Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-dfsvx Total loading time: 0 Render date: 2024-04-27T05:22:41.077Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  05 February 2013

Wei Cai
Affiliation:
University of North Carolina, Charlotte
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Computational Methods for Electromagnetic Phenomena
Electrostatics in Solvation, Scattering, and Electron Transport
, pp. 419 - 440
Publisher: Cambridge University Press
Print publication year: 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abarbanel, S. & Gottlieb, D. (1997), “A mathematical analysis of the PML method,” J. Comput. Phys. 134, 357–363.Google Scholar
Abarbanel, S. & Gottlieb, D. (1998), “On the construction and analysis of absorbing layers in CEM,” Appl. Numer. Math. 27, 331–340.Google Scholar
Abdul-Rahman, R. & Kasper, M. (2008), “Orthogonal hierarchical Néedéelec elements,” IEEE Trans. Mag. 44, 1210–1213.CrossRefGoogle Scholar
Abramowitz, M. & Stegun, I. A. (1972), Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th edn. New York: Dover Publications.
Abrikosov, A. A., Gorkov, L. P., & Dzyaloshinski, I. E. (1975), Methods of Quantum Field Theory in Statistical Physics. New York: Dover.
Adams, D. J. & McDonald, I.-R. (1976), “Thermodynamic and dielectric properties of polar lattices,” Mol. Phys. 32, 931–947.Google Scholar
Aguado, A. & Madden, P. A. (2003), “Ewald summation of electrostatic multipole interactions up to the quadrupolar level,” J. Chem. Phys. 119, 7471–7483.CrossRefGoogle Scholar
Ainsworth, M. & Coyle, J. (2001), “Hierarchic hp-edge element families for Maxwell's equations on hybrid quadrilateral/triangular meshes,” Comput. Meth. Appl. Mech. Eng. 190, 6709–6733.Google Scholar
Ainsworth, M. & Coyle, J. (2003), “Hierarchic finite element bases on unstructured tetrahedral meshes,” Int. J. Numer. Meth. Eng. 58, 2103–2130.Google Scholar
Allen, M. P. & Tildesley, D. J. (1989), Computer Simulation of Liquids. Oxford, UK: Oxford University Press.
Alouani-Bibi, F. & Matte, J.-P. (2002), “Influence of the electron distribution function shape on nonlocal electron heat transport in laser-heated plasmas,” Phys. Rev. E 66, 066414.Google Scholar
Alouani-Bibi, F., Shoucri, M. M., & Matte, J.-P. (2004), “Different Fokker–Planck approaches to simulate electron transport in plasmas,” Comput. Phys. Commun. 164, 60–66.CrossRefGoogle Scholar
Alpert, B., Greengard, L., & Hagstrom, T. (2000), “Rapid evaluation of nonreflecting boundary kernels for time-domain wave propagation,” SIAM J. Numer. Anal. 37, 1138–1164.CrossRefGoogle Scholar
Alpert, B., Greengard, L., & Hagstrom, T. (2002), “Nonreflecting boundary conditions for the timedependent wave equation,” J. Comput. Phys. 180, 270–296.CrossRefGoogle Scholar
Andersen, L. S. & Volakis, J. L. (1999), “Development and application of a novel class of hierarchical tangential vector finite elements for electromagnetics,” IEEE Trans. Antenn. Propag. 47, 112–120.CrossRefGoogle Scholar
Andriulli, F. P., Cools, K., Bagci, H., et al. (2008), “A multiplicative Calderon preconditioner for the electric field integral equation,” IEEE Trans. Antenn. Propag. 56, 2398–2412.CrossRefGoogle Scholar
Atkinson, K. & Graham, I. (1990), “Iterative variants of the nyströom method for second kind boundary integral operators,” SIAM J. Sci. Stat. Comput. 13, 694–722.Google Scholar
Baccarani, G. & Wordeman, M. R. (1985), “An investigation of steady-state velocity overshoot in silicon,” Solid State Electron. 28, 407–416.CrossRefGoogle Scholar
Ballenegger, V. & Hansen, J.-P. (2005), “Dielectric permittivity profiles of confined polar fluids,” J. Chem. Phys. 122, 114711.Google Scholar
Balsara, D. S. (2001), “Divergence-free adaptive mesh refinement for magnetohydrodynamics,” J. Comput. Phys. 174, 614–648.CrossRefGoogle Scholar
Balsara, D. S. (2004), “Second order accurate schemes for magnetohydrodynamics with divergence-free reconstruction,” Astrophys. J. Suppl. S. 151, 149–184.CrossRefGoogle Scholar
Balsara, D. S. (2009), “Divergence-free reconstruction of magnetic fields and WENO schemes for magnetohydrodynamics,” J. Comput. Phys. 228, 5040–5056.CrossRefGoogle Scholar
Bao, G., Dobson, D. C., & Cox, J. A. (1995), “Mathematical studies in rigorous grating theory,” J. Opt. Soc. Am. A 12, 1029–1042.Google Scholar
Barnes, J. & Hut, P. (1986), “A hirerachical o(n log n) force-calculation algorithm,” Nature 324, 446–449.Google Scholar
Bashford, D. & Case, D. A. (2000), “Generalized Born models of macromolecular solvation effects,” Annu. Rev. Phys. Chem. 51, 129–152.CrossRefGoogle Scholar
Bayliss, A. & Turkel, E. (1980), “Radiation boundary conditions for wave-like equations,” Commun. Pure Appl. Math. 33, 707–725.Google Scholar
Bell, A. R., Robinson, A. P. L., Sherlock, M., Kingham, R. J., & Rozmus, W. (2006), “Fast electron transport in laser-produced plasmas and the KALOS code for solution of the Vlasov–Fokker–Planck equation,” Plasma Phys. Control Fusion 48, R37–R57.CrossRefGoogle Scholar
Berendsen, H. J. C. (1972), “Molecular dynamics and Monte Carlo calculations on water,” Report of a C.E.C.A.M. Workshop, Orsay, France, June 19 – Aug. 11, 1972, pp. 29–39.
Berenger, J.-P. (1994), “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 114, 185–200.CrossRefGoogle Scholar
Bianco, F., Puppo, G., & Russo, G. (1999), “High-order central schemes for hyperbolic systems of conservation laws,” SIAM J. Sci. Comput. 21, 294–322.CrossRefGoogle Scholar
Biegel, B. A. (1996), SQUADS Technical Reference. Unpublished, Stanford University.
Biegel, B. A. (1997), “Quantum electronic device simulation”. Unpublished Ph.D. thesis, Stanford University.
Birdsall, C. K. & Langdon, A. B. (2004), Plasma Physics via Computer Simulation. New York: Taylor & Francis.
Bittencourt, J. A. (2004), Fundamentals of Plasma Physics, 3rd edn. Berlin: Springer.
Blanchard, P. & Brüuning, E. (2002), Mathematical Methods in Physics. Cambridge, MA: Birkhauser, ex. 3.3.1 4.
Bleszynski, E., Bleszynski, M., & Jaroszewicz, T. (1996), “Aim: adaptive integral method for solving large scale electromagnetic scattering and radiation problems,” Radio Sci. 31, 1225–1251.CrossRefGoogle Scholar
Bloch, F. & Walecka, J. D. (2001), Fundamentals of Statistical Mechanics: Manuscript and Notes of Felix Bloch. Singapore: World Scientific.
