory of Bose–Einstein condensation in trapped gases. Rev. Mod. Phys., 71(3), 463–512.CrossRefGoogle Scholar
[69] Datta, S. 1997. Electronic Transport in Mesoscopic Systems. Cambridge University Press.Google Scholar
[70] Davidson, E. R., 1975. Note. The iterative calculation of a few of the lowest eigenvalues and corresponding eigenvectors of large real-symmetric matrices. J. Comp. Phys., 17, 87–94.CrossRefGoogle Scholar
[71] Davidson, E. R., Hagstrom, S. A., Chakravorty, S. J., Umar, V. M., and Fischer, C. F. 1991. Ground-state correlation energies for two-to ten-electron atomic ions. Phys. Rev. A, 44(11), 7071–7083.CrossRefGoogle ScholarPubMed
[72] Davis, K. B., Mewes, M. O., Andrews, M. R., van Druten, N. J., Durfee, D. S., Kurn, D. M., and Ketterle, W. 1995. Bose–Einstein condensation in a gas of sodium atoms. Phys. Rev. Lett., 75(22), 3969–3973.CrossRefGoogle Scholar
[73] Delley, B. 2000. From molecules to solids with the DMol3 approach. J. Chem. Phys., 113(18), 7756–7764.CrossRefGoogle Scholar
[74] Demmel, J., Dongarra, J., Ruhe, A., van der Vorst, H., and Bai, Z. 2000. Templates for the Solution of Algebraic Eigenvalue Problems: A Practical Guide. SIAM Software, Environments, and Tools Series.Google Scholar
[75] Derosa, P. A., and Seminario, J. M. 2001. Electron transport through single molecules: scattering treatment using density functional and green function theories. J. Phys. Chem. B, 105(2), 471–481.CrossRefGoogle Scholar
[76] Devenyi, A., Cho, K., Arias, T. A., and Joannopoulos, J. D. 1994. Adaptive Riemannian metric for all-electron calculations. Phys. Rev. B, 49(19), 13 373–13 376.CrossRefGoogle ScholarPubMed
[77] Dhara, Asish, K., and Ghosh, Swapan, K. 1987. Density-functional theory for timedependent systems. Phys. Rev. A, 35(1), 442–444.CrossRefGoogle Scholar
[78] Di Ventra, Massimiliano 2008. Electrical Transport in Nanoscale Systems. Cambridge University Press.CrossRefGoogle Scholar
[79] Di Ventra, M., Pantelides, S. T., and Lang, N. D. 2000. First-principles calculation of transport properties of a molecular device. Phys. Rev. Lett., 84(5), 979–982.CrossRefGoogle ScholarPubMed
[80] Dodd, R. J. 1996. Approximate solutions of the nonlinear Schrödinger equation for ground and excited states of Bose–Einstein condensates. J. Res. Nat. Inst. Stand. Technol., 101(4), 545–552.CrossRefGoogle ScholarPubMed
[81] Doltsinis, Nikos, L., and Sprik, Michiel 2000. Electronic excitation spectra from timedependent density functional response theory using plane-wave methods. Chem. Phys. Lett., 330(5–6), 563–569.CrossRefGoogle Scholar
[82] Drake, G. W. F., and Yan, Zong-Chao 1992. Energies and relativistic corrections for the Rydberg states of helium: Variational results and asymptotic analysis. Phys. Rev. A, 46(5), 2378–2409.CrossRefGoogle ScholarPubMed
[83] Drummond, P. D., and Kheruntsyan, K. V. 2000. Asymptotic solutions to the Gross–Pitaevskii gain equation: growth of a Bose–Einstein condensate. Phys. Rev. A, 63(1), 013605.CrossRefGoogle Scholar
[84] Edwards, Mark, and Burnett, K. 1995. Numerical solution of the nonlinear Schrödinger equation for small samples of trapped neutral atoms. Phys. Rev. A, 51(2), 1382–1386.CrossRefGoogle ScholarPubMed
[85] Egger, R., Häusler, W., Mak, C. H., and Grabert, H. 1999. Crossover from Fermi liquid to Wigner molecule behavior in quantum dots. Phys. Rev. Lett., 82(16), 3320–3323.CrossRefGoogle Scholar
[86] Elstner, M., Porezag, D., Jungnickel, G., et al. 1998. Self-consistent-charge densityfunctional tight-binding method for simulations of complex materials properties. Phys. Rev. B, 58(11), 7260–7268.CrossRefGoogle Scholar
[87] Emberly, Eldon, G., and Kirczenow, George. 2001. Models of electron transport through organic molecular monolayers self-assembled on nanoscale metallic contacts. Phys. Rev. B, 64(23), 235 412.Google Scholar
[88] Faleev, S. V., Léonard, F., Stewart, D. A., and van Schilfgaarde, M. 2005. Ab initio tight-binding LMTO method for nonequilibrium electron transport in nanosystems. Phys. Rev. B, 71(19), 195 422.CrossRefGoogle Scholar
[89] Feit, M. D., and Fleck, J. A. Jr., 1983. Solution of the Schrödinger equation by a spectral method II: vibrational energy levels of triatomic molecules. J. Chem. Phys., 78(1), 301–308.CrossRefGoogle Scholar
[90] Feit, M. D., J. A., Fleck Jr., and Steiger, A. 1982. Solution of the Schrödinger equation by a spectral method. J. Comput. Phys., 47(3), 412–433.CrossRefGoogle Scholar
[91] Fetter, Alexander, L. 1996. Ground state and excited states of a confined condensed Bose gas. Phys. Rev. A, 53(6), 4245–4249.CrossRefGoogle Scholar
[92] Filippi, Claudia, and Umrigar, C. J. 1996. Multiconfiguration wave functions for quantum Monte Carlo calculations of first-row diatomic molecules. J. Chem. Phys., 105(1), 213–226.CrossRefGoogle Scholar
[93] Fiolhais, C., Nogueira, F., and Marques, M. (eds.) 2003. A Primer in Density Functional Theory. Lecture Notes in Physics, vol. 620. Springer-Verlag.CrossRefGoogle Scholar
[94] Foulkes, W.Matthew, C., and Haydock, Roger 1989. Tight-binding models and density-functional theory. Phys. Rev. B, 39(17), 12 520–12 536.CrossRefGoogle ScholarPubMed
[95] Frediani, L., Rinkevicius, Z., and Ågren, H. 2005. Two-photon absorption in solution by means of time-dependent density-functional theory and the polarizable continuum model. J. Chem. Phys., 122(24), 244 104.CrossRefGoogle ScholarPubMed
[96] Frenkel, D., and Smit, B. 2002. Understanding Molecular Simulation, Second Edition: From Algorithms to Applications. Academic Press.Google Scholar
[97] Frigo, Matteo, and Johnson, Steven, G. 2005. The design and implementation of FFTW3. Proc. IEEE, 93(2), 216–231. Special issue on program generation, optimization, and platform adaptation.CrossRefGoogle Scholar
[98] Frolov, Alexei, M., and Smith, Vedene, H. 1994. One-photon annihilation in the Ps- ion and the angular (e-, e-) correlation in two-electron ions. Phys. Rev. A, 49(5), 3580–3585.CrossRefGoogle Scholar
[99] Fuchs, Martin, and Scheffler, Matthias 1999. Ab initio pseudopotentials for electronic structure calculations of poly-atomic systems using density-functional theory. Comp. Phys. Commun., 119(1), 67–98.CrossRefGoogle Scholar
[100] Fujimoto, Yoshitaka, and Hirose, Kikuji 2003. First-principles treatments of electron transport properties for nanoscale junctions. Phys. Rev. B, 67(19), 195 315.CrossRefGoogle Scholar
