Skip to main content Accessibility help
×
  • Cited by 22
Publisher:
Cambridge University Press
Online publication date:
June 2012
Print publication year:
2011
Online ISBN:
9780511736230

Book description

Computer simulation is an indispensable research tool in modeling, understanding and predicting nanoscale phenomena. However, the advanced computer codes used by researchers are too complicated for graduate students wanting to understand computer simulations of physical systems. This book gives students the tools to develop their own codes. Describing advanced algorithms, the book is ideal for students in computational physics, quantum mechanics, atomic and molecular physics, and condensed matter theory. It contains a wide variety of practical examples of varying complexity to help readers at all levels of experience. An algorithm library in Fortran 90, available online at www.cambridge.org/9781107001701, implements the advanced computational approaches described in the text to solve physical problems.

Refine List

Actions for selected content:

Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Save to Kindle
  • Save to Dropbox
  • Save to Google Drive

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.
×

Contents

References
References
[1] Abramowitz, M., and Stegun, I. A. 1964. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Dover.
[2] Adamo, Carlo, Scuseria, Gustavo, E., and Barone, Vincenzo. 1999. Accurate excitation energies from time-dependent density functional theory: assessing the PBE0 model. J. Chem. Phys., 111(7), 2889–2899.
[3] Adhikari, S. K. 2000. Numerical solution of the two-dimensional Gross–Pitaevskii equation for trapped interacting atoms. Phys. Lett. A, 265(1–2), 91–96.
[4] Alemany, M. M. G., Jain, Manish, Kronik, Leeor, and Chelikowsky, James, R. 2004. Real-space pseudopotential method for computing the electronic properties of periodic systems. Phys. Rev. B, 69(7), 075 101.
[5] Allen, M. P., and Tildesley, D. J. 1990. Computer Simulation of Liquids. Oxford University Press.
[6] Ammeter, J. H., Buergi, H. B., Thibeault, J. C., and Hoffmann, R. 1978. Counterintuitive orbital mixing in semiempirical and ab initio molecular orbital calculations. J. Amer. Chem. Soc., 100(12), 3686–3692.
[7] Andersen, Hans, C. 1980. Molecular dynamics simulations at constant pressure and/or temperature. J. Chem. Phys., 72(4), 2384–2393.
[8] Anderson, Alfred, B. 1975. Derivation of the extended Hückel method with corrections: one electron molecular orbital theory for energy level and structure determinations. J. Chem. Phys., 62(3), 1187–1188.
[9] Anderson, Alfred, B., and Hoffmann, Roald 1974. Description of diatomic molecules using one electron configuration energies with two-body interactions. J. Chem. Phys., 60(11), 4271–4273.
[10] Anderson, James, B. 1976. Quantum chemistry by random walk H2P, D3h, Be1 S. J. Chem. Phys., 65(10), 4121–4127.
[11] Anderson, M. H., Ensher, J. R., Matthews, M. R., Wieman, C. E., and Cornell, E. A. 1995. Observation of Bose–Einstein condensation in a dilute atomic vapor. Science, 269(5221), 198–201.
[12] Ando, T. 1991. Quantum point contacts in magnetic fields. Phys. Rev. B, 44(15), 8017–8027.
[13] Arfken, G. B., and Weber, H. J. 2005. Mathematical Methods for Physicists. Academic Press.
[14] Ashcroft, N. W., and Mermin, N. D. 1976. Solid State Physics. Brooks Cole.
[15] Ashoori, R. C., Stormer, H. L., Weiner, J. S., Pfeiffer, L. N., Baldwin, K. W., and West, K. W. 1993. N-electron ground state energies of a quantum dot in magnetic field. Phys. Rev. Lett., 71(4), 613–616.
[16] Askar, A., and Cakmak, A. S. 1978. Explicit integration method for the timedependent Schrödinger equation for collision problems. J. Chem. Phys., 68, 2794.
[17] Auer, J., and Krotscheck, E. 1999. A rapidly converging algorithm for solving the Kohn–Sham and related equations in electronic structure theory. Comp. Phys. Commun., 118(2–3), 139–144.
[18] Auer, J., Krotscheck, E., and Chin, Siu, A. 2001. A fourth-order real-space algorithm for solving local Schrödinger equations. J. Chem. Phys., 115(15), 6841–6846.
[19] Auerbach, Scott, M., and Leforestier, Claude. 1993. A new computational algorithm for Green's functions: Fourier transform of the Newton polynomial expansion. Comp. Phys. Commun., 78(1–2), 55–66.
[20] Baer, R. 2000. Accurate and efficient evolution of nonlinear Schrödinger equations. Phys. Rev. A, 62(6), 63 810.
[21] Baer, Roi, and Neuhauser, Daniel 2004. Real-time linear response for time-dependent density-functional theory. J. Chem. Phys., 121(20), 9803–9807.
[22] Bai, Z. 2000. Templates for the Solution of Algebraic Eigenvalue Problems. Society for Industrial Mathematics.
[23] Baker, H. C. 1983. Non-Hermitian dynamics of multiphoton ionization. Phys. Rev. Lett., 50(20), 1579–1582.
[24] Ballagh, R. J., Burnett, K., and Scott, T. F. 1997. Theory of an output coupler for Bose–Einstein condensed atoms. Phys. Rev. Lett., 78(9), 1607–1611.
[25] Bao, W., Jin, S., and Markowich, P. A. 2002. On time-splitting spectral approximations for the Schrödinger equation in the semiclassical regime. J. Comp. Phys., 175(2), 487–524.
[26] Baye, D., and Heenen, P.-H. 1986. Generalised meshes for quantum mechanical problems. J. Phys. A: Mathematical and General, 19(11), 2041–2059.
[27] Baye, D., and Vincke, M. 1999. Lagrange meshes from nonclassical orthogonal polynomials. Phys. Rev. E, 59(6), 7195–7199.
[28] Beck, Thomas, L. 2000. Real-space mesh techniques in density-functional theory. Rev. Mod. Phys., 72(4), 1041–1080.
[29] Berman, M., Kosloff, R., and Tal-Ezer, H. 1992. Solution of the time-dependent Liouville–von-Neumann equation: dissipative evolution. J. Phys. A: Mathematical and General, 25, 1283–1307.
[30] Bertsch, G. F., Iwata, J. I., Rubio, A., and Yabana, K. 2000. Real-space, real-time method for the dielectric function. Phys. Rev. B, 62(12), 7998–8002.
[31] Bhatia, A. K. 1970. Transitions (1s2p)3P-(2p2)3Pe in He and (2s2p)3P-(2p2)3Pe in H-. Phys. Rev. A, 2(5), 1667–1668.
[32] Blanes, S., Casas, F., Oteo, J. A., and Ros, J. 2009. The Magnus expansion and some of its applications. Phys. Rep., 470(5–6), 151–238.
[33] Blum, V., Gehrke, R., Hanke, F., et al. 2009. Ab initio molecular simulations with numeric atom-centered orbitals. Comp. Phys. Commun., 180(11), 2175–2196.
[34] Bockstedte, M., Kley, A., Neugebauer, J., and Scheffler, M. 1997. Density-functional theory calculations for poly-atomic systems: electronic structure, static and elastic properties and ab initio molecular dynamics. Comp. Phys. Commun., 107(1–3), 187–222.
[35] Bolton, F. 1996. Fixed-phase quantum Monte Carlo method applied to interacting electrons in a quantum dot. Phys. Rev. B, 54(7), 4780–4793.
[36] Bongs, K., Burger, S., Birkl, G., et al. 1999. Coherent evolution of bouncing Bose–Einstein condensates. Phys. Rev. Lett., 83(18), 3577–3580.
[37] Boyd, J. P. 2001. Chebyshev and Fourier Spectral Methods, Second Edition. Dover Publications.
[38] Bradley, C. C., Sackett, C. A., and Hulet, R. G. 1997. Bose–Einstein condensation of lithium: observation of limited condensate number. Phys. Rev. Lett., 78(6), 985–989.
[39] Briggs, E. L., Sullivan, D. J., and Bernholc, J. 1996. Real-space multigrid-based approach to large-scale electronic structure calculations. Phys. Rev. B, 54(20), 14362–14375.
[40] Broeckhove, J., Lathouwers, L., Kesteloot, E., and Van Leuven, P. 1988. On the equivalence of time-dependent variational principles. Chem. Phys. Lett., 149(5–6), 547–550.
[41] Brouard, S., Macias, D., and Muga, J. G. 1994. Perfect absorbers for stationary and wavepacket scattering. J. Phys. A: Mathematical and General, 27, L439–L445.
[42] Bruce, N. A., and Maksym, P. A. 2000. Quantum states of interacting electrons in a real quantum dot. Phys. Rev. B, 61(7), 4718–4726.