Bløtekjaer, K. (1970), “Transport equations for electrons in two-valley semiconductors,” IEEE Trans. Electron Dev. 17, 38–47.CrossRefGoogle Scholar
Bockris, J. O., Reddy, A. K. N., & Gamboa-Aldeco, M. (2000), Modern Electrochemisty 2A: Fundamentals of Electrodics, 2nd edn. Norwell, MA: Kluwer Academic Publishers.
Boda, D., Fawcett, W. R., Henderson, D., & Sokołowski, S. (2002), “Monte Carlo, density functional theory, and Poisson–Boltzmann theory study of the structure of an electrolyte near an electrode,” J. Chem. Phys. 116, 7170–7176.CrossRefGoogle Scholar
Boffi, D. (2010), “Finite element approximation of eigenvalue problems,” Acta Numerica 19, 1–120.Google Scholar
Boffi, D., Brezzi, F., & Gastaldi, L. (1997), “On the convergence of eigenvalues for mixed formulations,” Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 25, 131–154.Google Scholar
Boffi, D., Brezzi, F., & Gastaldi, L. (2000), “On the problem of spurious eigenvalues in the approximation of linear elliptic problems in mixed form,” Math. Comput. 69, 121–140.Google Scholar
Boffi, D., Conforti, M., & Gastaldi, L. (2006), “Modified edge finite elements for photonic crystals,” Numer. Math. 105, 249–266.CrossRefGoogle Scholar
Boffi, D., Fernandes, P., Gastaldi, L., & Perugia, I. (1999), “Computational models of electromagnetic resonators: analysis of edge element approximation,” SIAM J. Numer. Anal. 36, 1264–1290.CrossRefGoogle Scholar
Bohren, C. F. & Huffman, D. R. (1998), Absorption and Scattering of Light by Small Particles. Hoboken, NJ: Wiley-VCH.
Borel, S., Levadoux, D. P., & Alouges, F. (2005), “A new well-conditioned integral formulation for Maxwell equations in three dimensions,” IEEE Trans. Antenn. Propag. 53, 2995–3004.CrossRefGoogle Scholar
Born, M. (1920), “Volumes and heats of hydration of ions,” Z. Phys. 1, 45–48.CrossRefGoogle Scholar
Borukhov, I., Andelman, D., & Orland, H. (1997), “Steric effects in electrolytes: a modified Poisson–Boltzmann equation,” Phys. Rev. Lett. 79, 435–438.CrossRefGoogle Scholar
Bossavit, A. (1990), “Solving Maxwell equations in a closed cavity, and the question of ‘spurious modes’,” IEEE Trans. Mag. 26, 702–705.CrossRefGoogle Scholar
Bossavit, A. & Mayergoyz, I. D. (1997), Computational Electromagnetism: Variational Formulations, Complementarity, Edge Elements. New York: Academic Press.
Böottcher, C. J. F. (1973), Theory of Electric Polarization vol. 1: Dielectrics in Static Fields, 2nd edn. Amsterdam: Elsevier Sciences.
Boyd, J. P. (2001), Chebyshev and Fourier Spectral Methods, 2nd edn. New York: Dover Publications.
Brackbill, J. U. & Barnes, D. C. (1980), “The effect of nonzero ∇. B on the numerical solution of the magnetohydrodynamic equations,” J. Comput. Phys. 35, 426–430.CrossRefGoogle Scholar
Brandt, A. (1982), Guide to Multigrid Development Vol. 960 of Lecture Notes in Mathematics. Berlin: Springer.
Brandt, A. & Lubrecht, A. (1990), “Multilevel matrix multiplication and fast solution of integral equations,” J. Comput. Phys. 90, 348–370.Google Scholar
Brezzi, F. (1974), “On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers,” RAIRO 8, 129–151.Google Scholar
Bruno, O., Elling, T., Paffenroth, R., & Turc, C. (2009), “Electromagnetic integral equations requiring small numbers of Krylov-subspace iterations,” J. Comput. Phys. 228, 6169–6183.CrossRefGoogle Scholar
Buffa, A., Costabel, M., & Schwab, C. (2002), “Boundary element methods for Maxwell's equations on non-smooth domains,” Numer. Math. 92, 679–710.CrossRefGoogle Scholar
Buffa, A., Costabel, M., & Sheen, D. (2002), “On traces for H(Curl, ω) in Lipschitz domains,” J. Math. Anal. Appl. 276, 845–867.CrossRefGoogle Scholar
Butcher, P. N. & Cotter, D. (1991), The Elements of Nonlinear Optics. Cambridge, UK: Cambridge University Press.
Cai, W. (1999), “High-order mixed current basis functions for electromagnetic scattering of curved surfaces,” J. Sci. Comput. 14, 73–105.CrossRefGoogle Scholar
Cai, W. & Deng, S. (2003), “An upwinding embedded boundary method for Maxwell's equations in media with material interfaces: 2D case,” J. Comput. Phys. 190, 159–183.Google Scholar
Cai, W., Deng, S., & Jacobs, D. (2007), “Extending the fast multipole method to charges inside or outside a dielectric sphere,” J. Comput. Phys. 223, 846–864.CrossRefGoogle Scholar
Cai, W., Gottlieb, D., & Harten, A. (1992), “Cell averaging Chebyshev methods for hyperbolic problems,” Comput. Math. Appl. 24, 37–49.CrossRefGoogle Scholar
Cai, W., Xu, Z., & Baumketner, A. (2008), “A new FFT-based algorithm to compute Born radii in the generalized Born theory of biomolecule solvation,” J. Comput. Phys. 227, 10162–10177.Google Scholar
Cai, W. & Yu, T. (2000), “Fast calculations of dyadic Green's functions for electromagnetic scattering in a multilayered medium,” J. Comput. Phys. 165, 1–21.Google Scholar
Cai, W., Yu, T., Wang, H., & Yu, Y. (2001), “High-order mixed RWG basis functions for electromagnetic applications,” IEEE Trans. Microw. Theory Tech. 49, 1295–1303.CrossRefGoogle Scholar
Cai, W., Yu, Y., & Yuan, X. C. (2002), “Singularity treatment and high-order RWG basis functions for integral equations of electromagnetic scattering,” Int. J. Numer. Meth. Eng. 53, 31–47.CrossRefGoogle Scholar
Canino, L. F., Ottusch, J. J., Stalzer, M. A., Visher, J. L., & Wandzura, S. M. (1998), “Numerical solution of the Helmholtz equations in 2D and 3D using a high-order Nyströom discretization,” J. Comput. Phys. 146, 627–663.CrossRefGoogle Scholar
Caorsi, S., Fernandes, P., & Raffetto, M. (2000), “On the convergence of Galerkin finite element approximations of electromagnetic eigenproblems,” SIAM J. Numer. Anal. 38, 580–607.CrossRefGoogle Scholar
Caorsi, S., Fernandes, P., & Raffetto, M. (2001), “Spurious-free approximations of electromagnetic eigenproblems by means of Néedéelec-type elements,” Math. Model Numer. Anal. 35, 331–354.CrossRefGoogle Scholar
Chandler, G. (1984), “Galerkin's method for boundary integral equations on polygonal domains,” J. Austral. Math. Soc., Ser.B 26, 1–13.Google Scholar
Chapman, D. L. (1913), “A contribution to the theory of electrocapillarity,” Phil. Mag. 25, 475–481.CrossRefGoogle Scholar
Chen, L., Holst, M., & Xu, J. (2007), “The finite element approximation of the nonlinear Poisson–Boltzmann equation,” SIAM J. Numer. Anal. 45, 2298–2320.CrossRefGoogle Scholar
Chen, Z. & Néedéelec, J.-C. (2008), “On Maxwell equations with the transparent boundary condition,” J. Comput. Math. 26, 284–296.Google Scholar
Cheng, H., Crutchfield, W., Gimbutas, Z., et al. (2006a), “Remarks on the implementation of the wideband FMM for the Helmholtz equation in two dimensions,” Contemp. Math. 408, 99–110.Google Scholar
Cheng, H., Crutchfield, W., Gimbutas, Z., et al. (2006b), “A wideband fast multipole method for the Helmholtz equation in three dimensions,” J. Comput. Phys. 216, 300–325.Google Scholar
Chern, I.-L., Liu, J.-G., & Wang, W.-C. (2003), “Accurate evaluation of electrostatics for macromolecules in solution,” Meth. Appl. Anal. 10, 309–328.Google Scholar
Chew, W. C. (1990), Waves and Fields in Inhomogeneous Media. New York: Van Nostrand Reinhold.