[101] Fujito, M., Natori, A., and Yasunaga, H. 1996. Many-electron ground states in anisotropic parabolic quantum dots. Phys. Rev. B, 53(15), 9952–9958.CrossRefGoogle ScholarPubMed
[102] Füsti-Molnár, László, and Pulay, Peter 2002. The Fourier transform Coulomb method: efficient and accurate calculation of the Coulomb operator in a Gaussian basis. J. Chem. Phys., 117(17), 7827–7835.CrossRefGoogle Scholar
[103] Geim, A. K., and Novoselov, K. S. 2007. The rise of graphene. Nature Materials, 6, 183–191.CrossRefGoogle ScholarPubMed
[104] Goedecker, Stefan 1999. Linear scaling electronic structure methods. Rev. Mod. Phys., 71(4), 1085–1123.CrossRefGoogle Scholar
[105] Golub, G. H., and Van Loan, C. F. 1996. Matrix computations. Johns Hopkins University Press.Google Scholar
[106] Golub, Gene, H., and Welsch, John, H. 1969. Calculation of Gauss quadrature rules. Math. Comp. 23, 221–230; addendum, ibid., 23(106, loose microfiche suppl.), A1–A10.CrossRefGoogle Scholar
[107] Gonze, X., Ghosez, Ph., and Godby, R. W. 1995. Density–polarization functional theory of the response of a periodic insulating solid to an electric field. Phys. Rev. Lett., 74(20), 4035–4038.CrossRefGoogle Scholar
[108] Gonze, X., Beuken, J. M., Caracas, R., et al. 2002. First-principles computation of material properties: the ABINIT software project. Comput. Mat. Sci., 25(3), 478–492.CrossRefGoogle Scholar
[109] Goringe, C. M., Bowler, D. R., and Hernandez, E. 1997. Tight-binding modelling of materials. Rep. Progr. Phys., 60(12), 1447.CrossRefGoogle Scholar
[110] Görling, Andreas 1996. Density-functional theory for excited states. Phys. Rev. A, 54(5), 3912–3915.CrossRefGoogle ScholarPubMed
[111] Gramespacher, Thomas, and Büttiker, Markus 2000. Distribution functions and current–current correlations in normal-metal–superconductor heterostructures. Phys. Rev. B, 61(12), 8125–8132.CrossRefGoogle Scholar
[112] Greene, Chris, H. 1983. Atomic photoionization in a strong magnetic field. Phys. Rev. A, 28(4), 2209–2216.CrossRefGoogle Scholar
[113] Griebel, M., Knapek, S., and Zumbusch, G. W. 2007. Numerical Simulation in Molecular Dynamics: Numerics, Algorithms, Parallelization, Applications. Springer Verlag.Google Scholar
[114] Griffin, A., Snoke, D. W., and Stringari, S. (eds.) 1996. Bose–Einstein Condensation. Cambridge University Press.Google Scholar
[115] Gross, E. K. U., and Kohn, Walter 1985. Local density-functional theory of frequencydependent linear response. Phys. Rev. Lett., 55(26), 2850–2852.CrossRefGoogle Scholar
[116] Gygi, F. 1993. Electronic-structure calculations in adaptive coordinates. Phys. Rev. B, 48(16), 11 692–11 700.CrossRefGoogle ScholarPubMed
[117] Gygi, François 1995. Ab initio molecular dynamics in adaptive coordinates. Phys. Rev. B, 51(16), 11 190–11 193.CrossRefGoogle ScholarPubMed
[118] Gygi, François, and Galli, Giulia 1995. Real-space adaptive-coordinate electronicstructure calculations. Phys. Rev. B, 52(4), R2229–R2232.CrossRefGoogle ScholarPubMed
[119] Haile, J. M. 1997. Molecular Dynamics Simulation: Elementary Methods. Wiley Interscience.Google Scholar
[120] Halasz, G. J., and Vibok, A. 2003. Comparison of the imaginary and complex absorbing potentials using multistep potential method. Int. J. Quantum Chem., 92(2), 168–173.CrossRefGoogle Scholar
[121] Ham, F. S., and Segall, B. 1961. Energy bands in periodic lattices – Green's function method. Phys. Rev., 124(6), 1786–1796.CrossRefGoogle Scholar
[122] Hamann, D. R. 1995a. Application of adaptive curvilinear coordinates to the electronic structure of solids. Phys. Rev. B, 51(11), 7337–7340.CrossRefGoogle ScholarPubMed
[123] Hamann, D. R. 1995b. Band structure in adaptive curvilinear coordinates. Phys. Rev. B, 51(15), 9508–9514.CrossRefGoogle ScholarPubMed
[124] Hamann, D. R. 1996. Generalized-gradient functionals in adaptive curvilinear coordinates. Phys. Rev. B, 54(3), 1568–1574.CrossRefGoogle ScholarPubMed
[125] Hamann, D. R. 2001. Comparison of global and local adaptive coordinates for density-functional calculations. Phys. Rev. B, 63(7), 075 107.CrossRefGoogle Scholar
[126] Hardin, R. H., and Tappert, F. D. 1973. Applications of the split-step Fourier method to the numerical solution of nonlinear and variable coefficient wave equations. SIAM Rev., 15(423), 0–021.Google Scholar
[127] Harju, A., Sverdlov, V. A., Nieminen, R. M., and Halonen, V. 1999. Many-body wave function for a quantum dot in a weak magnetic field. Phys. Rev. B, 59(8), 5622–5626.CrossRefGoogle Scholar
[128] Harris, J. 1985. Simplified method for calculating the energy of weakly interacting fragments. Phys. Rev. B, 31(4), 1770–1779.CrossRefGoogle ScholarPubMed
[129] Havu, P., Torsti, T., Puska, M. J., and Nieminen, R. M. 2002. Conductance oscillations in metallic nanocontacts. Phys. Rev. B, 66(7), 075401.CrossRefGoogle Scholar
[130] Hawrylak, Pawel 1993. Single-electron capacitance spectroscopy of few-electron artificial atoms in a magnetic field: theory and experiment. Phys. Rev. Lett., 71(20), 3347–3350.CrossRefGoogle Scholar
[131] Hawrylak, Pawel, and Pfannkuche, Daniela 1993. Magnetoluminescence from correlated electrons in quantum dots. Phys. Rev. Lett., 70(4), 485–488.CrossRefGoogle ScholarPubMed
[132] Hazi, Andrew, U., and Taylor, Howard, S. 1970. Stabilization method of calculating resonance energies: model problem. Phys. Rev. A, 1(4), 1109–1120.CrossRefGoogle Scholar
[133] Hehre, W. J., Stewart, R. F., and Pople, J. A. 1969. Self-consistent molecular-orbital methods. I. Use of Gaussian expansions of Slater-type atomic orbitals. J. Chem. Phys., 51(6), 2657–2664.CrossRefGoogle Scholar
[134] Heiskanen, M., Torsti, T., Puska, M. J., and Nieminen, R. M. 2001. Multigrid method for electronic structure calculations. Phys. Rev. B, 63(24), 245 106.CrossRefGoogle Scholar
[135] Heller, Eric, J. 1975. Time-dependent approach to semiclassical dynamics. J. Chem. Phys., 62(4), 1544–1555.CrossRefGoogle Scholar
[136] Hine, N. D. M., Haynes, P. D., Mostofi, A. A., Skylaris, C.-K., and Payne, M. C. 2009. Linear-scaling density-functional theory with tens of thousands of atoms: expanding the scope and scale of calculations with ONETEP. Comp. Phys. Commun., 180(7), 1041–1053.CrossRefGoogle Scholar
[137] Hirata, So, and Head-Gordon, Martin 1999. Time-dependent density functional theory within the Tamm–Dancoff approximation. Chem. Phys. Lett., 314(3–4), 291–299.CrossRefGoogle Scholar