[43] Bubin, Sergiy, and Adamowicz, Ludwik 2006. Nonrelativistic variational calculations of the positronium molecule and the positronium hydride. Phys. Rev. A, 74(5), 052 502.
[44] Burdick, W. R., Saad, Y., Kronik, L., Vasiliev, I., Jain, M., and Chelikowsky, J. R. 2003. Parallel implementation of time-dependent density functional theory. Comp. Phys. Commun., 156(1), 22–42.
[45] Burke, Kieron, Werschnik, Jan, and Gross, E. K. U. 2005. Time-dependent density functional theory: past, present, and future. J. Chem. Phys., 123(6), 062 206.
[46] Büttiker, M., Thomas, H., and Prêtre, A. 1994. Current partition in multiprobe conductors in the presence of slowly oscillating external potentials. Z. Phys. B, Condensed Matter, 94(1), 133–137.
[47] Calzaferri, G., Forss, L., and Kamber, I. 1989. Molecular geometries by the extended Hückel molecular orbital (EHMO) method. J. Phys. Chem., 93(14), 5366–5371.
[48] Calzolari, Arrigo, Cavazzoni, Carlo, and Nardelli, Marco 2004. Electronic and transport properties of artificial gold chains. Phys. Rev. Lett., 93(9), 096 404.
[49] Cann, Natalie Mary, and Thakkar, Ajit, J. 1992. Oscillator strengths for S–P and P–D transitions in heliumlike ions. Phys. Rev. A, 46(9), 5397–5405.
[50] Canning, A., Wang, L. W., Williamson, A., and Zunger, A. 2000. Parallel empirical pseudopotential electronic structure calculations for million atom systems. J. Comp. Phys., 160(1), 29–41.
[51] Casida, M. E., Jamorski, C., Casida, K. C., and Salahub, D. R. 1998. Molecular excitation energies to high-lying bound states from time-dependent density-functional response theory: characterization and correction of the time-dependent local density approximation ionization threshold. J. Chem. Phys., 108(11), 4439–4449.
[52] Castro, Alberto, Marques, Miguel, A. L., and Rubio, Angel 2004. Propagators for the time-dependent Kohn–Sham equations. J. Chem. Phys., 121(8), 3425–3433.
[53] Cencek, Wojciech, and Kutzelnigg, Werner 1996. Accurate relativistic energies of oneand two-electron systems using Gaussian wave functions. J. Chem. Phys., 105(14), 5878–5885.
[54] Cencek, Wojciech, Komasa, Jacek, and Rychlewski, Jacek 1995. Benchmark calculations for two-electron systems using explicitly correlated Gaussian functions. Chem. Phys. Lett., 246(4–5), 417–420.
[55] Ceperley, D., Chester, G. V., and Kalos, M. H. 1977. Monte Carlo simulation of a many-fermion study. Phys. Rev. B, 16(7), 3081–3099.
[56] Ceperley, D. M., and Alder, B. J. 1984. Quantum Monte Carlo for molecules: Green's function and nodal release. J. Chem. Phys., 81(12), 5833–5844.
[57] Cerimele, M. M., Chiofalo, M. L., Pistella, F., Succi, S., and Tosi, M. P. 2000a. Numerical solution of the Gross–Pitaevskii equation using an explicit finite-difference scheme: an application to trapped Bose–Einstein condensates. Phys. Rev. E, 62(1), 1382–1389.
[58] Cerimele, M. M., Pistella, F., and Succi, S. 2000b. Particle-inspired scheme for the Gross–Pitaevski equation: an application to Bose–Einstein condensation. Comp. Phys. Commun., 129(1–3), 82–90.
[59] Chelikowsky, James, R., and Louie, Steven, G. 1984. First-principles linear combination of atomic orbitals method for the cohesive and structural properties of solids: application to diamond. Phys. Rev. B, 29(6), 3470–3481.
[60] Chelikowsky, J. R., Troullier, N., and Saad, Y. 1994. Finite-difference-pseudopotential method: electronic structure calculations without a basis. Phys. Rev. Lett., 72(8), 1240–1243.
[61] Chelikowsky, J. R., Troullier, N., Wu, K., and Saad, Y. 1994. Higher-order finitedifference pseudopotential method: an application to diatomic molecules. Phys. Rev. B, 50(16), 11 355–11 364.
[62] Chicone, Carmen 1999. Ordinary Differential Equations with Applications. Springer-Verlag.
[63] Child, M. S. 1991. Analysis of a complex absorbing barrier. Molecular Phys., 72(1), 89–93.
[64] Chin, Siu, A. 1997. Symplectic integrators from composite operator factorizations. Phys. Lett. A, 226(6), 344–348.
[65] Chu, Xi, and Chu, Shih-I. 2001. Time-dependent density-functional theory for molecular processes in strong fields: study of multiphoton processes and dynamical response of individual valence electrons of N2 in intense laser fields. Phys. Rev. A, 64(6), 063 404.
[66] Condon, E. U. 1937. Theories of optical rotatory power. Rev. Mod. Phys., 9(4), 432–457.
[67] Dalfovo, F., and Stringari, S. 1996. Bosons in anisotropic traps: ground state and vortices. Phys. Rev. A, 53(4), 2477–2485.
[68] Dalfovo, F., Giorgini, S., Pitaevskii, L. P., and Stringari, S. 1999. Theory of Bose–Einstein condensation in trapped gases. Rev. Mod. Phys., 71(3), 463–512.
[69] Datta, S. 1997. Electronic Transport in Mesoscopic Systems. Cambridge University Press.
[70] Davidson, E. R., 1975. Note. The iterative calculation of a few of the lowest eigenvalues and corresponding eigenvectors of large real-symmetric matrices. J. Comp. Phys., 17, 87–94.
[71] Davidson, E. R., Hagstrom, S. A., Chakravorty, S. J., Umar, V. M., and Fischer, C. F. 1991. Ground-state correlation energies for two-to ten-electron atomic ions. Phys. Rev. A, 44(11), 7071–7083.
[72] Davis, K. B., Mewes, M. O., Andrews, M. R., van Druten, N. J., Durfee, D. S., Kurn, D. M., and Ketterle, W. 1995. Bose–Einstein condensation in a gas of sodium atoms. Phys. Rev. Lett., 75(22), 3969–3973.
[73] Delley, B. 2000. From molecules to solids with the DMol3 approach. J. Chem. Phys., 113(18), 7756–7764.
[74] Demmel, J., Dongarra, J., Ruhe, A., van der Vorst, H., and Bai, Z. 2000. Templates for the Solution of Algebraic Eigenvalue Problems: A Practical Guide. SIAM Software, Environments, and Tools Series.
[75] Derosa, P. A., and Seminario, J. M. 2001. Electron transport through single molecules: scattering treatment using density functional and green function theories. J. Phys. Chem. B, 105(2), 471–481.
[76] Devenyi, A., Cho, K., Arias, T. A., and Joannopoulos, J. D. 1994. Adaptive Riemannian metric for all-electron calculations. Phys. Rev. B, 49(19), 13 373–13 376.
[77] Dhara, Asish, K., and Ghosh, Swapan, K. 1987. Density-functional theory for timedependent systems. Phys. Rev. A, 35(1), 442–444.
[78] Di Ventra, Massimiliano 2008. Electrical Transport in Nanoscale Systems. Cambridge University Press.
[79] Di Ventra, M., Pantelides, S. T., and Lang, N. D. 2000. First-principles calculation of transport properties of a molecular device. Phys. Rev. Lett., 84(5), 979–982.
[80] Dodd, R. J. 1996. Approximate solutions of the nonlinear Schrödinger equation for ground and excited states of Bose–Einstein condensates. J. Res. Nat. Inst. Stand. Technol., 101(4), 545–552.
[81] Doltsinis, Nikos, L., and Sprik, Michiel 2000. Electronic excitation spectra from timedependent density functional response theory using plane-wave methods. Chem. Phys. Lett., 330(5–6), 563–569.
[82] Drake, G. W. F., and Yan, Zong-Chao 1992. Energies and relativistic corrections for the Rydberg states of helium: Variational results and asymptotic analysis. Phys. Rev. A, 46(5), 2378–2409.
[83] Drummond, P. D., and Kheruntsyan, K. V. 2000. Asymptotic solutions to the Gross–Pitaevskii gain equation: growth of a Bose–Einstein condensate. Phys. Rev. A, 63(1), 013605.
[84] Edwards, Mark, and Burnett, K. 1995. Numerical solution of the nonlinear Schrödinger equation for small samples of trapped neutral atoms. Phys. Rev. A, 51(2), 1382–1386.