Chew, W. C., Jin, J.-M., Michielssen, E., & Song, J. (2001), Fast and Efficient Algorithms in Computational Electromagnetics. Norwood, MA: Artech House Publishers.
Chew, W. C., Tong, M. S., & Hu, B. (2008), Integral Equation Methods for Electromagnetic and Elastic Waves. San Francisco, CA: Morgan & Claypool.
Chew, W. C., Xiong, J. L., & Saville, M. A. (2006), “A matrix-friendly formulation of layered medium Green's function,” IEEE Antenn. Wire. Propag. Lett. 5, 490–494.CrossRefGoogle Scholar
Cho, M. H. & Cai, W. (2010), “A wideband fast multipole method for the two-dimensional complex Helmholtz equation,” Comput. Phys. Commun. 181, 2086–2090.Google Scholar
Cho, M. H. & Cai, W. (2012), “A parallel fast algorithm for computing the helmholtz integral operator in 3-d layered media,” J. Comput. Phys. 231, 5910–5925.Google Scholar
Chorin, A. J. (1968), “Numerical solution of the Navier–Stokes equations,” Math. Comput. 22, 745–762.CrossRefGoogle Scholar
Chow, Y. L., Yang, J. J., Fang, D. G., & Howard, G. E. (1991), “A closed form spatial Green's function for the thick microstrip substrate,” IEEE Trans. Microw. Theory Tech. 39, 588–592.CrossRefGoogle Scholar
Christiansen, S. H. & Néedéelec, J.-C. (2002), “A preconditioner for the electric field integral equation based on Calderon formulas,” SIAM J. Numer. Anal. 40, 1100–1135.Google Scholar
Chu, V. B., Bai, Y., Lipfert, J., Herschlag, D., & Doniach, S. (2007), “Evaluation of ion binding to DNA duplexes using a size-modified Poisson–Boltzmann theory,” Biophys. J. 93, 3202–3209.Google Scholar
Ciarlet, P. G. (1978), The Finite Element Method for Elliptic Problems. Amsterdam: North-Holland Publishing.
Clausius, R. (1879), Die mechanische Wöarmetheorie II. Braunschweig: Friedrich Vieweg und Sohn, pp. 62–97.
Cockburn, B. & Shu, C.-W. (1998), “The local discontinuous Galerkin method for time-dependent convection–diffusion systems,” SIAM J. Numer. Anal. 35, 2440–2463.Google Scholar
Cohen-Tannoudji, C., Diu, B., & Laloe, F. (2006), Quantum Mechanics vol. I.New York: Wiley-Interscience.
Colella, P. & Woodward, P. R. (1984), “The piecewise-parabolic method (PPM) for gas-dynamical simulations,” J. Comput. Phys. 54, 174–201.Google Scholar
Collin, R. E. (1990), Field Theory of Guided Waves. Hoboken, NJ: Wiley-IEEE Press.
Colton, D. & Kress, R. (1992), Inverse Acoustic and Electromagnetic Scattering Theory. Berlin: Springer.
Contopanagos, H., Dembart, B., Epton, M., et al. (2002), “Well-conditioned boundary integral equations for three-dimensional electromagnetic scattering,” IEEE Trans. Antenn. Propag. 50, 1824–1830.CrossRefGoogle Scholar
Costabel, M. & Dauge, M. (1997), “Singularities of electromagnetic fields in polyhedral domains,” Arch. Ration. Mech. Anal. 151, 221–276.Google Scholar
Costabel, M. & Dauge, M. (2003), “Computation of resonance frequencies for Maxwell equations in non smooth domains,” in M., Ainsworth, P., Davies, D., Duncan, P., Martin, & B., Rynne eds., Topics in Computational Wave Propagation: Direct and Inverse Problems. Berlin: Springer, pp. 127–164.
Costabel, M., Dauge, M., & Nicaise, S. (1999), “Singularities of Maxwell interface problems,” Math. Model Numer. Anal. 33, 627–649.CrossRefGoogle Scholar
Csendes, Z. J. & Silvester, P. (1970), “Numerical solution of dielectric loaded waveguides: I – finite-element analysis,” IEEE Trans. Microw. Theory Tech. 18, 1124–1131.Google Scholar
Cui, T. J. & Chew, W. C. (1999), “Fast evaluation of Sommerfeld integrals for EM scattering and radiation by three-dimensional buried objects,” IEEE Trans. Geosci. Remote Sens. 37, 887–900.Google Scholar
Darden, T., York, D., & Pedersen, L. (1993), “Particle mesh Ewald: an Nlog(N) method for Ewald sums in large systems,” J. Chem. Phys. 98, 10089–10092.CrossRefGoogle Scholar
Datta, S. (1989), Quantum Phenomena. Reading, MA: Addison-Wesley.
Datta, S. (1997), Electronic Transport in Mesoscopic Systems. Cambridge, UK: Cambridge University Press.
Datta, S. (2005), Quantum Transport: Atom to Transistor. Cambridge, UK: Cambridge University Press.
Daubechies, I. (1992), Ten Lectures on Wavelets. Philadelphia, PA: SIAM.
Davies, J. B., Fernandez, F. A., & Philippou, G. Y. (1982), “Finite element and analysis of all modes in cavities with circular symmetry,” IEEE Trans. Microw. Theory Tech. 30, 1975–1980.CrossRefGoogle Scholar
Davis, J. H. (1997), Physics of Low Dimensional Semiconductors: An Introduction. Cambridge, UK: Cambridge University Press.