[138] Hirose, K., Ono, T., Fujimoto, Y., and Tsukamoto, S. 2005. First-Principles Calculations in Real-Space Formalism. Imperial College Press.CrossRefGoogle Scholar
[139] Hirose, Kenji, and Wingreen, Ned, S. 1999. Spin-density-functional theory of circular and elliptical quantum dots. Phys. Rev. B, 59(7), 4604–4607.CrossRefGoogle Scholar
[140] Hirsch, J. E. 1983. Discrete Hubbard–Stratonovich transformation for fermion lattice models. Phys. Rev. B, 28(7), 4059–4061.CrossRefGoogle Scholar
[141] Hirsch, J. E. 1985. Two-dimensional Hubbard model: numerical simulation study. Phys. Rev. B, 31(7), 4403–4419.CrossRefGoogle ScholarPubMed
[142] Ho, Kai-Ming, Ihm, J., and Joannopoulos, J. D. 1982. Dielectric matrix scheme for fast convergence in self-consistent electronic-structure calculations. Phys. Rev. B, 25(6), 4260–4262.CrossRefGoogle Scholar
[143] Ho, Y. K. 1993. Variational calculation of ground-state energy of positronium negative ions. Phys. Rev. A, 48(6), 4780–4783.CrossRefGoogle ScholarPubMed
[144] Hodgson, P. E. 1963. The Optical Model of Elastic Scattering. Clarendon Press.Google Scholar
[145] Hoffman, D. K., Huang, Y., Zhu, W., and Kouri, D. J. 1994. Further analysis of solutions to the time-independent wave packet equations for quantum dynamics: general initial wave packets. J. Chem. Phys., 101, 1242.CrossRefGoogle Scholar
[146] Hoffmann, Roald 1963. An extended Hückel theory. I. Hydrocarbons. J. Chem. Phys., 39(6), 1397–1412.CrossRefGoogle Scholar
[147] Hoffmann, Roald, and Lipscomb, William, N. 1962a. Boron hydrides: LCAO–MO and resonance studies. J. Chem. Phys., 37(12), 2872–2883.CrossRefGoogle Scholar
[148] Hoffmann, Roald, and Lipscomb, William, N. 1962b. Theory of polyhedral molecules. I. Physical factorizations of the secular equation. J. Chem. Phys., 36(8), 2179–2189.CrossRefGoogle Scholar
[149] Hohenberg, P., and Kohn, W. 1964. Inhomogeneous electron gas. Phys. Rev., 136(3B), B864–B871.CrossRefGoogle Scholar
[150] Hoover, William, G. 1985. Canonical dynamics: equilibrium phase-space distributions. Phys. Rev. A, 31(3), 1695–1697.CrossRefGoogle Scholar
[151] Hoston, William, and You, L. 1996. Interference of two condensates. Phys. Rev. A, 53(6), 4254–4256.CrossRefGoogle ScholarPubMed
[152] Hu, Chunping, Hirai, Hirotoshi, and Sugino, Osamu 2007. Nonadiabatic couplings from time-dependent density functional theory: formulation in the Casida formalism and practical scheme within modified linear response. J. Chem. Phys., 127(6), 064 103.CrossRefGoogle ScholarPubMed
[153] Ihm, J., Zunger, A., and Cohen, M. L. 1979. Momentum-space formalism for the total energy of solids. J. Phys. C: Solid State Physics, 12(21), 4409.CrossRefGoogle Scholar
[154] Iwata, J.-I., Yabana, K., and Bertsch, G. F. 2001. Real-space computation of dynamic hyperpolarizabilities. J. Chem. Phys., 115(19), 8773–8783.CrossRefGoogle Scholar
[155] Jäckle, A., and Meyer, H.-D. 1996. Time-dependent calculation of reactive flux employing complex absorbing potentials: general aspects and application within the multiconfiguration time-dependent Hartree wave approach. J. Chem. Phys., 105(16), 6778–6786.CrossRefGoogle Scholar
[156] Jamorski, Christine, Casida, Mark, E., and Salahub, Dennis, R. 1996. Dynamic polarizabilities and excitation spectra from a molecular implementation of time-dependent density-functional response theory: N2 as a case study. J. Chem. Phys., 104(13), 5134–5147.CrossRefGoogle Scholar
[157] Jang, J. I., and Wolfe, J. P. 2005. Biexcitons in the semiconductor Cu2O: an explanation of the rapid decay of excitons. Phys. Rev. B, 72(24), 241 201.CrossRefGoogle Scholar
[158] Jansen, Robert, W., and Sankey, Otto, F. 1987. Ab initio linear combination of pseudoatomic-orbital scheme for the electronic properties of semiconductors: results for ten materials. Phys. Rev. B, 36(12), 6520–6531.CrossRefGoogle Scholar
[159] Jarillo-Herrero, P., Kong, J., van der Zant, H. S. J., Dekker, C., Kouwenhoven, L. P., and De Franceschi, S. 2005. Electronic transport spectroscopy of carbon nanotubes in a magnetic field. Phys. Rev. Lett., 94(15), 156 802.CrossRefGoogle Scholar
[160] Jing, X., Troullier, N., Dean, D., et al. 1994. Ab initio molecular-dynamics simulation of Si clusters using the higher-order finite-difference-pseudopotential method. Phys. Rev. B, 50(16), 12 234–12 237.CrossRefGoogle Scholar
[161] Johnsson, P., López-Martens, R., Kazamias, S., et al. 2005. Attosecond electron wave packet dynamics in strong laser fields. Phys. Rev. Lett., 95(1), 013 001.CrossRefGoogle ScholarPubMed
[162] Jolicard, Georges, and Austin, Elizabeth, J. 1985. Optical potential stabilisation method for predicting resonance levels. Chem. Phys. Lett., 121(1–2), 106–110.CrossRefGoogle Scholar
[163] Jones, R. O., and Gunnarsson, O. 1989. The density functional formalism, its applications and prospects. Rev. Mod. Phys., 61(3), 689–746.CrossRefGoogle Scholar
[164] Jorio, A., Saito, R., Hafner, J. H., et al. 2001. Structural (n,m) determination of isolated single-wall carbon nanotubes by resonant Raman scattering. Phys. Rev. Lett., 86(6), 1118–1121.CrossRefGoogle ScholarPubMed
[165] Joubert, D. P. (ed.) 1998. Density Functionals: Theory and Applications. Lecture Notes in Physics, vol. 500. Springer-Verlag.CrossRefGoogle Scholar
[166] Junquera, J., Paz, Ó., Sánchez-Portal, D., and Artacho, E. 2001. Numerical atomic orbitals for linear-scaling calculations. Phys. Rev. B, 64(23), 235 111.CrossRefGoogle Scholar
[167] Kanwal, R. P. 1997. Linear Integral Equations. Birkhauser.CrossRefGoogle Scholar
[168] Kawashita, Y., Nakatsukasa, T., and Yabana, K. 2009. Time-dependent densityfunctional theory simulation for electron–ion dynamics in molecules under intense laser pulses. J. Phys.: Condensed Matter, 21(6), 064 222.Google Scholar
[169] Ke, San-Huang, Baranger, Harold, U., and Yang, Weitao 2004. Electron transport through molecules: self-consistent and non-self-consistent approaches. Phys. Rev. B, 70(8), 085 410.CrossRefGoogle Scholar
[170] Kemp, M., Mujica, V., and Ratner, M. A. 1994. Molecular electronics: disordered molecular wires. J. Chem. Phys., 101(6), 5172–5178.CrossRefGoogle Scholar
[171] Kendall, R. A., Apra, E., Bernholdt, D. E., et al. 2000. High performance computational chemistry: an overview of NWChem, a distributed parallel application. Comp. Phys. Commun., 128(1–2), 260–283.CrossRefGoogle Scholar
[172] Kent, P. R. C. 1999. Techniques and applications of quantum Monte Carlo. Ph.D. thesis, Cambridge University.