[85] Egger, R., Häusler, W., Mak, C. H., and Grabert, H. 1999. Crossover from Fermi liquid to Wigner molecule behavior in quantum dots. Phys. Rev. Lett., 82(16), 3320–3323.
[86] Elstner, M., Porezag, D., Jungnickel, G., et al. 1998. Self-consistent-charge densityfunctional tight-binding method for simulations of complex materials properties. Phys. Rev. B, 58(11), 7260–7268.
[87] Emberly, Eldon, G., and Kirczenow, George. 2001. Models of electron transport through organic molecular monolayers self-assembled on nanoscale metallic contacts. Phys. Rev. B, 64(23), 235 412.
[88] Faleev, S. V., Léonard, F., Stewart, D. A., and van Schilfgaarde, M. 2005. Ab initio tight-binding LMTO method for nonequilibrium electron transport in nanosystems. Phys. Rev. B, 71(19), 195 422.
[89] Feit, M. D., and Fleck, J. A. Jr., 1983. Solution of the Schrödinger equation by a spectral method II: vibrational energy levels of triatomic molecules. J. Chem. Phys., 78(1), 301–308.
[90] Feit, M. D., J. A., Fleck Jr., and Steiger, A. 1982. Solution of the Schrödinger equation by a spectral method. J. Comput. Phys., 47(3), 412–433.
[91] Fetter, Alexander, L. 1996. Ground state and excited states of a confined condensed Bose gas. Phys. Rev. A, 53(6), 4245–4249.
[92] Filippi, Claudia, and Umrigar, C. J. 1996. Multiconfiguration wave functions for quantum Monte Carlo calculations of first-row diatomic molecules. J. Chem. Phys., 105(1), 213–226.
[93] Fiolhais, C., Nogueira, F., and Marques, M. (eds.) 2003. A Primer in Density Functional Theory. Lecture Notes in Physics, vol. 620. Springer-Verlag.
[94] Foulkes, W.Matthew, C., and Haydock, Roger 1989. Tight-binding models and density-functional theory. Phys. Rev. B, 39(17), 12 520–12 536.
[95] Frediani, L., Rinkevicius, Z., and Ågren, H. 2005. Two-photon absorption in solution by means of time-dependent density-functional theory and the polarizable continuum model. J. Chem. Phys., 122(24), 244 104.
[96] Frenkel, D., and Smit, B. 2002. Understanding Molecular Simulation, Second Edition: From Algorithms to Applications. Academic Press.
[97] Frigo, Matteo, and Johnson, Steven, G. 2005. The design and implementation of FFTW3. Proc. IEEE, 93(2), 216–231. Special issue on program generation, optimization, and platform adaptation.
[98] Frolov, Alexei, M., and Smith, Vedene, H. 1994. One-photon annihilation in the Ps- ion and the angular (e-, e-) correlation in two-electron ions. Phys. Rev. A, 49(5), 3580–3585.
[99] Fuchs, Martin, and Scheffler, Matthias 1999. Ab initio pseudopotentials for electronic structure calculations of poly-atomic systems using density-functional theory. Comp. Phys. Commun., 119(1), 67–98.
[100] Fujimoto, Yoshitaka, and Hirose, Kikuji 2003. First-principles treatments of electron transport properties for nanoscale junctions. Phys. Rev. B, 67(19), 195 315.
[101] Fujito, M., Natori, A., and Yasunaga, H. 1996. Many-electron ground states in anisotropic parabolic quantum dots. Phys. Rev. B, 53(15), 9952–9958.
[102] Füsti-Molnár, László, and Pulay, Peter 2002. The Fourier transform Coulomb method: efficient and accurate calculation of the Coulomb operator in a Gaussian basis. J. Chem. Phys., 117(17), 7827–7835.
[103] Geim, A. K., and Novoselov, K. S. 2007. The rise of graphene. Nature Materials, 6, 183–191.
[104] Goedecker, Stefan 1999. Linear scaling electronic structure methods. Rev. Mod. Phys., 71(4), 1085–1123.
[105] Golub, G. H., and Van Loan, C. F. 1996. Matrix computations. Johns Hopkins University Press.
[106] Golub, Gene, H., and Welsch, John, H. 1969. Calculation of Gauss quadrature rules. Math. Comp. 23, 221–230; addendum, ibid., 23(106, loose microfiche suppl.), A1–A10.
[107] Gonze, X., Ghosez, Ph., and Godby, R. W. 1995. Density–polarization functional theory of the response of a periodic insulating solid to an electric field. Phys. Rev. Lett., 74(20), 4035–4038.
[108] Gonze, X., Beuken, J. M., Caracas, R., et al. 2002. First-principles computation of material properties: the ABINIT software project. Comput. Mat. Sci., 25(3), 478–492.
[109] Goringe, C. M., Bowler, D. R., and Hernandez, E. 1997. Tight-binding modelling of materials. Rep. Progr. Phys., 60(12), 1447.
[110] Görling, Andreas 1996. Density-functional theory for excited states. Phys. Rev. A, 54(5), 3912–3915.
[111] Gramespacher, Thomas, and Büttiker, Markus 2000. Distribution functions and current–current correlations in normal-metal–superconductor heterostructures. Phys. Rev. B, 61(12), 8125–8132.
[112] Greene, Chris, H. 1983. Atomic photoionization in a strong magnetic field. Phys. Rev. A, 28(4), 2209–2216.
[113] Griebel, M., Knapek, S., and Zumbusch, G. W. 2007. Numerical Simulation in Molecular Dynamics: Numerics, Algorithms, Parallelization, Applications. Springer Verlag.
[114] Griffin, A., Snoke, D. W., and Stringari, S. (eds.) 1996. Bose–Einstein Condensation. Cambridge University Press.
[115] Gross, E. K. U., and Kohn, Walter 1985. Local density-functional theory of frequencydependent linear response. Phys. Rev. Lett., 55(26), 2850–2852.
[116] Gygi, F. 1993. Electronic-structure calculations in adaptive coordinates. Phys. Rev. B, 48(16), 11 692–11 700.
[117] Gygi, François 1995. Ab initio molecular dynamics in adaptive coordinates. Phys. Rev. B, 51(16), 11 190–11 193.
[118] Gygi, François, and Galli, Giulia 1995. Real-space adaptive-coordinate electronicstructure calculations. Phys. Rev. B, 52(4), R2229–R2232.
[119] Haile, J. M. 1997. Molecular Dynamics Simulation: Elementary Methods. Wiley Interscience.
[120] Halasz, G. J., and Vibok, A. 2003. Comparison of the imaginary and complex absorbing potentials using multistep potential method. Int. J. Quantum Chem., 92(2), 168–173.
[121] Ham, F. S., and Segall, B. 1961. Energy bands in periodic lattices – Green's function method. Phys. Rev., 124(6), 1786–1796.
[122] Hamann, D. R. 1995a. Application of adaptive curvilinear coordinates to the electronic structure of solids. Phys. Rev. B, 51(11), 7337–7340.
[123] Hamann, D. R. 1995b. Band structure in adaptive curvilinear coordinates. Phys. Rev. B, 51(15), 9508–9514.
[124] Hamann, D. R. 1996. Generalized-gradient functionals in adaptive curvilinear coordinates. Phys. Rev. B, 54(3), 1568–1574.
[125] Hamann, D. R. 2001. Comparison of global and local adaptive coordinates for density-functional calculations. Phys. Rev. B, 63(7), 075 107.
[126] Hardin, R. H., and Tappert, F. D. 1973. Applications of the split-step Fourier method to the numerical solution of nonlinear and variable coefficient wave equations. SIAM Rev., 15(423), 0–021.
[127] Harju, A., Sverdlov, V. A., Nieminen, R. M., and Halonen, V. 1999. Many-body wave function for a quantum dot in a weak magnetic field. Phys. Rev. B, 59(8), 5622–5626.
[128] Harris, J. 1985. Simplified method for calculating the energy of weakly interacting fragments. Phys. Rev. B, 31(4), 1770–1779.
[129] Havu, P., Torsti, T., Puska, M. J., and Nieminen, R. M. 2002. Conductance oscillations in metallic nanocontacts. Phys. Rev. B, 66(7), 075401.
[130] Hawrylak, Pawel 1993. Single-electron capacitance spectroscopy of few-electron artificial atoms in a magnetic field: theory and experiment. Phys. Rev. Lett., 71(20), 3347–3350.
[131] Hawrylak, Pawel, and Pfannkuche, Daniela 1993. Magnetoluminescence from correlated electrons in quantum dots. Phys. Rev. Lett., 70(4), 485–488.
[132] Hazi, Andrew, U., and Taylor, Howard, S. 1970. Stabilization method of calculating resonance energies: model problem. Phys. Rev. A, 1(4), 1109–1120.