Davis, M. E. & McCammon, J. A. (1990), “Electrostatics in biomolecular structure and dynamics,” Chem. Rev. 90, 509–521.Google Scholar
de Leeuw, S. W., Perram, J. W., & Smith, E. R. (1980), “Simulation of electrostatic systems in periodic boundary conditions. I. Lattice sums and dielectric constants,” Proc. R. Soc. Lond.A 373, 27–56.CrossRefGoogle Scholar
Debye, P. (1909), “Der lichtdruck auf Kugeln von beliegigem Material,” Ann. Phys. (Leipzig) 30, 57–136.CrossRefGoogle Scholar
Debye, P. & Hückel, E. (1923), “The theory of electrolytes. I. Lowering of freezing point and related phenomena,” Physik. Z. 24, 185–206.Google Scholar
Deng, S. & Cai, W. (2005), “Discontinuous spectral element method modeling of optical coupling by whispering gallery modes between microcylinders,” J. Opt. Soc. Am.A 22, 952–960.Google Scholar
Deng, S., Cai, W., & Jacobs, D. (2007), “A comparable study of image approximations to the reaction field,” Comput. Phys. Commun. 177, 689–699.CrossRefGoogle Scholar
Dey, S. & Mittra, R. (1997), “A locally conformal finite difference time-domain (FDTD) algorithm for modeling three-dimensional perfectly conducting objects,” IEEE Microw. Guided Wave Lett. 7, 273–275.Google Scholar
Ditkowski, A., Dridi, K., & Hesthaven, J. S. (2001), “Convergent Cartesian grid methods for Maxwell's equations in complex geometries,” J. Comput. Phys. 170, 39–80.CrossRefGoogle Scholar
Dobson, D. C. & Pasciak, J. E. (2001), “Analysis of an algorithm for computing electromagnetic Bloch modes using Néedéelec spaces,” Comput. Meth. Appl. Math. 1, 138–153.Google Scholar
Dubiner, M. (1991), “Spectral methods on triangles and other domains,” J. Sci. Comput. 6, 345–390.CrossRefGoogle Scholar
Duffy, M. G. (1982), “Quadrature over a pyramid or cube of integrands with a singularity at a vertex,” SIAM J. Numer. Anal. 19, 1260–1262.CrossRefGoogle Scholar
Duke, C. B. (1969), Tunneling Phenomena in Solids. New York: Academic Press.
Dunkl, C. F. & Xu, Y. (2001), Orthogonal Polynomials of Several Variables. Cambridge, UK: Cambridge University Press.
Duvaut, G. & Lions, J. L. (1976), Inequalities in Mechanics and Physics. New York: Springer-Verlag, lemma 4.2, p. 341.
Ebbesen, T. W., Lezec, H. J., Ghaemi, H. F., Thio, T., & Wolff, P. A. (1998), “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669.CrossRefGoogle Scholar
Eisenberg, B., Hyon, Y., & Liu, C. (2010), “Energy variational analysis of ions in water and channels: field theory for primitive models of complex ionic fluids,” J. Chem. Phys. 133, 104104.Google Scholar
Engquist, B. & Majda, A. (1977), “Absorbing boundary conditions for the numerical simulation of waves,” Math. Comput. 31, 629–651.Google Scholar
Erteza, A. & Park, B. K. (1969), “Nonuniqueness of resolution of Hertz vector in presence of a boundary, and the horizontal dipole problem,” IEEE Trans. Antenn. Propag. 17, 376–378.CrossRefGoogle Scholar
Esaki, L. & Tsu, R. (1970), “Superlattice and negative differential conductivity in semiconductors,” IBM J. Res. Develop. 14, 61–65.Google Scholar
Esirkepov, T. Z. (2001), “Exact charge conservation scheme for particle-in-cell simulation with an arbitrary form-factor,” Comput. Phys. Commun. 135, 144–153.CrossRefGoogle Scholar
Essmann, U., Perera, L., Berkowitz, M. L., et al. (1995), “A smooth particle mesh Ewald method,” J. Chem. Phys. 103, 8577–8593.CrossRefGoogle Scholar
Evans, C. R. & Hawley, J. F. (1988), “Simulation of magnetohydrodynamic flows: a constrained transport method,” Astrophys. J. 332, 659–677.Google Scholar
Evans, L. C. (1998), Partial Differential Equations, Graduate Studies in Mathematics, vol. 19. Providence, RI: Proc. Amer. Math. Soc.
Ewald, P. (1921), “Die Berechnung optischer und elektrostatischer Gitterpotentiale,” Ann. Phys. 64, 253–287.CrossRefGoogle Scholar
Fan, K., Cai, W., & Ji, X. (2008a), “A full vectorial generalized discontinuous Galerkin beam propagation method (GDG-BPM) for nonsmooth electromagnetic fields in waveguides,” J. Comput. Phys. 227, 7178–7191.Google Scholar
Fan, K., Cai, W., & Ji, X. (2008b), “A generalized discontinuous Galerkin (GDG) method for Schröodinger equations with nonsmooth solutions,” J. Comput. Phys. 227, 2387–2410.
Feig, M. & Brooks, C. L. III, (2004), “Recent advances in the development and application of implicit solvent models in biomolecule simulations,” Curr. Opin. Struc. Biol. 14, 217–224.Google Scholar
Feit, M. D. & Fleck, J. A., Jr. (1978), “Light propagation in graded-index optical fibers,” Appl. Opt. 17, 3990–3998.Google Scholar
Feit, M. D. & Fleck, J. A., Jr. (1980), “Computation of mode properties in optical fiber waveguide by a propagating beam method,” Appl. Opt. 19, 1154–1164.Google Scholar
Fetter, A. L. & Walecka, J. D. (1971), Quantum Theory of Many Particle Systems. New York: McGraw-Hill.
Feynman, R. (1972), Statistical Mechanics. Boulder, CO: Westview Press.
Finkelsteĭn, A. V. (1977), “Electrostatic interactions of charged groups in an aqueous medium and their effect on the formation of polypeptide chain secondary structure,” Mol. Biol. 11, 811–819.Google Scholar
Fogolari, F., Brigo, A., & Molinari, H. (2002), “The Poisson–Boltzmann equation for biomolecular electrostatics: a tool for structural biology,” J. Mol. Recognit. 15, 377–392.CrossRefGoogle Scholar
Fortin, M. & Brezzi, F. (1991), Mixed and Hybrid Finite Element Methods. New York: Springer-Verlag.
Fox, C. (1957), “A generalization of the Cauchy principal value,” Can. J. Math. 9, 110–117.Google Scholar
Frenkel, D. & Smit, B. (2001), Understanding Molecular Simulation, 2nd edn. New York: Academic Press.
Frensley, W. R. (1987), “Wigner-function model of a resonant-tunneling semiconductor device,” Phys. Rev.B 36, 1570–1580.CrossRefGoogle Scholar
Frensley, W. R. (1990), “Boundary conditions for open quantum systems driven far from equilibrium,” Rev. Mod. Phys. 62, 745–791.CrossRefGoogle Scholar
Friedman, H. L. (1975), “Image approximation to the reaction field,” Mol. Phys. 29, 1533–1543.CrossRefGoogle Scholar
Fröohlich, H. (1948), “General theory of the static dielectric constant,” Trans. Faraday Soc. 44, 238–243.CrossRefGoogle Scholar
Fröohlich, H. (1958), Theory of Dielectrics: Dielectric Constant and Dielectric Loss, 2nd edn. Oxford, UK: Clarendon Press.