[173] Kent, P. R. C., Needs, R. J., and Rajagopal, G. 1999. Monte Carlo energy and varianceminimization techniques for optimizing many-body wave functions. Phys. Rev. B, 59(19), 12 344–12 351.CrossRefGoogle Scholar
[174] Kerker, G. P. 1981. Efficient iteration scheme for self-consistent pseudopotential calculations. Phys. Rev. B, 23(6), 3082–3084.CrossRefGoogle Scholar
[175] Khomyakov, P. A., and Brocks, G. 2004. Real-space finite-difference method for conductance calculations. Phys. Rev. B, 70(19), 195 402.CrossRefGoogle Scholar
[176] King-Smith, R. D., Payne, M. C., and Lin, J. S. 1991. Real-space implementation of nonlocal pseudopotentials for first-principles total-energy calculations. Phys. Rev. B, 44(23), 13 063–13 066.CrossRefGoogle ScholarPubMed
[177] Kleinman, Leonard, and Bylander, D. M. 1982. Efficacious form for model pseudopotentials. Phys. Rev. Lett., 48(20), 1425–1428.CrossRefGoogle Scholar
[178] Knyazev, A. V. 2002. Toward the optimal preconditioned eigensolver: locally optimal block preconditioned conjugate gradient method. SIAM J. Scientific Comput., 23(2), 517–541.CrossRefGoogle Scholar
[179] Kobayashi, Nobuhiko, Brandbyge, Mads, and Tsukada, Masaru 2000. First-principles study of electron transport through monatomic Al and Na wires. Phys. Rev. B, 62(12), 8430–8437.CrossRefGoogle Scholar
[180] Kohn, W. 1948. Variational methods in nuclear collision problems. Phys. Rev., 74(12), 1763–1772.CrossRefGoogle Scholar
[181] Kohn, W., and Sham, L. J. 1965. Self-consistent equations including exchange and correlation effects. Phys. Rev., 140(4A), A1133–A1138.CrossRefGoogle Scholar
[182] Komzsik, L. 2003. The Lanczos Method: Evolution and Application. Society for Industrial Mathematics.CrossRefGoogle Scholar
[183] Kootstra, F., de Boeij, P. L., and Snijders, J. G. 2000. Efficient real-space approach to time-dependent density functional theory for the dielectric response of nonmetallic crystals. J. Chem. Phys., 112(15), 6517–6531.CrossRefGoogle Scholar
[184] Koskinen, M., Manninen, M., and Reimann, S. M. 1997. Hund's rules and spin density waves in quantum dots. Phys. Rev. Lett., 79(7), 1389–1392.CrossRefGoogle Scholar
[185] Kosloff, D., and Kosloff, R. 1983. A Fourier method solution for the time dependent Schrödinger equation as a tool in molecular dynamics. J. Comp. Phys., 52(1), 35–53.CrossRefGoogle Scholar
[186] Kosloff, R. 1988. Time-dependent quantum-mechanical methods for molecular dynamics. J. Phys. Chem., 92(8), 2087–2100.CrossRefGoogle Scholar
[187] Kosloff, R. 1994. Propagation methods for quantum molecular dynamics. Ann. Rev. Phys. Chem., 45(1), 145–178.CrossRefGoogle Scholar
[188] Kosloff, R., and Kosloff, D. 1986. Absorbing boundaries for wave propagation problems. J. Comp. Phys., 63(2), 363–376.CrossRefGoogle Scholar
[189] Kreller, F., Lowisch, M., Puls, J., and Henneberger, F. 1995. Role of biexcitons in the stimulated emission of wide-Gap II–VI quantum wells. Phys. Rev. Lett., 75(12), 2420–2423.CrossRefGoogle ScholarPubMed
[190] Kresse, G., and Furthmüller, J. 1996. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B, 54(16), 11 169–11 186.CrossRefGoogle ScholarPubMed
[191] Kresse, G., and Hafner, J. 1993. Ab initio molecular dynamics for liquid metals. Phys. Rev. B, 47(1), 558–561.CrossRefGoogle ScholarPubMed
[192] Kronig, R. L., and Penney, W. G. 1931. Quantum mechanics of electrons in crystal lattices. Proc. Roy. Soc. London, Series A, 130(814), 499–513.CrossRefGoogle Scholar
[193] Kruppa, A. T., and Nazarewicz, W. 2004. Gamow and R-matrix approach to proton emitting nuclei. Phys. Rev. C, 69(5), 054 311.CrossRefGoogle Scholar
[194] Kurth, S., Stefanucci, G., Almbladh, C.-O., Rubio, A., and Gross, E. K. U. 2005. Time-dependent quantum transport: a practical scheme using density functional theory. Phys. Rev. B, 72(3), 035 308.CrossRefGoogle Scholar
[195] Langhoff, P. W., Epstein, S. T., and Karplus, M. 1972. Aspects of time-dependent perturbation theory. Rev. Mod. Phys., 44(3), 602–644.CrossRefGoogle Scholar
[196] Le Rouzo, Hervé 2003. Variational R-matrix method for quantum tunneling problems. Amer. J. Physics, 71(3), 273–278.CrossRefGoogle Scholar
[197] Le Rouzo, H., and Raseev, G. 1984. Finite-volume variational method: first application to direct molecular photoionization. Phys. Rev. A, 29(3), 1214–1223.CrossRefGoogle Scholar
[198] Légaré, F., Litvinyuk, I. V., Dooley, P. W., et al. 2003. Time-resolved double ionization with few cycle laser pulses. Phys. Rev. Lett., 91(9), 093 002.CrossRefGoogle ScholarPubMed
[199] Léger, Y., Besombes, L., Fernández-Rossier, J., Maingault, L., and Mariette, H. 2006. Electrical control of a single Mn atom in a quantum dot. Phys. Rev. Lett., 97(10), 107 401.CrossRefGoogle Scholar
[200] Li, X.-P., Nunes, R. W., and Vanderbilt, David 1993. Density-matrix electronic-structure method with linear system-size scaling. Phys. Rev. B, 47(16), 10891–10894.CrossRefGoogle ScholarPubMed
[201] Lide, D. R. (ed.) 2009. CRC Handbook of Chemistry and Physics Ninetieth Edition. CRC Press.Google Scholar
[202] Liu, Yi, Yarne Dawn, A., and Tuckerman Mark, E. 2003. Ab initio molecular dynamics calculations with simple, localized, orthonormal real-space basis sets. Phys. Rev. B., 68(12), 125110.CrossRefGoogle Scholar
[203] Macías, D., Brouard, S., and Muga, J. G. 1994. Optimization of absorbing potentials. Chem. Phys. Lett., 228(6), 672–677.CrossRefGoogle Scholar
[204] Maitra, Neepa, T., Zhang, Fan, Cave, Robert, J., and Burke, Kieron 2004. Double excitations within time-dependent density functional theory linear response. J. Chem. Phys., 120(13), 5932–5937.CrossRefGoogle Scholar
[205] Maksym, P. A., and Chakraborty, Tapash 1990. Quantum dots in a magnetic field: role of electron–electron interactions. Phys. Rev. Lett., 65(1), 108–111.CrossRefGoogle Scholar
[206] Manolopoulos, D. E. 2002. Derivation and reflection properties of a transmission-free absorbing potential. J. Chem. Phys., 117, 9552.CrossRefGoogle Scholar
[207] Maragakis, P., Soler, José, and Kaxiras, Efthimios 2001. Variational finite-difference representation of the kinetic energy operator. Phys. Rev. B, 64(19), 193101.CrossRefGoogle Scholar
[208] Marini, Andrea, Del Sole, Rodolfo, and Rubio, Angel 2003. Bound excitons in time-dependent density-functional theory: optical and energy-loss spectra. Phys. Rev. Lett., 91(25), 256 402.CrossRefGoogle ScholarPubMed
[209] Marques, M. A. L., Castro, A., Bertsch, G. F., and Rubio, A. 2003. Octopus: a first-principles tool for excited electron-ion dynamics. Comp. Phys. Commun., 151(1), 60–78.CrossRefGoogle Scholar
[210] Marston, C. C., and Balint-Kurti, G. G. 1989. The Fourier grid Hamiltonian method for bound state eigenvalues and eigenfunctions. J. Chem. Phys., 91(6), 3571–3576.CrossRefGoogle Scholar
[211] Martikainen, J.-P., Suominen, K.-A., Santos, L., Schulte, T., and Sanpera, A. 2001. Generation and evolution of vortex–antivortex pairs in Bose–Einstein condensates. Phys. Rev. A, 64(6), 063 602.CrossRefGoogle Scholar
[212] Martyna, Glenn, J., and Tuckerman, Mark, E. 1999. A reciprocal space based method for treating long range interactions in ab initio and force-field-based calculations in clusters. J. Chem. Phys., 110(6), 2810–2821.CrossRefGoogle Scholar
