Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-n9wrp Total loading time: 0 Render date: 2024-07-18T10:54:22.390Z Has data issue: false hasContentIssue false

1 - Introduction: A computational approach to multiphase flow

Published online by Cambridge University Press:  07 December 2009

Andrea Prosperetti
Affiliation:
The Johns Hopkins University
Grétar Tryggvason
Affiliation:
Worcester Polytechnic Institute, Massachusetts
Get access

Summary

This book deals with multiphase flows, i.e. systems in which different fluid phases, or fluid and solid phases, are simultaneously present. The fluids may be different phases of the same substance, such as a liquid and its vapor, or different substances, such as a liquid and a permanent gas, or two liquids. In fluid-solid systems, the fluid may be a gas or a liquid, or gases, liquids, and solids may all coexist in the flow domain.

Without further specification, nearly all of fluid mechanics would be included in the previous paragraph. For example, a fluid flowing in a duct would be an instance of a fluid-solid system. The age-old problem of the fluid-dynamic force on a body (e.g. a leaf in the wind) would be another such instance, while the action of wind on ocean waves would be a situation involving a gas and a liquid.

In the sense in which the term is normally understood, however, multiphase flow denotes a subset of this very large class of problems. A precise definition is difficult to formulate as, often, whether a certain situation should be considered as a multiphase flow problem depends more on the point of view – or even the motivation – of the investigator than on its intrinsic nature. For example, wind waves would not fall under the purview of multiphase flow, even though some of the physical processes responsible for their behavior may be quite similar to those affecting gas–liquid stratified flows, e.g. in a pipe – a prime example of a multiphase system. The wall of a duct or a tree leaf may be considered as boundaries of the flow domain of interest, which would not qualify these as multiphase flow problems.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×