Gan, C. H. & Gbur, G. (2009), “Extraordinary optical transmission through multilayered systems of corrugated metallic thin films,” Opt. Express 17, 20553–20566.Google Scholar
Gardiner, T. A. & Stone, J. M. (2008), “An unsplit Godunov method for ideal MHD via constrained transport in three dimensions,” J. Comput. Phys. 227, 4123–4141.CrossRefGoogle Scholar
Gardner, C. L. (1991), “Numerical simulation of a steady-state electron shock wave in a submicrometer semiconductor device,” IEEE Trans. Electron Dev. 38, 392–398.CrossRefGoogle Scholar
Gardner, C. L., Gelb, A., & Hernandez, J. (2002), “A comparison of modern hyperbolic methods for semiconductor device simulation: NTK central schemes vs. CLAWPACK,” VLSI Des. 15, 721–728.CrossRefGoogle Scholar
Gautschi, W. (1994), “Algorithm 726: ORTHPOL – a package of routines for generating orthogonal polynomials and Gauss-type quadrature rules,” ACM Trans. Math. Software 20, 21–62.CrossRefGoogle Scholar
Gibbs, J. W. (1902), Elementary Principles in Statistical Mechanics. New Haven, CT: Yale University Press.
Girault, V. & Raviart, P.-A. (1986), Finite Element Methods for Navier–Stokes Equations, Theory and Algorithms. New York: Springer-Verlag.
Giroire, J. & Néedéelec, J. C. (1978), “Numerical solution of an exterior neumann problem using a double layer potential,” Math. Comp. 32, 973–990.Google Scholar
Givoli, D. & Keller, J. B. (1990), “Non-reflecting boundary conditions for elastic waves,” Wave Motion 12, 261–279.Google Scholar
Givoli, D. & Neta, B. (2003), “High-order non-reflecting boundary scheme for timedependent waves,” J. Comput. Phys. 186, 24–46.Google Scholar
Godlewski, E. & Raviart, P.-A. (1996), Numerical Approximation of Hyperbolic Systems of Conservation Laws. Berlin: Springer.
Godunov, S. K. (1959), “A finite-difference method for the numerical computation and discontinuous solutions of the equations of fluid dynamics,” Mat. Sb. 47, 271–306.Google Scholar
Gottlieb, D. & Orszag, S. (1987), Numerical Analysis of Spectral Methods: Theory and Applications. Philadelphia, PA: SIAM-CBMS.
Gottlieb, S. & Shu, C.-W. (1998), “Total variation diminishing Runge–Kutta schemes,” Math. Comput. 67, 73–85.Google Scholar
Gouy, G. (1910), “About the electric charge on the surface of an electrolyte,” J. Phys. (France) 9, 457–468.Google Scholar
Graglia, R. D., Peterson, A. F., & Andriulli, F. P. (2011), “Curl-conforming hierarchical vector bases for triangles and tetrahedra,” IEEE Trans. Antenn. Propag. 59, 950–959.CrossRefGoogle Scholar
Graglia, R. D., Wilton, D. R., & Peterson, A. F. (1997), “Higher order interpolatory vector bases for computational electromagnetics,” IEEE Trans. Antenn. Propag. 45, 329–342.CrossRefGoogle Scholar
Gray, L. J., Glaeser, J. M., & Kaplan, T. (2004), “Direct evaluation of hypersingular Galerkin surface integrals,” SIAM J. Sci. Comput. 25, 1534–1556.CrossRefGoogle Scholar
Greengard, L. (1988), The Rapid Evaluation of Potential Fields in Particle Systems. Cambridge, MA: MIT Press.
Greengard, L. & Rokhlin, V. (1987), “A fast algorithm for particle simulations,” J. Comput. Phys. 73, 325–348.Google Scholar
Greiner, W., Neise, L., & Stöocker, H. (1995), Thermodynamics and Statistical Mechanics. Berlin: Springer.
Griffiths, D. J. (1999), Introduction to Electrodynamics, 3rd edn. San Francisco, CA: Benjamin Cummings.
Grote, M. J. (2006), “Local non-reflecting boundary condition for Maxwell's equations,” Comput. Meth. Appl. Mech. Eng. 195, 3691–3708.CrossRefGoogle Scholar
Grote, M. J. & Keller, J. B. (1996), “Nonreflecting boundary conditions for timedependent scattering,” J. Comput. Phys. 127, 52–65.Google Scholar
Grycuk, T. (2003), “Deficiency of the Coulomb-field approximation in the generalized Born model: an improved formula for Born radii evaluation,” J. Chem. Phys. 119, 4817–4826.CrossRefGoogle Scholar
Guiggiani, M. (1998), “Formulation and numerical treatment of boundary integral equations with hypersingular kernels,” inV., Sladek & J., Sladek eds., Singular Integrals in Boundary Element Methods. Southampton: Computational Mechanics Publications, chap. 3.
Guiggiani, M. & Gigante, A. (1990), “A general algorithm for multidimensional Cauchy principal value integrals in the boundary element method,” ASME J. Appl. Mech. 57, 906–915.Google Scholar
Guiggiani, M., Krishnasamy, G., Rudolphi, T. J., & Rizzo, F. J. (1992), “A general algorithm for the numerical solution of hypersingular boundary integral equations,” ASME J. Appl. Mech. 59, 604–614.CrossRefGoogle Scholar
Gunter, N. M. (1967), Potential Theory and its Applications to Basic Problems of Mathematical Physics. New York: Fredrick Ungar.
Guo, S. & Albin, S. (2003), “Simple plane wave implementation for photonic crystal calculations,” Opt. Express 11, 167–175.Google Scholar
Hadamard, J. (2003), Lectures on Cauchy Problems in Linear Partial Differential Equations. New York: Dover Publications.
Hagstrom, T. (2003), “New results on absorbing layers and radiation boundary conditions,” inM., Ainsworth, P., Davies, D., Duncan, P., Martin, & B., Rynne eds., Topics in Computational Wave Propagation: Direct and Inverse Problems. Berlin: Springer, pp. 1–42.
Hagstrom, T. & Hariharan, S. I. (1998), “A formulation of asymptotic and exact boundary conditions using local operators,” Appl. Numer. Math. 27, 403–416.Google Scholar
Hagstrom, T. & Lau, S. (2007), “Radiation boundary conditions for Maxwell's equations: a review of accurate time domain formulation,” J. Comput. Math. 25, 305–336.Google Scholar
Hamann, C. H., Hamnett, A., & Vielstich, W. (2007), Electrochemistry. Hoboken, NJ: Wiley-VCH.
Han, H. D. & Wu, X. (2009), Artificial Boundary Method. Beijing: Tsinghua University Press (in Chinese).
Hara, M., Wada, T., Fukasawa, T., & Kikuchi, F. (1983), “A three dimensional analysis of RF electromagnetic fields by the finite element method,” IEEE Trans. Mag. 19, 2417–2420.CrossRefGoogle Scholar
Harrington, R. F. (1993), Field Computation by Moment Methods. Hoboken, NJ: Wiley-IEEE Press.