[213] Marx, D., and Hutter, J. 2009. Ab Initio Molecular Dynamics: Basic Theory and Advanced Methods. Cambridge University Press.CrossRefGoogle Scholar
[214] Matthews, M. R., Anderson, B. P., Haljan, P. C., et al. 1999. Watching a superfluid untwist itself: recurrence of Rabi oscillations in a Bose–Einstein condensate. Phys. Rev. Lett., 83(17), 3358–3361.CrossRefGoogle Scholar
[215] Mauri, Francesco, and Galli, Giulia 1994. Electronic-structure calculations and molecular-dynamics simulations with linear system-size scaling. Phys. Rev. B, 50(7), 4316–4326.CrossRefGoogle ScholarPubMed
[216] Mayer, A. 2006. Finite-difference calculation of the Green's function of a one-dimensional crystal: application to the Krönig–Penney potential. Phys. Rev. E, 74(4), 046 708.CrossRefGoogle ScholarPubMed
[217] McCullough, Edward, A., and Wyatt, Robert, E. 1969. Quantum dynamics of the collinear (H, H2) reaction. J. Chem. Phys., 51(3), 1253–1254.CrossRefGoogle Scholar
[218] Messiah, Albert 1999. Quantum Mechanics. Dover Publications.Google Scholar
[219] Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., and Teller, E. 1953. Equation of state calculations by fast computing machines. J. Chem. Phys., 21(6), 1087–1092.CrossRefGoogle Scholar
[220] Meurant, G. A. 2006. The Lanczos and Conjugate Gradient Algorithms: From Theory to Finite Precision Computations. Society for Industrial Mathematics.CrossRefGoogle Scholar
[221] Meyer, H. D., and Walter, O. 1982. On the calculation of S-matrix poles using the Siegert method. J. Phys. B: Atomic and Molecular Physics, 15, 3647–3668.CrossRefGoogle Scholar
[222] Miller, W. H. 1993. Beyond transition-state theory: a rigorous quantum theory of chemical reaction rates. Acc. Chem. Res., 26(4), 174–181.CrossRefGoogle Scholar
[223] Modine, N. A., Zumbach, Gil, and Kaxiras, Efthimios 1997. Adaptive-coordinate real-space electronic-structure calculations for atoms, molecules, and solids. Phys. Rev. B, 55(16), 10 289–10 301.CrossRefGoogle Scholar
[224] Modugno, M., Dalfovo, F., Fort, C., Maddaloni, P., and Minardi, F. 2000. Dynamics of two colliding Bose–Einstein condensates in an elongated magnetostatic trap. Phys. Rev. A, 62(6), 063 607.CrossRefGoogle Scholar
[225] Moiseyev, N., Certain, P. R., and Weinhold, F. 1978. Resonance properties of complex-rotated hamiltonians. Molecular Phys., 36(6), 1613–1630.CrossRefGoogle Scholar
[226] Morgan, R. B. 1990. Davidson's method and preconditioning for generalized eigenvalue problems. J. Comp. Phys., 89(1), 245.CrossRefGoogle Scholar
[227] Morse, Philip, M. 1929. Diatomic molecules according to the wave mechanics. II. Vibrational levels. Phys. Rev., 34(1), 57–64.CrossRefGoogle Scholar
[228] Morse, P. M., and Feshbach, H. 1953. Methods of Theoretical Physics. McGraw-Hill.Google Scholar
[229] Muckerman, James, T. 1990. Some useful discrete variable representations for problems in time-dependent and time-independent quantum mechanics. Chem. Phys. Lett., 173(2–3), 200–205.CrossRefGoogle Scholar
[230] Mujica, V., Kemp, M., and Ratner, M. A. 1994a. Electron conduction in molecular wires. I. A scattering formalism. J. Chem. Phys., 101(8), 6849–6855.CrossRefGoogle Scholar
[231] Mujica, V., Kemp, M., and Ratner, M. A. 1994b. Electron conduction in molecular wires. II. Application to scanning tunneling microscopy. J. Chem. Phys., 101(8), 6856–6864.CrossRefGoogle Scholar
[232] Mujica, V., Kemp, M., Roitberg, A., and Ratner, M. 1996. Current–voltage characteristics of molecular wires: eigenvalue staircase, Coulomb blockade, and rectification. J. Chem. Phys., 104(18), 7296–7305.CrossRefGoogle Scholar
[233] Müller, H.-M., and Koonin, S. E. 1996. Phase transitions in quantum dots. Phys. Rev. B, 54(20), 14532–14539.CrossRefGoogle ScholarPubMed
[234] Nakatsukasa, Takashi, and Yabana, Kazuhiro 2001. Photoabsorption spectra in the continuum of molecules and atomic clusters. J. Chem. Phys., 114(6), 2550–2561.CrossRefGoogle Scholar
[235] Nardelli, Marco, Fattebert, J.-L., and Bernholc, J. 2001. O(N) real-space method for ab initio quantum transport calculations: application to carbon nanotube–metal contacts. Phys. Rev. B, 64(24), 245 423.CrossRefGoogle Scholar
[236] Neuhauser, Daniel, and Baer, Michael 1989a. J. Chem. Phys., 90(8), 4351–4355.CrossRef
[237] Neuhauser, Daniel, and Baer, Michael 1989b. The application of wave packets to reactive atom–diatom systems: a new approach. J. Chem. Phys., 91(8), 4651–4657.CrossRefGoogle Scholar
[238] Neuhauser, Daniel, and Baer, M. 1990a. A new time-independent approach to the study of atom–diatom reactive collisions: theory and application. J. Phys. Chem., 94(1), 185–189.CrossRefGoogle Scholar
[239] Neuhauser, Daniel, and Baer, Michael 1990b. A new accurate (time-independent) method for treating three-dimensional reactive collisions: the application of optical potentials and projection operators. J. Chem. Phys., 92(6), 3419–3426.CrossRefGoogle Scholar
[240] Neuhauser, D., Baer, M., Judson, R. S., and Kouri, D. J. 1991. The application of time-dependent wavepacket methods to reactive scattering. Comp. Phys. Commun., 63(1–3), 460–481.CrossRefGoogle Scholar
[241] Nosé, Shuichi 1984. A unified formulation of the constant temperature molecular dynamics methods. J. Chem. Phys., 81(1), 511–519.CrossRefGoogle Scholar
[242] Odom, T. W., Huang, J. L., Kim, P., and Lieber, C. M. 2000. Structure and electronic properties of carbon nanotubes. J. Phys. Chem. B, 104(13), 2794–2809.CrossRefGoogle Scholar
[243] Ohta, K., and Ishida, H. 1988. Comparison among several numerical integration methods for Kramers–Kronig transformation. Applied Spectroscopy, 42(6), 952–957.CrossRefGoogle Scholar
[244] Ono, Tomoya, and Hirose, Kikuji 1999. Timesaving double-grid method for real-space electronic-structure calculations. Phys. Rev. Lett., 82(25), 5016–5019.CrossRefGoogle Scholar
[245] Ono, Tomoya, and Hirose, Kikuji 2005. Real-space electronic-structure calculations with a time-saving double-grid-technique. Phys. Rev. B, 72(8), 085115.CrossRefGoogle Scholar
[246] Ordejón, P., Artacho, E., and Soler, J. M. 1996. Self-consistent order-N density-functional calculations for very large systems. Phys. Rev. B, 53(16), R10441–R10444.CrossRefGoogle ScholarPubMed
[247] Ortiz, G., Souza, I., and Martin, R. M. 1998. Exchange-correlation hole in polarized insulators: implications for the microscopic functional theory of dielectrics. Phys. Rev. Lett., 80(2), 353–356.CrossRefGoogle Scholar
[248] Ozaki, T., and Kino, H. 2004. Numerical atomic basis orbitals from H to Kr. Phys. Rev. B, 69(19), 195 113.CrossRefGoogle Scholar
[249] Palacios, J. J., Pérez-Jiménez, A. J., Louis, E., SanFabián, E., and Vergés, J. A. 2003. First-principles phase-coherent transport in metallic nanotubes with realistic contacts. Phys. Rev. Lett., 90(10), 106801.CrossRefGoogle ScholarPubMed
[250] Parkins, A. S., and Walls, D. F. 1998. The physics of trapped dilute-gas Bose–Einstein condensates. Phys. Rep., 303(1), 1–80.CrossRefGoogle Scholar