[133] Hehre, W. J., Stewart, R. F., and Pople, J. A. 1969. Self-consistent molecular-orbital methods. I. Use of Gaussian expansions of Slater-type atomic orbitals. J. Chem. Phys., 51(6), 2657–2664.
[134] Heiskanen, M., Torsti, T., Puska, M. J., and Nieminen, R. M. 2001. Multigrid method for electronic structure calculations. Phys. Rev. B, 63(24), 245 106.
[135] Heller, Eric, J. 1975. Time-dependent approach to semiclassical dynamics. J. Chem. Phys., 62(4), 1544–1555.
[136] Hine, N. D. M., Haynes, P. D., Mostofi, A. A., Skylaris, C.-K., and Payne, M. C. 2009. Linear-scaling density-functional theory with tens of thousands of atoms: expanding the scope and scale of calculations with ONETEP. Comp. Phys. Commun., 180(7), 1041–1053.
[137] Hirata, So, and Head-Gordon, Martin 1999. Time-dependent density functional theory within the Tamm–Dancoff approximation. Chem. Phys. Lett., 314(3–4), 291–299.
[138] Hirose, K., Ono, T., Fujimoto, Y., and Tsukamoto, S. 2005. First-Principles Calculations in Real-Space Formalism. Imperial College Press.
[139] Hirose, Kenji, and Wingreen, Ned, S. 1999. Spin-density-functional theory of circular and elliptical quantum dots. Phys. Rev. B, 59(7), 4604–4607.
[140] Hirsch, J. E. 1983. Discrete Hubbard–Stratonovich transformation for fermion lattice models. Phys. Rev. B, 28(7), 4059–4061.
[141] Hirsch, J. E. 1985. Two-dimensional Hubbard model: numerical simulation study. Phys. Rev. B, 31(7), 4403–4419.
[142] Ho, Kai-Ming, Ihm, J., and Joannopoulos, J. D. 1982. Dielectric matrix scheme for fast convergence in self-consistent electronic-structure calculations. Phys. Rev. B, 25(6), 4260–4262.
[143] Ho, Y. K. 1993. Variational calculation of ground-state energy of positronium negative ions. Phys. Rev. A, 48(6), 4780–4783.
[144] Hodgson, P. E. 1963. The Optical Model of Elastic Scattering. Clarendon Press.
[145] Hoffman, D. K., Huang, Y., Zhu, W., and Kouri, D. J. 1994. Further analysis of solutions to the time-independent wave packet equations for quantum dynamics: general initial wave packets. J. Chem. Phys., 101, 1242.
[146] Hoffmann, Roald 1963. An extended Hückel theory. I. Hydrocarbons. J. Chem. Phys., 39(6), 1397–1412.
[147] Hoffmann, Roald, and Lipscomb, William, N. 1962a. Boron hydrides: LCAO–MO and resonance studies. J. Chem. Phys., 37(12), 2872–2883.
[148] Hoffmann, Roald, and Lipscomb, William, N. 1962b. Theory of polyhedral molecules. I. Physical factorizations of the secular equation. J. Chem. Phys., 36(8), 2179–2189.
[149] Hohenberg, P., and Kohn, W. 1964. Inhomogeneous electron gas. Phys. Rev., 136(3B), B864–B871.
[150] Hoover, William, G. 1985. Canonical dynamics: equilibrium phase-space distributions. Phys. Rev. A, 31(3), 1695–1697.
[151] Hoston, William, and You, L. 1996. Interference of two condensates. Phys. Rev. A, 53(6), 4254–4256.
[152] Hu, Chunping, Hirai, Hirotoshi, and Sugino, Osamu 2007. Nonadiabatic couplings from time-dependent density functional theory: formulation in the Casida formalism and practical scheme within modified linear response. J. Chem. Phys., 127(6), 064 103.
[153] Ihm, J., Zunger, A., and Cohen, M. L. 1979. Momentum-space formalism for the total energy of solids. J. Phys. C: Solid State Physics, 12(21), 4409.
[154] Iwata, J.-I., Yabana, K., and Bertsch, G. F. 2001. Real-space computation of dynamic hyperpolarizabilities. J. Chem. Phys., 115(19), 8773–8783.
[155] Jäckle, A., and Meyer, H.-D. 1996. Time-dependent calculation of reactive flux employing complex absorbing potentials: general aspects and application within the multiconfiguration time-dependent Hartree wave approach. J. Chem. Phys., 105(16), 6778–6786.
[156] Jamorski, Christine, Casida, Mark, E., and Salahub, Dennis, R. 1996. Dynamic polarizabilities and excitation spectra from a molecular implementation of time-dependent density-functional response theory: N2 as a case study. J. Chem. Phys., 104(13), 5134–5147.
[157] Jang, J. I., and Wolfe, J. P. 2005. Biexcitons in the semiconductor Cu2O: an explanation of the rapid decay of excitons. Phys. Rev. B, 72(24), 241 201.
[158] Jansen, Robert, W., and Sankey, Otto, F. 1987. Ab initio linear combination of pseudoatomic-orbital scheme for the electronic properties of semiconductors: results for ten materials. Phys. Rev. B, 36(12), 6520–6531.
[159] Jarillo-Herrero, P., Kong, J., van der Zant, H. S. J., Dekker, C., Kouwenhoven, L. P., and De Franceschi, S. 2005. Electronic transport spectroscopy of carbon nanotubes in a magnetic field. Phys. Rev. Lett., 94(15), 156 802.
[160] Jing, X., Troullier, N., Dean, D., et al. 1994. Ab initio molecular-dynamics simulation of Si clusters using the higher-order finite-difference-pseudopotential method. Phys. Rev. B, 50(16), 12 234–12 237.
[161] Johnsson, P., López-Martens, R., Kazamias, S., et al. 2005. Attosecond electron wave packet dynamics in strong laser fields. Phys. Rev. Lett., 95(1), 013 001.
[162] Jolicard, Georges, and Austin, Elizabeth, J. 1985. Optical potential stabilisation method for predicting resonance levels. Chem. Phys. Lett., 121(1–2), 106–110.
[163] Jones, R. O., and Gunnarsson, O. 1989. The density functional formalism, its applications and prospects. Rev. Mod. Phys., 61(3), 689–746.
[164] Jorio, A., Saito, R., Hafner, J. H., et al. 2001. Structural (n,m) determination of isolated single-wall carbon nanotubes by resonant Raman scattering. Phys. Rev. Lett., 86(6), 1118–1121.
[165] Joubert, D. P. (ed.) 1998. Density Functionals: Theory and Applications. Lecture Notes in Physics, vol. 500. Springer-Verlag.
[166] Junquera, J., Paz, Ó., Sánchez-Portal, D., and Artacho, E. 2001. Numerical atomic orbitals for linear-scaling calculations. Phys. Rev. B, 64(23), 235 111.
[167] Kanwal, R. P. 1997. Linear Integral Equations. Birkhauser.
[168] Kawashita, Y., Nakatsukasa, T., and Yabana, K. 2009. Time-dependent densityfunctional theory simulation for electron–ion dynamics in molecules under intense laser pulses. J. Phys.: Condensed Matter, 21(6), 064 222.
[169] Ke, San-Huang, Baranger, Harold, U., and Yang, Weitao 2004. Electron transport through molecules: self-consistent and non-self-consistent approaches. Phys. Rev. B, 70(8), 085 410.
[170] Kemp, M., Mujica, V., and Ratner, M. A. 1994. Molecular electronics: disordered molecular wires. J. Chem. Phys., 101(6), 5172–5178.
[171] Kendall, R. A., Apra, E., Bernholdt, D. E., et al. 2000. High performance computational chemistry: an overview of NWChem, a distributed parallel application. Comp. Phys. Commun., 128(1–2), 260–283.
[172] Kent, P. R. C. 1999. Techniques and applications of quantum Monte Carlo. Ph.D. thesis, Cambridge University.
[173] Kent, P. R. C., Needs, R. J., and Rajagopal, G. 1999. Monte Carlo energy and varianceminimization techniques for optimizing many-body wave functions. Phys. Rev. B, 59(19), 12 344–12 351.
[174] Kerker, G. P. 1981. Efficient iteration scheme for self-consistent pseudopotential calculations. Phys. Rev. B, 23(6), 3082–3084.
[175] Khomyakov, P. A., and Brocks, G. 2004. Real-space finite-difference method for conductance calculations. Phys. Rev. B, 70(19), 195 402.
[176] King-Smith, R. D., Payne, M. C., and Lin, J. S. 1991. Real-space implementation of nonlocal pseudopotentials for first-principles total-energy calculations. Phys. Rev. B, 44(23), 13 063–13 066.
[177] Kleinman, Leonard, and Bylander, D. M. 1982. Efficacious form for model pseudopotentials. Phys. Rev. Lett., 48(20), 1425–1428.