Harrington, R. F. (2001), Time-Harmonic Electromagnetic Fields, 2nd edn. Hoboken, NJ: Wiley-IEEE Press.
Harten, A., Engquist, B., Osher, S., & Chakravarthy, S. R. (1997), “Uniformly high order accurate essentially non-oscillatory schemes, III,” J. Comput. Phys. 131, 3–47.CrossRefGoogle Scholar
Harten, A. & Hyman, J. M. (1983), “Self adjusting grid methods for one-dimensional hyperbolic conservation laws,” J. Comput. Phys. 50, 235–269.Google Scholar
Haug, H. & Jauho, A. (2007), Quantum Kinetics in Transport and Optics of Semiconductors, 2nd edn. Berlin: Springer.
Havu, P., Havu, V., Puska, M. J., & Nieminen, R. M. (2004), “Nonequilibrium electron transport in two-dimensional nanostructures modeled using Green's functions and the finite-element method,” Phys. Rev.B 69, 115325.Google Scholar
Helmholtz, H. (1853), “Ueber einige Gesetze der Verteilung elektrischer Ströome in köorperlichen Leitern mit Anwendung auf diethierisch-elektrischen Versuche,” Pogg. Ann. Physik. Chemie. 89, 211–233.CrossRefGoogle Scholar
Henderson, D. & Boda, D. (2009), “Insights from theory and simulation on the electrical double layer,” Phys. Chem. Chem. Phys. 11, 3822–3830.Google Scholar
Hesthaven, J. S. & Warburton, T. (2008), Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications. Berlin: Springer.
Heyes, D. M. (1981), “Electrostatic potential and fields in infinite point charge lattice,” J. Chem. Phys. 74, 1924–1929.CrossRefGoogle Scholar
Higdon, R. L. (1987), “Numerical absorbing boundary conditions for the wave equation,” Math. Comput. 49, 65–90.CrossRefGoogle Scholar
Hill, T. L. (1987), An Introduction to Statistical Thermodynamics. New York: Dover Publications.
Hiptmair, R. (1999), “Canonical construction of finite elements,” Math. Comput. 68, 1325–1346.CrossRefGoogle Scholar
Hiptmair, R. (2001), “Higher order Whitney forms,” PIER 32, 271–299.CrossRefGoogle Scholar
Hiptmair, R. & Xu, J. (2007), “Nodal auxiliary space preconditioning in H(curl) and H(div) spaces,” SIAM J. Numer. Anal. 45, 2483–2509.Google Scholar
Hirsch, C. (2011), Numerical Computation of Internal and External Flows: The Fundamentals of Computational Fluid Dynamics vol. 2, 2nd edn. Oxford, UK: Butterworth-Heinemann.
Hockney, R. W. & Eastwood, J. W. (1981), Computer Simulation Using Particles. New York: Taylor & Francis.
Honig, B. & Nicholls, A. (1995), “Classical electrostatics in biology and chemistry,” Science 268, 1144–1149.Google Scholar
Hsiao, G. C. & Kleinman, R. E. (1997), “Mathematical foundations for error estimation in numerical solutions of integral equations in electromagnetics,” IEEE Trans. Antenn. Propag. 45, 316–328.Google Scholar
Hsiao, G. C.Wendland, W. L. (2008), Boundary Integral Equations. Berlin: Springer.
Huan, R. & Thompson, L. (1999), “Accurate radiation boundary conditions for the time-dependent wave equation on unbounded domains,” Int. J. Numer. Meth. Eng. 47, 1569–1603.Google Scholar
Huang, K. (1987), Statistical Mechanics, 2nd edn. New York: Wiley.
Huang, Z., Jin, S., Markowich, P. A., & Sparber, C. (2009), “On the Bloch decomposition based spectral method for wave propagation in periodic media,” Wave Motion 46, 15–28.CrossRefGoogle Scholar
Humphrey, W., Dalke, A., & Schulten, K. (1996), “VMD – VisualMolecular Dynamics,” J. Mol. Graphics 14, 33–38.CrossRefGoogle Scholar
Ilić, M. M. & Notaroš, B. M. (2003), “Higher order hierarchical curved hexahedral vector finite elements for electromagnetic modeling,” IEEE Trans. Microw. Theory Tech. 51, 1026–1033.Google Scholar
Ingelströom, P. (2006), “A new set of H(curl)-conforming hierarchical basis functions for tetrahedral meshes,” IEEE Trans. Microw. Theory Tech. 54, 106–114.CrossRefGoogle Scholar
Jackson, J. D. (2001), Classical Electrodynamics, 3rd edn. Hoboken, NJ: John Wiley & Sons.
Jacoboni, C. & Bordone, P. (2004), “The Wigner-function approach to non-equilibrium electron transport,” Rep. Prog. Phys. 67, 1033–1071.Google Scholar
Jacoboni, C., Brunetti, R., Bordone, P., & Bertoni, A. (2001), “Quantum transport and its simulation with the Wigner function approach,” Int. J. High Speed Electron. Syst. 11, 387–423.CrossRefGoogle Scholar
Jacobs, G. B. & Hesthaven, J. S. (2006), “High-order nodal discontinuous Galerkin particle-in-cell method on unstructured grids,” J. Comput. Phys. 214, 96–121.Google Scholar
Ji, X., Cai, W., & Zhang, P. (2007), “High order DGTD methods for dispersive Maxwell's equations and modelling of silver nanowire coupling,” Int. J. Numer. Meth. Eng. 69, 308–325.Google Scholar
Ji, X., Lu, T., Cai, W., & Zhang, P. (2005), “Discontinuous Galerkin time domain (DGTD) methods for the study of 2-D waveguide coupled microring resonators,” J. Lightwave Technol. 23, 3864–3874.Google Scholar
Jiang, G.-S. & Shu, C.-W. (1996), “Efficient implementation of weighted ENO scheme,” J. Comput. Phys. 126, 202–228.CrossRefGoogle Scholar
Jiang, H., Cai, W., & Tsu, R. (2011), “Accuracy of the Frensley inflow boundary condition for Wigner equations in simulating resonant tunneling diodes,” J. Comput. Phys. 230, 2031–2044.CrossRefGoogle Scholar
Jiang, H., Shao, S., Cai, W., & Zhang, P. (2008), “Boundary treatments in the nonequilibrium Green's functions (NEGF) methods for transport in nano-MOSFETs,” J. Comput. Phys. 227, 6553–6573.CrossRefGoogle Scholar
Jin, J.-M. (2002), The Finite Element Method in Electromagnetics, 2nd edn. New York: Wiley.
Jin, J.-M. & Riley, D. J. (2008), Finite Element Analysis of Antennas and Arrays. Piscataway, NJ: IEEE Press.