[251] Parlett, B. N. 1998. The Symmetric Eigenvalue Problem. Society for Industrial Mathematics.CrossRefGoogle Scholar
[252] Parr, R. G., and Yang, W. 1989. Density-Functional Theory of Atoms and Molecules. Oxford University Press.Google Scholar
[253] Pathria, R. K. 1996. Statistical Mechanics, Second Edition. Butterworth-Heinemann.Google Scholar
[254] Payne, M. C., Teter, M. P., Allan, D. C., Arias, T. A., and Joannopoulos, J. D. 1992. Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients. Rev. Mod. Phys., 64(4), 1045–1097.CrossRefGoogle Scholar
[255] Pederiva, Francesco, Umrigar, C. J., and Lipparini, E. 2000. Diffusion Monte Carlo study of circular quantum dots. Phys. Rev. B, 62(12), 8120–8125.CrossRefGoogle Scholar
[256] Pekeris, C. L. 1958. Ground state of two-electron atoms. Phys. Rev., 112(5), 1649–1658.CrossRefGoogle Scholar
[257] Pérez-Jordá, José, M. 1998. Variational plane-wave calculations in adaptive coordinates. Phys. Rev. B, 58(3), 1230–1235.CrossRefGoogle Scholar
[258] Pople, J. A., Head-Gordon, M., Fox, D. J., Raghavachari, K., and Curtiss, L. A. 1989. Gaussian-1 theory: a general procedure for prediction of molecular energies. J. Chem. Phys., 90(10), 5622–5629.CrossRefGoogle Scholar
[259] Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P. 1992. Numerical Recipes in C. Cambridge University Press.Google Scholar
[260] Qian, X., Li., J., Lin, X., and Yip, S. 2006. Time-dependent density functional theory with ultrasoft pseudopotentials: real-time electron propagation across a molecular junction. Phys. Rev. B, 73(3), 035408.CrossRefGoogle Scholar
[261] Qu, F., and Hawrylak, P. 2005. Magnetic exchange interactions in quantum dots containing electrons and magnetic ions. Phys. Rev. Lett., 95(21), 217 206.CrossRefGoogle ScholarPubMed
[262] Raczkowski, D., Fong, C. Y., Schultz, P. A., Lippert, R. A., and Stechel, E. B. 2001. Unconstrained and constrained minimization, localization, and the Grassmann manifold: theory and application to electronic structure. Phys. Rev. B, 64(15), 155203.CrossRefGoogle Scholar
[263] Rapaport, D. C. 2004. The Art of Molecular Dynamics Simulation. Cambridge University Press.CrossRefGoogle Scholar
[264] Reed, V. C., and Burnett, K. 1990. Ionization of atoms in intense laser pulses using the Kramers–Henneberger transformation. Phys. Rev. A, 42(5), 3152–3155.CrossRefGoogle ScholarPubMed
[265] Reed, V. C., and Burnett, K. 1991. Role of resonances and quantum-mechanical interference in the generation of above-threshold-ionization spectra. Phys. Rev. A, 43(11), 6217–6226.CrossRefGoogle ScholarPubMed
[266] Reich, S., and Thomsen, C. 2000. Chirality dependence of the density-of-states singularities in carbon nanotubes. Phys. Rev. B, 62(7), 4273–4276.CrossRefGoogle Scholar
[267] Reich, S., Maultzsch, J., Thomsen, C., and Ordejón, P. 2002. Tight-binding description of graphene. Phys. Rev. B, 66(3), 035412.CrossRefGoogle Scholar
[268] Reimann, Stephanie, M., and Manninen, Matti 2002. Electronic structure of quantum dots. Rev. Mod. Phys., 74(4), 1283–1342.CrossRefGoogle Scholar
[269] Resta, Raffaele 1994. Macroscopic polarization in crystalline dielectrics: the geometric phase approach. Rev. Mod. Phys., 66(3), 899–915.CrossRefGoogle Scholar
[270] Reynolds, P. J., Ceperley, D. M., Alder, B. J., and Lester, W. A. 1982. Fixed-node quantum Monte Carlo for molecules. J. Chem. Phys., 77(11), 5593–5603.CrossRefGoogle Scholar
[271] Riss, U. V., and Meyer, H. D. 1993. Calculation of resonance energies and widths using the complex absorbing potential method. J. Phys. B: Atomic, Molecular and Optical Physics, 26, 4503–4535.CrossRefGoogle Scholar
[272] Riss, U. V., and Meyer, H. D. 1995. Reflection-free complex absorbing potentials. J. Phys. B: Atomic, Molecular and Optical Physics, 28, 1475–1493.CrossRefGoogle Scholar
[273] Rocca, D., Gebauer, R., Saad, Y., and Baroni, S. 2008. Turbo charging time-dependent density-functional theory with Lanczos chains. J. Chem. Phys., 128(15), 154 105.CrossRefGoogle ScholarPubMed
[274] Röhrl, A., Naraschewski, M., Schenzle, A., and Wallis, H. 1997. Transition from phase locking to the interference of independent Bose condensates: theory versus experiment. Phys. Rev. Lett., 78(22), 4143–4146.CrossRefGoogle Scholar
[275] Runge, E., and Gross, E. K. U. 1984. Density-functional theory for time-dependent systems. Phys. Rev. Lett., 52(12), 997.CrossRefGoogle Scholar
[276] Saad, Y. 1992. Numerical Methods for Large Eigenvalue Problems. Manchester University Press.Google Scholar
[277] Saito, R., Dresselhaus, G., and Dresselhaus, M. S. 1998. Physical Properties of Carbon Nanotubes. Imperial College Press.CrossRefGoogle Scholar
[278] Saito, R., Fujita, M., Dresselhaus, G., and Dresselhaus, M. S. 1992. Electronic structure of graphene tubules based on C60. Phys. Rev. B, 46(3), 1804–1811.CrossRefGoogle ScholarPubMed
[279] Sancho, M. P. L., Sancho, J. M. L., and Rubio, J. 1985. Highly convergent schemes for the calculation of bulk and surface Green functions. J. Phys. F: Metal Physics, 15(4), 851.CrossRefGoogle Scholar
[280] Sankey, Otto, F., and Niklewski, David, J. 1989. Ab initio multicenter tight-binding model for molecular-dynamics simulations and other applications in covalent systems. Phys. Rev. B, 40(6), 3979–3995.CrossRefGoogle Scholar
[281] Sanvito, S., Lambert, C. J., Jefferson, J. H., and Bratkovsky, A. M. 1999. General Green's-function formalism for transport calculations with spd Hamiltonians and giant magnetoresistance in Co- and Ni-based magnetic multilayers. Phys. Rev. B, 59(18), 11 936–11 948.CrossRefGoogle Scholar
[282] Saugout, S., Charron, E., and Cornaggia, C. 2008. H2 double ionization with few-cycle laser pulses. Phys. Rev. A, 77(2), 023 404.CrossRefGoogle Scholar
[283] Seideman, T., and Miller, W. H. 1992a. Calculation of the cumulative reaction probability via a discrete variable representation with absorbing boundary conditions. J. Chem. Phys., 96(6), 4412–4422.CrossRefGoogle Scholar
[284] Seideman, T., and Miller, W. H. 1992b. Quantum mechanical reaction probabilities via a discrete variable representation-absorbing boundary condition Green's function. J. Chem. Phys., 97(4), 2499–2514.CrossRefGoogle Scholar
[285] Seminario, J. M., Lowden, P. O., and Sabin, J. R. 1998. Advances in Density Functional Theory. Academic Press.Google Scholar
[286] Sherman, Jack, and Morrison, Winifred, J. 1950. Adjustment of an inverse matrix corresponding to a change in one element of a given matrix. Ann. Math. Stat., 21(1), 124–127.CrossRefGoogle Scholar
[287] Shirley, Jon, H. 1965. Solution of the Schrödinger equation with a Hamiltonian periodic in time. Phys. Rev., 138(4B), B979–B987.CrossRefGoogle Scholar
[288] Sholl, D. S., and Steckel, J. A. 2009. Density Functional Theory: A Practical Introduction. Wiley Interscience.CrossRefGoogle Scholar
[289] Shumway, J., and Ceperley, D. M. 2001. Quantum Monte Carlo treatment of elastic exciton–exciton scattering. Phys. Rev. B, 63(16), 165 209.CrossRefGoogle Scholar
[290] Singh, D. J., and Nordström, L. 2006. Planewaves, Pseudopotentials, and the LAPW Method. Springer-Verlag.Google Scholar