[178] Knyazev, A. V. 2002. Toward the optimal preconditioned eigensolver: locally optimal block preconditioned conjugate gradient method. SIAM J. Scientific Comput., 23(2), 517–541.
[179] Kobayashi, Nobuhiko, Brandbyge, Mads, and Tsukada, Masaru 2000. First-principles study of electron transport through monatomic Al and Na wires. Phys. Rev. B, 62(12), 8430–8437.
[180] Kohn, W. 1948. Variational methods in nuclear collision problems. Phys. Rev., 74(12), 1763–1772.
[181] Kohn, W., and Sham, L. J. 1965. Self-consistent equations including exchange and correlation effects. Phys. Rev., 140(4A), A1133–A1138.
[182] Komzsik, L. 2003. The Lanczos Method: Evolution and Application. Society for Industrial Mathematics.
[183] Kootstra, F., de Boeij, P. L., and Snijders, J. G. 2000. Efficient real-space approach to time-dependent density functional theory for the dielectric response of nonmetallic crystals. J. Chem. Phys., 112(15), 6517–6531.
[184] Koskinen, M., Manninen, M., and Reimann, S. M. 1997. Hund's rules and spin density waves in quantum dots. Phys. Rev. Lett., 79(7), 1389–1392.
[185] Kosloff, D., and Kosloff, R. 1983. A Fourier method solution for the time dependent Schrödinger equation as a tool in molecular dynamics. J. Comp. Phys., 52(1), 35–53.
[186] Kosloff, R. 1988. Time-dependent quantum-mechanical methods for molecular dynamics. J. Phys. Chem., 92(8), 2087–2100.
[187] Kosloff, R. 1994. Propagation methods for quantum molecular dynamics. Ann. Rev. Phys. Chem., 45(1), 145–178.
[188] Kosloff, R., and Kosloff, D. 1986. Absorbing boundaries for wave propagation problems. J. Comp. Phys., 63(2), 363–376.
[189] Kreller, F., Lowisch, M., Puls, J., and Henneberger, F. 1995. Role of biexcitons in the stimulated emission of wide-Gap II–VI quantum wells. Phys. Rev. Lett., 75(12), 2420–2423.
[190] Kresse, G., and Furthmüller, J. 1996. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B, 54(16), 11 169–11 186.
[191] Kresse, G., and Hafner, J. 1993. Ab initio molecular dynamics for liquid metals. Phys. Rev. B, 47(1), 558–561.
[192] Kronig, R. L., and Penney, W. G. 1931. Quantum mechanics of electrons in crystal lattices. Proc. Roy. Soc. London, Series A, 130(814), 499–513.
[193] Kruppa, A. T., and Nazarewicz, W. 2004. Gamow and R-matrix approach to proton emitting nuclei. Phys. Rev. C, 69(5), 054 311.
[194] Kurth, S., Stefanucci, G., Almbladh, C.-O., Rubio, A., and Gross, E. K. U. 2005. Time-dependent quantum transport: a practical scheme using density functional theory. Phys. Rev. B, 72(3), 035 308.
[195] Langhoff, P. W., Epstein, S. T., and Karplus, M. 1972. Aspects of time-dependent perturbation theory. Rev. Mod. Phys., 44(3), 602–644.
[196] Le Rouzo, Hervé 2003. Variational R-matrix method for quantum tunneling problems. Amer. J. Physics, 71(3), 273–278.
[197] Le Rouzo, H., and Raseev, G. 1984. Finite-volume variational method: first application to direct molecular photoionization. Phys. Rev. A, 29(3), 1214–1223.
[198] Légaré, F., Litvinyuk, I. V., Dooley, P. W., et al. 2003. Time-resolved double ionization with few cycle laser pulses. Phys. Rev. Lett., 91(9), 093 002.
[199] Léger, Y., Besombes, L., Fernández-Rossier, J., Maingault, L., and Mariette, H. 2006. Electrical control of a single Mn atom in a quantum dot. Phys. Rev. Lett., 97(10), 107 401.
[200] Li, X.-P., Nunes, R. W., and Vanderbilt, David 1993. Density-matrix electronic-structure method with linear system-size scaling. Phys. Rev. B, 47(16), 10891–10894.
[201] Lide, D. R. (ed.) 2009. CRC Handbook of Chemistry and Physics Ninetieth Edition. CRC Press.
[202] Liu, Yi, Yarne Dawn, A., and Tuckerman Mark, E. 2003. Ab initio molecular dynamics calculations with simple, localized, orthonormal real-space basis sets. Phys. Rev. B., 68(12), 125110.
[203] Macías, D., Brouard, S., and Muga, J. G. 1994. Optimization of absorbing potentials. Chem. Phys. Lett., 228(6), 672–677.
[204] Maitra, Neepa, T., Zhang, Fan, Cave, Robert, J., and Burke, Kieron 2004. Double excitations within time-dependent density functional theory linear response. J. Chem. Phys., 120(13), 5932–5937.
[205] Maksym, P. A., and Chakraborty, Tapash 1990. Quantum dots in a magnetic field: role of electron–electron interactions. Phys. Rev. Lett., 65(1), 108–111.
[206] Manolopoulos, D. E. 2002. Derivation and reflection properties of a transmission-free absorbing potential. J. Chem. Phys., 117, 9552.
[207] Maragakis, P., Soler, José, and Kaxiras, Efthimios 2001. Variational finite-difference representation of the kinetic energy operator. Phys. Rev. B, 64(19), 193101.
[208] Marini, Andrea, Del Sole, Rodolfo, and Rubio, Angel 2003. Bound excitons in time-dependent density-functional theory: optical and energy-loss spectra. Phys. Rev. Lett., 91(25), 256 402.
[209] Marques, M. A. L., Castro, A., Bertsch, G. F., and Rubio, A. 2003. Octopus: a first-principles tool for excited electron-ion dynamics. Comp. Phys. Commun., 151(1), 60–78.
[210] Marston, C. C., and Balint-Kurti, G. G. 1989. The Fourier grid Hamiltonian method for bound state eigenvalues and eigenfunctions. J. Chem. Phys., 91(6), 3571–3576.
[211] Martikainen, J.-P., Suominen, K.-A., Santos, L., Schulte, T., and Sanpera, A. 2001. Generation and evolution of vortex–antivortex pairs in Bose–Einstein condensates. Phys. Rev. A, 64(6), 063 602.
[212] Martyna, Glenn, J., and Tuckerman, Mark, E. 1999. A reciprocal space based method for treating long range interactions in ab initio and force-field-based calculations in clusters. J. Chem. Phys., 110(6), 2810–2821.
[213] Marx, D., and Hutter, J. 2009. Ab Initio Molecular Dynamics: Basic Theory and Advanced Methods. Cambridge University Press.
[214] Matthews, M. R., Anderson, B. P., Haljan, P. C., et al. 1999. Watching a superfluid untwist itself: recurrence of Rabi oscillations in a Bose–Einstein condensate. Phys. Rev. Lett., 83(17), 3358–3361.
[215] Mauri, Francesco, and Galli, Giulia 1994. Electronic-structure calculations and molecular-dynamics simulations with linear system-size scaling. Phys. Rev. B, 50(7), 4316–4326.
[216] Mayer, A. 2006. Finite-difference calculation of the Green's function of a one-dimensional crystal: application to the Krönig–Penney potential. Phys. Rev. E, 74(4), 046 708.
[217] McCullough, Edward, A., and Wyatt, Robert, E. 1969. Quantum dynamics of the collinear (H, H2) reaction. J. Chem. Phys., 51(3), 1253–1254.
[218] Messiah, Albert 1999. Quantum Mechanics. Dover Publications.
[219] Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., and Teller, E. 1953. Equation of state calculations by fast computing machines. J. Chem. Phys., 21(6), 1087–1092.
[220] Meurant, G. A. 2006. The Lanczos and Conjugate Gradient Algorithms: From Theory to Finite Precision Computations. Society for Industrial Mathematics.
[221] Meyer, H. D., and Walter, O. 1982. On the calculation of S-matrix poles using the Siegert method. J. Phys. B: Atomic and Molecular Physics, 15, 3647–3668.
[222] Miller, W. H. 1993. Beyond transition-state theory: a rigorous quantum theory of chemical reaction rates. Acc. Chem. Res., 26(4), 174–181.
[223] Modine, N. A., Zumbach, Gil, and Kaxiras, Efthimios 1997. Adaptive-coordinate real-space electronic-structure calculations for atoms, molecules, and solids. Phys. Rev. B, 55(16), 10 289–10 301.