Johnson, S. G. & Joannopoulos, J. D. (2001), “Block-iterative frequency-domain methods for Maxwell's equations in a planewave basis,” Opt. Express 8, 173–190.Google Scholar
Jøorgensen, E., Volakis, J. L., Meincke, P., & Breinbjerg, O. (2004), “Higher order hierarchical Legendre basis functions for electromagnetic modeling,” IEEE Trans. Antenn. Propag. 52, 2985–2995.CrossRefGoogle Scholar
Juffer, A. H., Botta, E. F. F., van Keulen, B. A. M., van der Ploeg, A., & Berendsen, H. J. C. (1991), “The electric potential of a macromolecule in a solvent: a fundamental approach,” J. Comput. Phys. 97, 144–171.CrossRefGoogle Scholar
Jurgens, T. G., Taflove, A., Umashankar, K., & Moore, T. G. (1992), “Finite difference time domain modeling of curved surfaces,” IEEE Trans. Antenn. Propag. 40, 357–366.CrossRefGoogle Scholar
Kantorovich, L. (2004), Quantum Theory of the Solid State: An Introduction (Fundamental Theories of Physics). Norwell, MA: Kluwer Academic Publishers.
Karniadakis, G. E. & Sherwin, S. J. (2005), Spectral/hp Element Methods for Computational Fluid Dynamics. Oxford, UK: Oxford University Press.
Kaxiras, E. (2003), Atomic and Electronic Structure of Solids. Cambridge, UK: Cambridge University Press.
Keller, J. B. & Givoli, D. (1989), “Exact non-reflecting boundary conditions,” J. Comput. Phys. 82, 172–192.Google Scholar
Kikuchi, F. (1987), “Mixed and penalty formulations for finite element analysis of an eigenvalue problem in electromagnetism,” Comput. Meth. Appl. Mech. Eng. 64, 509–521.Google Scholar
Kikuchi, F. (1989), “On a discrete compactness property for the Néedéelec finite elements,” J. Fac. Sci. Univ. Tokyo Sect. I A Math. 36, 479–490.Google Scholar
Kirkwood, J. G. (1934), “Theory of solutions of molecules containing widely separated charges with special applications to zwitterions,” J. Chem. Phys. 2, 351–361.CrossRefGoogle Scholar
Kirkwood, J. G. (1935), “Statistical mechanics of fluid mixtures,” J. Chem. Phys. 3, 300–313.CrossRefGoogle Scholar
Kirkwood, J. G. (1939), “The dielectric polarization of polar liquids,” J. Chem. Phys. 7, 911–919.CrossRefGoogle Scholar
Kittel, C. (2004), Introduction to Solid State Physics, 8th edn. New York: Wiley.
Kluksdahl, N. C., Kriman, A. M., Ferry, D. K., & Ringhofer, C. (1989), “Self-consistent study of the resonant-tunneling diode,” Phys. Rev.B 39, 7720–7735.CrossRefGoogle Scholar
Kress, R. A. (1990), “A nyströom method for boundary integral equations in domains with corners,” Numer. Math. 58, 145–161.CrossRefGoogle Scholar
Kretschmann, E. & Raether, H. (1968), “Radiative decay of non-radiative surface plasmons excited by light,” Z. Naturforsh. 23, 2135–2136.Google Scholar
Kreyszig, E. (1991), Differential Geometry. New York: Dover Publications.
Krishnasamy, G., Rizzo, F. J., & Rudolphi, T. J. (1992), “Continuity requirements for density functions in the boundary integral equation method,” Comput. Mech. 9, 267–284.CrossRefGoogle Scholar
Krishnasamy, G., Schmerr, L. W., Rudolphi, T. J., & Rizzo, F. J. (1990), “Hypersingular boundary integral equations: some applications in acoustic and elastic wave scattering,” ASME J. Appl. Mech. 57, 404–414.CrossRefGoogle Scholar
Kythe, P. K. & Schöaferkotter, M. R. (2005), Handbook of Computational Methods for Integration. Boca Raton, FL: Chapman & Hall/CRC.
Laino, T. & Hutter, J. (2008), “Notes on ‘Ewald summation of electrostatic multipole interactions up to quadrupolar level” [J. Chem. Phys. 119, 7471 (2003)],” J. Chem. Phys. 129, 074102.Google Scholar
Landau, L. (1936), “The transport equation in the case of Coulomb interactions,” Phys. Z. Sowj. Union 10, 154–164. (Reprinted in D., TerHaar ed. (1965), Collected Papers of L. D. Landau. Oxford, UK: Pergamon Press.).
Langdon, A. B. (1980), “Nonlinear inverse Bremsstrahlung and heated-electron distributions,” Phys. Rev. Lett. 44, 575–579.CrossRefGoogle Scholar
Lax, P. D. (1972), Hyperbolic Systems of Conservation Laws and the Mathematical Theory of Shock Waves, SIAM Regional Conference Series in Applied Mathematics, vol. 11. Philadelphia, PA: SIAM.
Leach, A. R. (2001), Molecular Modelling: Principles and Applications, 2nd edn. Englewood Cliffs, NJ: Prentice-Hall.
Lee, M. S., Salsbury, F. R., Jr., & Olson, M. A. (2004), “An efficient hybrid explicit/implicit solvent method for biomolecular simulations,” J. Comput. Chem. 25, 1967–1978.Google Scholar
Leontovich, M. A. (1948), Investigations on Radiowave Propagation Part II. Moscow: Academy of Sciences.
LeVeque, R. J. (2002), Finite Volume Methods for Hyperbolic Problems. Cambridge, UK: Cambridge University Press.
Li, B. (2009), “Minimization of electrostatic free energy and the Poisson–Boltzmann equation for molecular solvation with implicit solvent,” SIAM J. Math. Anal. 40, 2536–2566.Google Scholar
Li, S. (2010), “A fourth-order divergence-free method for MHD flows,” J. Comput. Phys. 229, 7893–7910.Google Scholar
Li, T. T. & Qin, T. H. (2012), Physics and Partial Differential Equations vol. 1. Philadelphia, PA: SIAM.
Li, Z. & Ito, K. (2006), The Immersed Interface Method: Numerical Solutions of PDEs Involving Interfaces and Irregular Domains. Philadelphia, PA: SIAM.
Liboff, R. L. (2003), Kinetic Theory, Classical, Quantum, and Relativistic Descriptions, 3rd edn. Berlin: Springer.
Lin, M., Xu, Z., Tang, H., & Cai, W. (2011a), “Image approximations to electrostatic potentials in layered electrolytes/dielectrics and an ion-channel model,” J. Sci. Comput. DOI: 10.1007/s10915-011-9567-2.CrossRef
Lin, Y., Baumketner, A., Deng, S., et al. (2009), “An image-based reaction field method for electrostatic interactions in molecular dynamics simulations of aqueous solutions,” J. Chem. Phys. 131, 154103.Google Scholar
Lin, Y., Baumketner, A., Song, S., et al. (2011b), “Ionic solvation studied by imagecharge reaction field method,” J. Chem. Phys. 134, 044105.Google Scholar
Lindell, I. V. (1992), “Electrostatic image theory for the dielectric sphere,” Radio Sci. 27, 1–8.CrossRefGoogle Scholar
Lindskog, S. (1997), “Structure and mechanism of carbonic anhydrase,” Pharmacol. Therapeut. 74, 1–20.CrossRefGoogle Scholar
Liu, H. & Lalanne, P. (2008), “Microscopic theory of the extraordinary optical transmission,” Nature 452, 728–731.Google Scholar
Liu, X.-D., Osher, S., & Chan, T. (1994), “Weighted essentially non-oscillatory schemes,” J. Comput. Phys. 115, 200–212.Google Scholar
Liu, X.-D. & Tadmor, E. (1998), “Third order non-oscillatory central scheme for hyperbolic conservation laws,” Numer. Math. 79, 397–425.Google Scholar
Liu, Y. (2009), Fast Multipole Boundary Element Method: Theory and Applications in Engineering. Cambridge, UK: Cambridge University Press.