[291] Skylaris, C.-K., Diéguez, O., Haynes, P. D., and Payne, M. C. 2002. Comparison of variational real-space representations of the kinetic energy operator. Phys. Rev. B, 66(7), 073 103.CrossRefGoogle Scholar
[292] Slater, J. C. 1974. Quantum Theory of Molecules and Solids: The Self-Consistent Field for Molecules and Solids. McGraw-Hill.Google Scholar
[293] Slater, J. C., and Koster, G. F. 1954. Simplified LCAO method for the periodic potential problem. Phys. Rev., 94(6), 1498–1524.CrossRefGoogle Scholar
[294] Sleijpen, G. L. G., and Van der Vorst, H. A. 2000. A Jacobi–Davidson iteration method for linear eigenvalue problems. SIAM Review, 42(2), 267–293.CrossRefGoogle Scholar
[295] Soler, J. M, Artacho, E., Gale, J. D., et al. 2002. The SIESTA method for ab initio order-N materials simulation. J. Phys.: Condensed Matter, 14(11), 2745.Google Scholar
[296] Sørensen, H. H. B., Hansen, P. C., Petersen, D. E., Skelboe, S., and Stokbro, K. 2009. Efficient wave-function matching approach for quantum transport calculations. Phys. Rev. B, 79(20), 205 322.CrossRefGoogle Scholar
[297] Soriano, D., Jacob, D., and Palacios, J. J. 2008. Localized basis sets for unbound electrons in nanoelectronics. J. Chem. Phys., 128(7), 074108.CrossRefGoogle ScholarPubMed
[298] Stepanenko, D., and Bonesteel, N. E. 2004. Universal quantum computation through control of spin–orbit coupling. Phys. Rev. Lett., 93(14), 140 501.CrossRefGoogle ScholarPubMed
[299] Stillinger, Frank, H., and Weber, Thomas, A. 1985. Computer simulation of local order in condensed phases of silicon. Phys. Rev. B, 31(8), 5262–5271.CrossRefGoogle Scholar
[300] Stokbro, K., Taylor, J., Brandbyge, M., Mozos, J. L., and Ordejn, P. 2003. Theoretical study of the nonlinear conductance of di-thiol benzene coupled to Au(111) surfaces via thiol and thiolate bonds. Comp. Mat. Sci., 27(1–2), 151–160.CrossRefGoogle Scholar
[301] Stott, M. J., and Zaremba, E. 1980. Linear-response theory within the density-functional formalism: application to atomic polarizabilities. Phys. Rev. A, 21(1), 12–23.CrossRefGoogle Scholar
[302] Strange, M., Kristensen, I. S., Thygesen, K. S., and Jacobsen, K. W. 2008. Benchmark density functional theory calculations for nanoscale conductance. J. Chem. Phys., 128(11), 114714.CrossRefGoogle ScholarPubMed
[303] Stratmann, R. E., Scuseria, G. E., and Frisch, M. J. 1998. An efficient implementation of time-dependent density-functional theory for the calculation of excitation energies of large molecules. J. Chem. Phys., 109(19), 8218–8224.CrossRefGoogle Scholar
[304] Su, Q., and Eberly, J. H. 1991. Model atom for multiphoton physics. Phys. Rev. A, 44(9), 5997–6008.CrossRefGoogle ScholarPubMed
[305] Sundaram, Bala, and Milonni, Peter, W. 1990. High-order harmonic generation: simplified model and relevance of single-atom theories to experiment. Phys. Rev. A, 41(11), 6571–6573.CrossRefGoogle Scholar
[306] Suzuki, Masuo 1991. General theory of fractal path integrals with applications to many-body theories and statistical physics. J. Math. Phys., 32(2), 400–407.CrossRefGoogle Scholar
[307] Suzuki, Y., and Varga, K. 1998. Stochastic Variational Approach to Quantum-Mechanical Few-Body Problems. Lecture Notes in Physics, vol. m 54. Springer.Google Scholar
[308] Szafran, B., Adamowski, J., and Bednarek, S. 1999. Ground and excited states of few electron systems in spherical quantum dots. Physica E: Low-Dimensional Systems and Nanostructures, 4(1), 1–10.CrossRefGoogle Scholar
[309] Szalay, Viktor 1996. The generalized discrete variable representation. An optimal design. J. Chem. Phys., 105(16), 6940–6956.CrossRefGoogle Scholar
[310] Szego, Gabor 1939. Orthogonal Polynomials, Fourth Edition. American Mathematical Society.Google Scholar
[311] Takimoto, Y., Vila, F. D., and Rehr, J. J. 2007. Real-time time-dependent density functional theory approach for frequency-dependent nonlinear optical response in photonic molecules. J. Chem. Phys., 127(15), 154 114.CrossRefGoogle ScholarPubMed
[312] Tal-Ezer, H., and Kosloff, R. 1984. An accurate and efficient scheme for propagating the time dependent Schrödinger equation. J. Chem. Phys., 81, 3967.CrossRefGoogle Scholar
[313] Tannor, D. J. 2007. Introduction to Quantum Mechanics. University Science Books.Google Scholar
[314] Tannor, David, J., and Weeks, David, E. 1993. Wave packet correlation function formulation of scattering theory: the quantum analog of classical S-matrix theory. J. Chem. Phys., 98(5), 3884–3893.CrossRefGoogle Scholar
[315] Tarucha, S., Austing, D. G., Honda, T., van der Hage, R. J., and Kouwenhoven, L. P. 1996. Shell filling and spin effects in a few electron quantum dot. Phys. Rev. Lett., 77(17), 3613–3616.CrossRefGoogle Scholar
[316] Taut, M. 1993. Two electrons in an external oscillator potential: particular analytic solutions of a Coulomb correlation problem. Phys. Rev. A, 48(5), 3561–3566.CrossRefGoogle Scholar
[317] Taylor, J., Guo, H., and Wang, J. 2001. Ab initio modeling of quantum transport properties of molecular electronic devices. Phys. Rev. B, 63(24), 245407.CrossRefGoogle Scholar
[318] Taylor, R. J. 1972. Scattering Theory: The Quantum Theory on Nonrelativistic Collisions. Wiley.Google Scholar
[319] T. H., Dunning Jr., 1989. Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J. Chem. Phys., 90(2), 1007–1023.Google Scholar
[320] Thygesen, K. S., and Jacobsen, K. W. 2003. Four-atom period in the conductance of monatomic Al wires. Phys. Rev. Lett., 91(14), 146 801.CrossRefGoogle ScholarPubMed
[321] Thygesen, K. S., and Jacobsen, K. W. 2005. Molecular transport calculations with Wannier functions. Chem. Phys., 319(1–3), 111–125.CrossRefGoogle Scholar
[322] Tian, W., Datta, S., Hong, S., et al. 1998. Conductance spectra of molecular wires. J. Chem. Phys., 109(7), 2874–2882.CrossRefGoogle Scholar
[323] Towler, M. D., Zupan, A., and Caus, M. 1996. Density functional theory in periodic systems using local Gaussian basis sets. Comp. Phys. Commun., 98(1–2), 181–205.CrossRefGoogle Scholar
[324] Tsolakidis, A., Sánchez-Portal, D., and Martin, R. M. 2002. Calculation of the optical response of atomic clusters using time-dependent density functional theory and local orbitals. Phys. Rev. B, 66(23), 235416.CrossRefGoogle Scholar
[325] Tsuchida, E., and Tsukada, M. 1995. Real space approach to electronic-structure calculations. Solid State Commun., 94(1), 5–8.CrossRefGoogle Scholar
[326] Tsuchida, E., and Tsukada, M. 1996. Adaptive finite-element method for electronic structure calculations. Phys. Rev. B, 54(11), 7602–7605.CrossRefGoogle ScholarPubMed
[327] Umrigar, C. J., Wilson, K. G., and Wilkins, J. W. 1988. Optimized trial wave functions for quantum Monte Carlo calculations. Phys. Rev. Lett., 60(17), 1719–1722.CrossRefGoogle ScholarPubMed
[328] Umrigar, C. J., Nightingale, M. P., and Runge, K. J. 1993. A diffusion Monte Carlo algorithm with very small time-step errors. J. Chem. Phys., 99(4), 2865–2890.CrossRefGoogle Scholar
[329] van Gisbergen, S. J. A., Snijders, J. G., and Baerends, E. J. 1998. Accurate density functional calculations on frequency-dependent hyperpolarizabilities of small molecules. J. Chem. Phys., 109(24), 10 657–10 668.Google Scholar
