Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-n9wrp Total loading time: 0 Render date: 2024-07-18T13:31:16.055Z Has data issue: false hasContentIssue false

3 - Immersed boundary methods for fluid interfaces

Published online by Cambridge University Press:  07 December 2009

Andrea Prosperetti
Affiliation:
The Johns Hopkins University
Grétar Tryggvason
Affiliation:
Worcester Polytechnic Institute, Massachusetts
Get access

Summary

Nearly half a century of computational fluid dynamics has shown that it is very hard to beat uniform structured grids in terms of ease of implementation and computational efficiency. It is therefore not surprising that a large fraction of the most popular methods for finite Reynolds number multiphase flows today are methods where the governing equations are solved on such grids. The possibility of writing one set of governing equations for the whole flow field, frequently referred to as the “one-fluid” formulation, has been known since the beginning of large-scale computational studies of multiphase flows. It was, in particular, used by researchers at the Los Alamos National Laboratory in the early 1960s for the marker-and-cell (MAC) method, which permitted the first successful simulation of the finite Reynolds number motion of free surfaces and fluid interfaces. This approach was based on using marker particles distributed uniformly in each fluid to identify the different fluids. The material properties were reconstructed from the marker particles and sometimes separate surface markers were also introduced to facilitate the computation of the surface tension. While the historical importance of the MAC method for multiphase flow simulations cannot be overstated, it is now obsolete. In current usage, the term “MAC method” usually refers to a projection method using a staggered grid.

When the governing equations are solved on a fixed grid, the different fluids must be identified by a marker function that is advected by the flow. Several methods have been developed for that purpose. The volume-of-fluid (VOF) method is the oldest and, after many improvements and innovations, continues to be widely used. Other marker function methods include the level-set method, the phase-field method, and the constrained interpolated propagation (CIP) method.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×