[224] Modugno, M., Dalfovo, F., Fort, C., Maddaloni, P., and Minardi, F. 2000. Dynamics of two colliding Bose–Einstein condensates in an elongated magnetostatic trap. Phys. Rev. A, 62(6), 063 607.
[225] Moiseyev, N., Certain, P. R., and Weinhold, F. 1978. Resonance properties of complex-rotated hamiltonians. Molecular Phys., 36(6), 1613–1630.
[226] Morgan, R. B. 1990. Davidson's method and preconditioning for generalized eigenvalue problems. J. Comp. Phys., 89(1), 245.
[227] Morse, Philip, M. 1929. Diatomic molecules according to the wave mechanics. II. Vibrational levels. Phys. Rev., 34(1), 57–64.
[228] Morse, P. M., and Feshbach, H. 1953. Methods of Theoretical Physics. McGraw-Hill.
[229] Muckerman, James, T. 1990. Some useful discrete variable representations for problems in time-dependent and time-independent quantum mechanics. Chem. Phys. Lett., 173(2–3), 200–205.
[230] Mujica, V., Kemp, M., and Ratner, M. A. 1994a. Electron conduction in molecular wires. I. A scattering formalism. J. Chem. Phys., 101(8), 6849–6855.
[231] Mujica, V., Kemp, M., and Ratner, M. A. 1994b. Electron conduction in molecular wires. II. Application to scanning tunneling microscopy. J. Chem. Phys., 101(8), 6856–6864.
[232] Mujica, V., Kemp, M., Roitberg, A., and Ratner, M. 1996. Current–voltage characteristics of molecular wires: eigenvalue staircase, Coulomb blockade, and rectification. J. Chem. Phys., 104(18), 7296–7305.
[233] Müller, H.-M., and Koonin, S. E. 1996. Phase transitions in quantum dots. Phys. Rev. B, 54(20), 14532–14539.
[234] Nakatsukasa, Takashi, and Yabana, Kazuhiro 2001. Photoabsorption spectra in the continuum of molecules and atomic clusters. J. Chem. Phys., 114(6), 2550–2561.
[235] Nardelli, Marco, Fattebert, J.-L., and Bernholc, J. 2001. O(N) real-space method for ab initio quantum transport calculations: application to carbon nanotube–metal contacts. Phys. Rev. B, 64(24), 245 423.
[236] Neuhauser, Daniel, and Baer, Michael 1989a. J. Chem. Phys., 90(8), 4351–4355.
[237] Neuhauser, Daniel, and Baer, Michael 1989b. The application of wave packets to reactive atom–diatom systems: a new approach. J. Chem. Phys., 91(8), 4651–4657.
[238] Neuhauser, Daniel, and Baer, M. 1990a. A new time-independent approach to the study of atom–diatom reactive collisions: theory and application. J. Phys. Chem., 94(1), 185–189.
[239] Neuhauser, Daniel, and Baer, Michael 1990b. A new accurate (time-independent) method for treating three-dimensional reactive collisions: the application of optical potentials and projection operators. J. Chem. Phys., 92(6), 3419–3426.
[240] Neuhauser, D., Baer, M., Judson, R. S., and Kouri, D. J. 1991. The application of time-dependent wavepacket methods to reactive scattering. Comp. Phys. Commun., 63(1–3), 460–481.
[241] Nosé, Shuichi 1984. A unified formulation of the constant temperature molecular dynamics methods. J. Chem. Phys., 81(1), 511–519.
[242] Odom, T. W., Huang, J. L., Kim, P., and Lieber, C. M. 2000. Structure and electronic properties of carbon nanotubes. J. Phys. Chem. B, 104(13), 2794–2809.
[243] Ohta, K., and Ishida, H. 1988. Comparison among several numerical integration methods for Kramers–Kronig transformation. Applied Spectroscopy, 42(6), 952–957.
[244] Ono, Tomoya, and Hirose, Kikuji 1999. Timesaving double-grid method for real-space electronic-structure calculations. Phys. Rev. Lett., 82(25), 5016–5019.
[245] Ono, Tomoya, and Hirose, Kikuji 2005. Real-space electronic-structure calculations with a time-saving double-grid-technique. Phys. Rev. B, 72(8), 085115.
[246] Ordejón, P., Artacho, E., and Soler, J. M. 1996. Self-consistent order-N density-functional calculations for very large systems. Phys. Rev. B, 53(16), R10441–R10444.
[247] Ortiz, G., Souza, I., and Martin, R. M. 1998. Exchange-correlation hole in polarized insulators: implications for the microscopic functional theory of dielectrics. Phys. Rev. Lett., 80(2), 353–356.
[248] Ozaki, T., and Kino, H. 2004. Numerical atomic basis orbitals from H to Kr. Phys. Rev. B, 69(19), 195 113.
[249] Palacios, J. J., Pérez-Jiménez, A. J., Louis, E., SanFabián, E., and Vergés, J. A. 2003. First-principles phase-coherent transport in metallic nanotubes with realistic contacts. Phys. Rev. Lett., 90(10), 106801.
[250] Parkins, A. S., and Walls, D. F. 1998. The physics of trapped dilute-gas Bose–Einstein condensates. Phys. Rep., 303(1), 1–80.
[251] Parlett, B. N. 1998. The Symmetric Eigenvalue Problem. Society for Industrial Mathematics.
[252] Parr, R. G., and Yang, W. 1989. Density-Functional Theory of Atoms and Molecules. Oxford University Press.
[253] Pathria, R. K. 1996. Statistical Mechanics, Second Edition. Butterworth-Heinemann.
[254] Payne, M. C., Teter, M. P., Allan, D. C., Arias, T. A., and Joannopoulos, J. D. 1992. Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients. Rev. Mod. Phys., 64(4), 1045–1097.
[255] Pederiva, Francesco, Umrigar, C. J., and Lipparini, E. 2000. Diffusion Monte Carlo study of circular quantum dots. Phys. Rev. B, 62(12), 8120–8125.
[256] Pekeris, C. L. 1958. Ground state of two-electron atoms. Phys. Rev., 112(5), 1649–1658.
[257] Pérez-Jordá, José, M. 1998. Variational plane-wave calculations in adaptive coordinates. Phys. Rev. B, 58(3), 1230–1235.
[258] Pople, J. A., Head-Gordon, M., Fox, D. J., Raghavachari, K., and Curtiss, L. A. 1989. Gaussian-1 theory: a general procedure for prediction of molecular energies. J. Chem. Phys., 90(10), 5622–5629.
[259] Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P. 1992. Numerical Recipes in C. Cambridge University Press.
[260] Qian, X., Li., J., Lin, X., and Yip, S. 2006. Time-dependent density functional theory with ultrasoft pseudopotentials: real-time electron propagation across a molecular junction. Phys. Rev. B, 73(3), 035408.
[261] Qu, F., and Hawrylak, P. 2005. Magnetic exchange interactions in quantum dots containing electrons and magnetic ions. Phys. Rev. Lett., 95(21), 217 206.
[262] Raczkowski, D., Fong, C. Y., Schultz, P. A., Lippert, R. A., and Stechel, E. B. 2001. Unconstrained and constrained minimization, localization, and the Grassmann manifold: theory and application to electronic structure. Phys. Rev. B, 64(15), 155203.
[263] Rapaport, D. C. 2004. The Art of Molecular Dynamics Simulation. Cambridge University Press.
[264] Reed, V. C., and Burnett, K. 1990. Ionization of atoms in intense laser pulses using the Kramers–Henneberger transformation. Phys. Rev. A, 42(5), 3152–3155.
[265] Reed, V. C., and Burnett, K. 1991. Role of resonances and quantum-mechanical interference in the generation of above-threshold-ionization spectra. Phys. Rev. A, 43(11), 6217–6226.
[266] Reich, S., and Thomsen, C. 2000. Chirality dependence of the density-of-states singularities in carbon nanotubes. Phys. Rev. B, 62(7), 4273–4276.
[267] Reich, S., Maultzsch, J., Thomsen, C., and Ordejón, P. 2002. Tight-binding description of graphene. Phys. Rev. B, 66(3), 035412.
[268] Reimann, Stephanie, M., and Manninen, Matti 2002. Electronic structure of quantum dots. Rev. Mod. Phys., 74(4), 1283–1342.
[269] Resta, Raffaele 1994. Macroscopic polarization in crystalline dielectrics: the geometric phase approach. Rev. Mod. Phys., 66(3), 899–915.
[270] Reynolds, P. J., Ceperley, D. M., Alder, B. J., and Lester, W. A. 1982. Fixed-node quantum Monte Carlo for molecules. J. Chem. Phys., 77(11), 5593–5603.
[271] Riss, U. V., and Meyer, H. D. 1993. Calculation of resonance energies and widths using the complex absorbing potential method. J. Phys. B: Atomic, Molecular and Optical Physics, 26, 4503–4535.