[330] van Gisbergen, S. J. A., Snijders, J. G., and Baerends, E. J. 1999. Implementation of time-dependent density functional response equations. Comp. Phys. Commun., 118(2–3), 119–138.CrossRefGoogle Scholar
[331] van Leeuwen, Robert 1998. Causality and symmetry in time-dependent density-functional theory. Phys. Rev. Lett., 80(6), 1280–1283.CrossRefGoogle Scholar
[332] Vanderbilt, David, and Louie, Steven, G. 1984. Total energies of diamond (111) surface reconstructions by a linear combination of atomic orbitals method. Phys. Rev. B, 30(10), 6118–6130.CrossRefGoogle Scholar
[333] Van de Vondele, J., Krack, M., Mohamed, F., Parrinello, M., Chassaing, T., and Hutter, J. 2005. Quickstep: fast and accurate density functional calculations using a mixed Gaussian and plane waves approach. Comp. Phys. Commun., 167(2), 103–128.CrossRefGoogle Scholar
[334] Varga, K. 2009. R-matrix calculation of Bloch states for scattering and transport problems. Phys. Rev. B, 80(8), 085 102.CrossRefGoogle Scholar
[335] Varga, K., and Suzuki, Y. 1995. Precise solution of few-body problems with the stochastic variational method on a correlated Gaussian basis. Phys. Rev. C., 52(6), 2885–2905.CrossRefGoogle ScholarPubMed
[336] Varga, K., and Suzuki, Y. 1997. Solution of few-body problems with the stochastic variational method. I. Central forces with zero orbital momentum. Comp. Phys. Commun., 106(1–2), 157–168.CrossRefGoogle Scholar
[337] Varga, K., Navratil, P., Usukura, J., and Suzuki, Y. 2001. Stochastic variational approach to few-electron artificial atoms. Phys. Rev. B, 63(20), 205 308.CrossRefGoogle Scholar
[338] Velev, Julian, and Butler, William 2004. On the equivalence of different techniques for evaluating the Green function for a semi-infinite system using a localized basis. J. Phys.: Condensed Matter, 16(21), R637.Google Scholar
[339] Vibók, Á., and Balint-Kurti, G. G. 1992a. Reflection and transmission of waves by a complex potential – a semiclassical Jeffreys–Wentzel–Kramers–Brillouin treatment. J. Chem. Phys., 96(10), 7615–7622.CrossRefGoogle Scholar
[340] Vibók, Á., and Balint-Kurti, G. G. 1992b. Parametrization of complex absorbing potentials for time-dependent quantum dynamics. J. Phys. Chem., 96(22), 8712–8719.CrossRefGoogle Scholar
[341] Vignale, Giovanni 2004. Mapping from current densities to vector potentials in time-dependent current density functional theory. Phys. Rev. B, 70(20), 201 102.CrossRefGoogle Scholar
[342] Viswanathan, R., Shi, S., Vilallonga, E., and Rabitz, H. 1989. Calculation of scattering wave functions by a numerical procedure based on the Møller wave operator. J. Chem. Phys., 91(4), 2333–2342.CrossRefGoogle Scholar
[343] Voter, A. F. 2007. Introduction to the kinetic Monte Carlo method. In Radiation Effects in Solids, K. E., Sickafus, E. A., Kotomin, and B. P., Uberuaga (eds.), pp. 1–23, Springer.Google Scholar
[344] Wacker, O. J., Kümmel, R., and Gross, E. K. U. 1994. Time-dependent density functional theory for superconductors. Phys. Rev. Lett., 73(21), 2915–2918.CrossRefGoogle ScholarPubMed
[345] Wallace, P. R. 1947. The band theory of graphite. Phys. Rev., 71(9), 622–634.CrossRefGoogle Scholar
[346] Wang, Lin-Wang, and Zunger, Alex 1994. Dielectric constants of silicon quantum dots. Phys. Rev. Lett., 73(7), 1039–1042.CrossRefGoogle ScholarPubMed
[347] Watanabe, Naoki, and Tsukada, Masaru 2002. Efficient method for simulating quantum electron dynamics under the time-dependent Kohn–Sham equation. Phys. Rev. E, 65(3), 036 705.CrossRefGoogle ScholarPubMed
[348] Wigner, E. P., and Eisenbud, L. 1947. Higher angular momenta and long range interaction in resonance reactions. Phys. Rev., 72(1), 29–41.CrossRefGoogle Scholar
[349] Wimmer, E., Krakauer, H., Weinert, M., and Freeman, A. J. 1981. Full-potential self-consistent linearized-augmented-plane-wave method for calculating the electronic structure of molecules and surfaces: O2 molecule. Phys. Rev. B, 24(2), 864–875.CrossRefGoogle Scholar
[350] Wojs, Arkadiusz, and Hawrylak, Pawel 1996. Charging and infrared spectroscopy of self-assembled quantum dots in a magnetic field. Phys. Rev. B, 53(16), 10 841–10 845.CrossRefGoogle Scholar
[351] Xue, Y., Datta, S., and Ratner, M. A. 2001. Charge transfer and “band lineup” in molecular electronic devices: a chemical and numerical interpretation. J. Chem. Phys., 115(9), 4292–4299.CrossRefGoogle Scholar
[352] Yabana, K., and Bertsch, G. F. 1996. Time-dependent local-density approximation in real time. Phys. Rev. B, 54(7), 4484–4487.CrossRefGoogle Scholar
[353] Yabana, K., and Bertsch, G. F. 1999. Application of the time-dependent local density approximation to optical activity. Phys. Rev. A, 60(2), 1271–1279.CrossRefGoogle Scholar
[354] Yaliraki, Sophia, N., and Ratner, Mark, A. 1998. Molecule–interface coupling effects on electronic transport in molecular wires. J. Chem. Phys., 109(12), 5036–5043.CrossRefGoogle Scholar
[355] Yan, Z.-C., and Drake, G. W. F. 1995. Eigenvalues and expectation values for the 1s22s2 S, 1s22p2 P, and 1s23d2 D states of lithium. Phys. Rev. A, 52(5), 3711–3717.CrossRefGoogle Scholar
[356] Yannouleas, Constantine, and Landman, Uzi 1999. Spontaneous symmetry breaking in single and molecular quantum dots. Phys. Rev. Lett., 82(26), 5325–5328.CrossRefGoogle Scholar
[357] Yu, R., Singh, D., and Krakauer, H. 1991. All-electron and pseudopotential force calculations using the linearized-augmented-plane-wave method. Phys. Rev. B, 43(8), 6411–6422.CrossRefGoogle ScholarPubMed
[358] Zhang, J. Y., Mitroy, J., and Varga, K. 2008. Development of a confined variational method for elastic scattering. Phys. Rev. A, 78(4), 042 705.CrossRefGoogle Scholar
[359] Zhang, X., Fonseca, L., and Demkov, A. A. 2002. The application of density functional, local orbitals, and scattering theory to quantum transport. Phys. Stat. Sol. B, 233(1), 70–82.3.0.CO;2-J>CrossRefGoogle Scholar
[360] Zhou, X., and Lin, C. D. 2000. Linear-least-squares fitting method for the solution of the time-dependent Schrödinger equation: applications to atoms in intense laser fields. Phys. Rev. A, 61(5), 053411.CrossRefGoogle Scholar
[361] Zumbach, G., Modine, N. A., and Kaxiras, E. 1996. Adaptive coordinate, realspace electronic structure calculations on parallel computers. Solid State Commun., 99(2), 57–61.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Kálmán Varga, Vanderbilt University, Tennessee, Joseph A. Driscoll, Vanderbilt University, Tennessee
  • Book: Computational Nanoscience
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511736230.021
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Kálmán Varga, Vanderbilt University, Tennessee, Joseph A. Driscoll, Vanderbilt University, Tennessee
  • Book: Computational Nanoscience
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511736230.021
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Kálmán Varga, Vanderbilt University, Tennessee, Joseph A. Driscoll, Vanderbilt University, Tennessee
  • Book: Computational Nanoscience
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511736230.021
Available formats
×