[272] Riss, U. V., and Meyer, H. D. 1995. Reflection-free complex absorbing potentials. J. Phys. B: Atomic, Molecular and Optical Physics, 28, 1475–1493.
[273] Rocca, D., Gebauer, R., Saad, Y., and Baroni, S. 2008. Turbo charging time-dependent density-functional theory with Lanczos chains. J. Chem. Phys., 128(15), 154 105.
[274] Röhrl, A., Naraschewski, M., Schenzle, A., and Wallis, H. 1997. Transition from phase locking to the interference of independent Bose condensates: theory versus experiment. Phys. Rev. Lett., 78(22), 4143–4146.
[275] Runge, E., and Gross, E. K. U. 1984. Density-functional theory for time-dependent systems. Phys. Rev. Lett., 52(12), 997.
[276] Saad, Y. 1992. Numerical Methods for Large Eigenvalue Problems. Manchester University Press.
[277] Saito, R., Dresselhaus, G., and Dresselhaus, M. S. 1998. Physical Properties of Carbon Nanotubes. Imperial College Press.
[278] Saito, R., Fujita, M., Dresselhaus, G., and Dresselhaus, M. S. 1992. Electronic structure of graphene tubules based on C60. Phys. Rev. B, 46(3), 1804–1811.
[279] Sancho, M. P. L., Sancho, J. M. L., and Rubio, J. 1985. Highly convergent schemes for the calculation of bulk and surface Green functions. J. Phys. F: Metal Physics, 15(4), 851.
[280] Sankey, Otto, F., and Niklewski, David, J. 1989. Ab initio multicenter tight-binding model for molecular-dynamics simulations and other applications in covalent systems. Phys. Rev. B, 40(6), 3979–3995.
[281] Sanvito, S., Lambert, C. J., Jefferson, J. H., and Bratkovsky, A. M. 1999. General Green's-function formalism for transport calculations with spd Hamiltonians and giant magnetoresistance in Co- and Ni-based magnetic multilayers. Phys. Rev. B, 59(18), 11 936–11 948.
[282] Saugout, S., Charron, E., and Cornaggia, C. 2008. H2 double ionization with few-cycle laser pulses. Phys. Rev. A, 77(2), 023 404.
[283] Seideman, T., and Miller, W. H. 1992a. Calculation of the cumulative reaction probability via a discrete variable representation with absorbing boundary conditions. J. Chem. Phys., 96(6), 4412–4422.
[284] Seideman, T., and Miller, W. H. 1992b. Quantum mechanical reaction probabilities via a discrete variable representation-absorbing boundary condition Green's function. J. Chem. Phys., 97(4), 2499–2514.
[285] Seminario, J. M., Lowden, P. O., and Sabin, J. R. 1998. Advances in Density Functional Theory. Academic Press.
[286] Sherman, Jack, and Morrison, Winifred, J. 1950. Adjustment of an inverse matrix corresponding to a change in one element of a given matrix. Ann. Math. Stat., 21(1), 124–127.
[287] Shirley, Jon, H. 1965. Solution of the Schrödinger equation with a Hamiltonian periodic in time. Phys. Rev., 138(4B), B979–B987.
[288] Sholl, D. S., and Steckel, J. A. 2009. Density Functional Theory: A Practical Introduction. Wiley Interscience.
[289] Shumway, J., and Ceperley, D. M. 2001. Quantum Monte Carlo treatment of elastic exciton–exciton scattering. Phys. Rev. B, 63(16), 165 209.
[290] Singh, D. J., and Nordström, L. 2006. Planewaves, Pseudopotentials, and the LAPW Method. Springer-Verlag.
[291] Skylaris, C.-K., Diéguez, O., Haynes, P. D., and Payne, M. C. 2002. Comparison of variational real-space representations of the kinetic energy operator. Phys. Rev. B, 66(7), 073 103.
[292] Slater, J. C. 1974. Quantum Theory of Molecules and Solids: The Self-Consistent Field for Molecules and Solids. McGraw-Hill.
[293] Slater, J. C., and Koster, G. F. 1954. Simplified LCAO method for the periodic potential problem. Phys. Rev., 94(6), 1498–1524.
[294] Sleijpen, G. L. G., and Van der Vorst, H. A. 2000. A Jacobi–Davidson iteration method for linear eigenvalue problems. SIAM Review, 42(2), 267–293.
[295] Soler, J. M, Artacho, E., Gale, J. D., et al. 2002. The SIESTA method for ab initio order-N materials simulation. J. Phys.: Condensed Matter, 14(11), 2745.
[296] Sørensen, H. H. B., Hansen, P. C., Petersen, D. E., Skelboe, S., and Stokbro, K. 2009. Efficient wave-function matching approach for quantum transport calculations. Phys. Rev. B, 79(20), 205 322.
[297] Soriano, D., Jacob, D., and Palacios, J. J. 2008. Localized basis sets for unbound electrons in nanoelectronics. J. Chem. Phys., 128(7), 074108.
[298] Stepanenko, D., and Bonesteel, N. E. 2004. Universal quantum computation through control of spin–orbit coupling. Phys. Rev. Lett., 93(14), 140 501.
[299] Stillinger, Frank, H., and Weber, Thomas, A. 1985. Computer simulation of local order in condensed phases of silicon. Phys. Rev. B, 31(8), 5262–5271.
[300] Stokbro, K., Taylor, J., Brandbyge, M., Mozos, J. L., and Ordejn, P. 2003. Theoretical study of the nonlinear conductance of di-thiol benzene coupled to Au(111) surfaces via thiol and thiolate bonds. Comp. Mat. Sci., 27(1–2), 151–160.
[301] Stott, M. J., and Zaremba, E. 1980. Linear-response theory within the density-functional formalism: application to atomic polarizabilities. Phys. Rev. A, 21(1), 12–23.
[302] Strange, M., Kristensen, I. S., Thygesen, K. S., and Jacobsen, K. W. 2008. Benchmark density functional theory calculations for nanoscale conductance. J. Chem. Phys., 128(11), 114714.
[303] Stratmann, R. E., Scuseria, G. E., and Frisch, M. J. 1998. An efficient implementation of time-dependent density-functional theory for the calculation of excitation energies of large molecules. J. Chem. Phys., 109(19), 8218–8224.
[304] Su, Q., and Eberly, J. H. 1991. Model atom for multiphoton physics. Phys. Rev. A, 44(9), 5997–6008.
[305] Sundaram, Bala, and Milonni, Peter, W. 1990. High-order harmonic generation: simplified model and relevance of single-atom theories to experiment. Phys. Rev. A, 41(11), 6571–6573.
[306] Suzuki, Masuo 1991. General theory of fractal path integrals with applications to many-body theories and statistical physics. J. Math. Phys., 32(2), 400–407.
[307] Suzuki, Y., and Varga, K. 1998. Stochastic Variational Approach to Quantum-Mechanical Few-Body Problems. Lecture Notes in Physics, vol. m 54. Springer.
[308] Szafran, B., Adamowski, J., and Bednarek, S. 1999. Ground and excited states of few electron systems in spherical quantum dots. Physica E: Low-Dimensional Systems and Nanostructures, 4(1), 1–10.
[309] Szalay, Viktor 1996. The generalized discrete variable representation. An optimal design. J. Chem. Phys., 105(16), 6940–6956.
[310] Szego, Gabor 1939. Orthogonal Polynomials, Fourth Edition. American Mathematical Society.
[311] Takimoto, Y., Vila, F. D., and Rehr, J. J. 2007. Real-time time-dependent density functional theory approach for frequency-dependent nonlinear optical response in photonic molecules. J. Chem. Phys., 127(15), 154 114.
[312] Tal-Ezer, H., and Kosloff, R. 1984. An accurate and efficient scheme for propagating the time dependent Schrödinger equation. J. Chem. Phys., 81, 3967.
[313] Tannor, D. J. 2007. Introduction to Quantum Mechanics. University Science Books.
[314] Tannor, David, J., and Weeks, David, E. 1993. Wave packet correlation function formulation of scattering theory: the quantum analog of classical S-matrix theory. J. Chem. Phys., 98(5), 3884–3893.
[315] Tarucha, S., Austing, D. G., Honda, T., van der Hage, R. J., and Kouwenhoven, L. P. 1996. Shell filling and spin effects in a few electron quantum dot. Phys. Rev. Lett., 77(17), 3613–3616.
[316] Taut, M. 1993. Two electrons in an external oscillator potential: particular analytic solutions of a Coulomb correlation problem. Phys. Rev. A, 48(5), 3561–3566.
[317] Taylor, J., Guo, H., and Wang, J. 2001. Ab initio modeling of quantum transport properties of molecular electronic devices. Phys. Rev. B, 63(24), 245407.
[318] Taylor, R. J. 1972. Scattering Theory: The Quantum Theory on Nonrelativistic Collisions. Wiley.
[319] T. H., Dunning Jr., 1989. Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J. Chem. Phys., 90(2), 1007–1023.
[320] Thygesen, K. S., and Jacobsen, K. W. 2003. Four-atom period in the conductance of monatomic Al wires. Phys. Rev. Lett., 91(14), 146 801.
[321] Thygesen, K. S., and Jacobsen, K. W. 2005. Molecular transport calculations with Wannier functions. Chem. Phys., 319(1–3), 111–125.
[322] Tian, W., Datta, S., Hong, S., et al. 1998. Conductance spectra of molecular wires. J. Chem. Phys., 109(7), 2874–2882.
[323] Towler, M. D., Zupan, A., and Caus, M. 1996. Density functional theory in periodic systems using local Gaussian basis sets. Comp. Phys. Commun., 98(1–2), 181–205.
[324] Tsolakidis, A., Sánchez-Portal, D., and Martin, R. M. 2002. Calculation of the optical response of atomic clusters using time-dependent density functional theory and local orbitals. Phys. Rev. B, 66(23), 235416.
[325] Tsuchida, E., and Tsukada, M. 1995. Real space approach to electronic-structure calculations. Solid State Commun., 94(1), 5–8.
[326] Tsuchida, E., and Tsukada, M. 1996. Adaptive finite-element method for electronic structure calculations. Phys. Rev. B, 54(11), 7602–7605.
[327] Umrigar, C. J., Wilson, K. G., and Wilkins, J. W. 1988. Optimized trial wave functions for quantum Monte Carlo calculations. Phys. Rev. Lett., 60(17), 1719–1722.
[328] Umrigar, C. J., Nightingale, M. P., and Runge, K. J. 1993. A diffusion Monte Carlo algorithm with very small time-step errors. J. Chem. Phys., 99(4), 2865–2890.
[329] van Gisbergen, S. J. A., Snijders, J. G., and Baerends, E. J. 1998. Accurate density functional calculations on frequency-dependent hyperpolarizabilities of small molecules. J. Chem. Phys., 109(24), 10 657–10 668.
[330] van Gisbergen, S. J. A., Snijders, J. G., and Baerends, E. J. 1999. Implementation of time-dependent density functional response equations. Comp. Phys. Commun., 118(2–3), 119–138.
[331] van Leeuwen, Robert 1998. Causality and symmetry in time-dependent density-functional theory. Phys. Rev. Lett., 80(6), 1280–1283.
[332] Vanderbilt, David, and Louie, Steven, G. 1984. Total energies of diamond (111) surface reconstructions by a linear combination of atomic orbitals method. Phys. Rev. B, 30(10), 6118–6130.
[333] Van de Vondele, J., Krack, M., Mohamed, F., Parrinello, M., Chassaing, T., and Hutter, J. 2005. Quickstep: fast and accurate density functional calculations using a mixed Gaussian and plane waves approach. Comp. Phys. Commun., 167(2), 103–128.
[334] Varga, K. 2009. R-matrix calculation of Bloch states for scattering and transport problems. Phys. Rev. B, 80(8), 085 102.
[335] Varga, K., and Suzuki, Y. 1995. Precise solution of few-body problems with the stochastic variational method on a correlated Gaussian basis. Phys. Rev. C., 52(6), 2885–2905.
[336] Varga, K., and Suzuki, Y. 1997. Solution of few-body problems with the stochastic variational method. I. Central forces with zero orbital momentum. Comp. Phys. Commun., 106(1–2), 157–168.
[337] Varga, K., Navratil, P., Usukura, J., and Suzuki, Y. 2001. Stochastic variational approach to few-electron artificial atoms. Phys. Rev. B, 63(20), 205 308.
[338] Velev, Julian, and Butler, William 2004. On the equivalence of different techniques for evaluating the Green function for a semi-infinite system using a localized basis. J. Phys.: Condensed Matter, 16(21), R637.
[339] Vibók, Á., and Balint-Kurti, G. G. 1992a. Reflection and transmission of waves by a complex potential – a semiclassical Jeffreys–Wentzel–Kramers–Brillouin treatment. J. Chem. Phys., 96(10), 7615–7622.
[340] Vibók, Á., and Balint-Kurti, G. G. 1992b. Parametrization of complex absorbing potentials for time-dependent quantum dynamics. J. Phys. Chem., 96(22), 8712–8719.
[341] Vignale, Giovanni 2004. Mapping from current densities to vector potentials in time-dependent current density functional theory. Phys. Rev. B, 70(20), 201 102.
[342] Viswanathan, R., Shi, S., Vilallonga, E., and Rabitz, H. 1989. Calculation of scattering wave functions by a numerical procedure based on the Møller wave operator. J. Chem. Phys., 91(4), 2333–2342.
[343] Voter, A. F. 2007. Introduction to the kinetic Monte Carlo method. In Radiation Effects in Solids, K. E., Sickafus, E. A., Kotomin, and B. P., Uberuaga (eds.), pp. 1–23, Springer.
[344] Wacker, O. J., Kümmel, R., and Gross, E. K. U. 1994. Time-dependent density functional theory for superconductors. Phys. Rev. Lett., 73(21), 2915–2918.
[345] Wallace, P. R. 1947. The band theory of graphite. Phys. Rev., 71(9), 622–634.
[346] Wang, Lin-Wang, and Zunger, Alex 1994. Dielectric constants of silicon quantum dots. Phys. Rev. Lett., 73(7), 1039–1042.
[347] Watanabe, Naoki, and Tsukada, Masaru 2002. Efficient method for simulating quantum electron dynamics under the time-dependent Kohn–Sham equation. Phys. Rev. E, 65(3), 036 705.
[348] Wigner, E. P., and Eisenbud, L. 1947. Higher angular momenta and long range interaction in resonance reactions. Phys. Rev., 72(1), 29–41.
[349] Wimmer, E., Krakauer, H., Weinert, M., and Freeman, A. J. 1981. Full-potential self-consistent linearized-augmented-plane-wave method for calculating the electronic structure of molecules and surfaces: O2 molecule. Phys. Rev. B, 24(2), 864–875.
[350] Wojs, Arkadiusz, and Hawrylak, Pawel 1996. Charging and infrared spectroscopy of self-assembled quantum dots in a magnetic field. Phys. Rev. B, 53(16), 10 841–10 845.
[351] Xue, Y., Datta, S., and Ratner, M. A. 2001. Charge transfer and “band lineup” in molecular electronic devices: a chemical and numerical interpretation. J. Chem. Phys., 115(9), 4292–4299.
[352] Yabana, K., and Bertsch, G. F. 1996. Time-dependent local-density approximation in real time. Phys. Rev. B, 54(7), 4484–4487.
[353] Yabana, K., and Bertsch, G. F. 1999. Application of the time-dependent local density approximation to optical activity. Phys. Rev. A, 60(2), 1271–1279.
[354] Yaliraki, Sophia, N., and Ratner, Mark, A. 1998. Molecule–interface coupling effects on electronic transport in molecular wires. J. Chem. Phys., 109(12), 5036–5043.
[355] Yan, Z.-C., and Drake, G. W. F. 1995. Eigenvalues and expectation values for the 1s22s2 S, 1s22p2 P, and 1s23d2 D states of lithium. Phys. Rev. A, 52(5), 3711–3717.
[356] Yannouleas, Constantine, and Landman, Uzi 1999. Spontaneous symmetry breaking in single and molecular quantum dots. Phys. Rev. Lett., 82(26), 5325–5328.
[357] Yu, R., Singh, D., and Krakauer, H. 1991. All-electron and pseudopotential force calculations using the linearized-augmented-plane-wave method. Phys. Rev. B, 43(8), 6411–6422.
[358] Zhang, J. Y., Mitroy, J., and Varga, K. 2008. Development of a confined variational method for elastic scattering. Phys. Rev. A, 78(4), 042 705.
[359] Zhang, X., Fonseca, L., and Demkov, A. A. 2002. The application of density functional, local orbitals, and scattering theory to quantum transport. Phys. Stat. Sol. B, 233(1), 70–82.
[360] Zhou, X., and Lin, C. D. 2000. Linear-least-squares fitting method for the solution of the time-dependent Schrödinger equation: applications to atoms in intense laser fields. Phys. Rev. A, 61(5), 053411.
[361] Zumbach, G., Modine, N. A., and Kaxiras, E. 1996. Adaptive coordinate, realspace electronic structure calculations on parallel computers. Solid State Commun., 99(2), 57–61.

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Book summary page views

Total views: 0 *
Loading metrics...

* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.

Usage data cannot currently be displayed.