Liu, Y. & Rizzo, F. J. (1992), “A weakly singular form of the hypersingular boundary integral equation applied to 3-D acoustic wave equations,” Comput. Meth. Appl. Mech. Eng. 96, 271–287.Google Scholar
Liu, Y. & Rudolphi, T. J. (1991), “Some identities for fundamental solutions and their applications to weakly-singular boundary element formulations,” Eng. Anal. Bound. Elem. 8, 301–311.Google Scholar
Liu, Y. & Rudolphi, T. J. (1999), “New identities for fundamental solutions and their applications to non-singular boundary element formulations,” Comput. Mech. 24, 286–292.Google Scholar
Liu, Y. & Shu, C.-W. (2007), “Local discontinuous Galerkin methods for moment models in device simulations: performance assessment and two-dimensional results,” Appl. Numer. Math. 57, 629–645.Google Scholar
Lord, Rayleigh (1914), “Further applications of Bessel's functions of high order to the whispering gallery and allied problems,” Phil. Mag. 27, 100–109.Google Scholar
Lu, B., Cheng, X., Huang, J., & McCammon, J. A. (2006), “Order N algorithm for computation of electrostatic interactions in biomolecular systems,” Proc. Natl. Acad. Sci. USA 103, 19314–19319.Google Scholar
Lu, B. & Zhou, Y. C. (2011), “Poisson–Nernst–Planck equations for simulating biomolecular diffusion–reaction processes II: size effects on ionic distributions and diffusion–reaction rates,” Biophys. J. 100, 2475–2485.Google Scholar
Lu, B., Zhou, Y. C., Holst, M. J., & McCammon, J. A. (2008), “Recent progress in numerical methods for the Poisson–Boltzmann equation in biophysical applications,” Commun. Comput. Phys. 3, 973–1009.Google Scholar
Lu, T., Zhang, P., & Cai, W. (2004), “Discontinuous Galerkin methods for dispersive and lossy Maxwell's equations and PML boundary conditions,” J. Comput. Phys. 200, 549–580.Google Scholar
Lundstrom, M. (2000), Fundamentals of Carrier Transport, 2nd edn. Cambridge, UK: Cambridge University Press.
Lynch, D. W. & Hunter, W. R. (1985), “Comments on the optical constants of metals and an introduction to the data for several metals,” inE. D., Palik ed., Handbook of Optical Constants of Solids. New York: Academic Press, pp. 275–367.
Mahammadian, A. H., Shankar, V., & Hall, W. F. (1991), “Computation of electromagnetic scattering and radiation using a time-domain finite-volume discretization procedure,” Comput. Phys. Commun. 68, 175–196.CrossRefGoogle Scholar
Maier, S. A. (2007), Plasmonics: Fundamentals and Applications. New York: Springer-Verlag.
Markham, J. & Conchello, J. A. (2003), “Numerical evaluation of Hankel transforms for oscillating functions,” J. Opt. Soc. Am.A 20, 621–630.Google Scholar
Markowich, P. A. & Ringhofer, C. A. (1989), “An analysis of the quantum Liouville equation,” ZAMM – J. Appl. Math. Mech. 69, 121–127.Google Scholar
Markowich, P. A., Ringhofer, C. A., & Schmeiser, C. (2002), Semiconductor Equations. Berlin: Springer.
Martin, P. A. & Rizzo, F. J. (1989), “On boundary integral equations for crack problems,” Proc. R. Soc. Lond.A 421, 341–355.Google Scholar
Martin, P. A. & Rizzo, F. J. (1996), “Hypersingular integrals: how smooth must the density be?,” Int. J. Numer. Meth. Eng. 39, 687–704.Google Scholar
Maue, A. W. (1949), “Zur Formulierung eines allgemeinen Beugungsproblems durch eine Integralgleichung,” Z. Physik. 126, 601–618.CrossRefGoogle Scholar
Mautz, J. R. & Harrington, R. F. (1978), “H-field, E-field, and combined-field solutions for conducting bodies of resolution,” Arch. Electron. Ubertragungstech. (Electron. Commun.) 32, 157–164.Google Scholar
Maxwell, J. C. (1891), Treatise on Electricity and Magnetism, 2 vols., 3rd edn. Oxford, UK: Oxford University Press. Reprinted 1954, New York: Dover Publications.
Michalski, K. A. & Zheng, D. (1990), “Electromagnetic scattering and radiation by surfaces of arbitrary shape in layered media, Part I: Theory,” IEEE Trans. Antenn. Propag. 38, 335–344.Google Scholar
Milner, S. R. (1912), “The virial of a mixture of ions,” Phil. Mag. 6, 551–578.CrossRefGoogle Scholar
Moharam, M. G. & Gaylord, T. K. (1981), “Rigorous coupled-wave analysis of planargrating diffraction,” J. Opt. Soc. Am. 71, 811–818.Google Scholar
Monk, P. (2003), Finite Element Methods for Maxwell's Equations. Oxford, UK: Oxford University Press.
Monk, P. & Söuli, E. (1994), “A convergence analysis of Yee's scheme on nonuniform grids,” SIAM J. Numer. Anal. 31, 393–412.Google Scholar
Mosig, J. R. (1989), “Integral equation technique,” inT., Itoh ed., Numerical Techniques for Microwave and Millimeter-Wave Passive Structure. New York: Wiley, pp. 133–214.
Mossotti, O. F. (1850), “Discussione analitica sul'influenza che l'azione di un mezzo dielettrico ha sulla distribuzione dell'electricitá alla superficie di piú corpi elettrici disseminati in eso,” Mem. di Mathem. e Fis. Mod. 24, 49–74.Google Scholar
Möuller, C. (1969), Foundations of the Mathematical Theory of Electromagnetic Waves. New York: Springer-Verlag.
Mur, G. (1981), “Absorbing boundary conditions for the finite difference approximation of the time-domain electromagnetic-field equations,” IEEE Trans. Electromagn. Compat. 23, 377–382.Google Scholar
Muskhelishvili, N. I. (1953), Singular Integral Equations: Boundary Problems of Function Theory and Their Application to Mathematical Physics. Leiden: Noordhoff International.
Néedéelec, J. C. (1980), “Mixed finite elements in ℝ3,” Numer. Math. 35, 315–341.CrossRefGoogle Scholar
Néedéelec, J. C. (1986), “A new family of mixed finite elements in ℝ3,” Numer. Math. 50, 57–81.CrossRefGoogle Scholar
Néedéelec, J. C. (2001), Acoustic and Electromagnetic Equations: Integral Representations for Harmonic Problems. Berlin: Springer.
Nessyahu, H. & Tadmor, E. (1990), “Non-oscillatory central differencing for hyperbolic conservation laws,” J. Comput. Phys. 87, 408–463.Google Scholar
Neumann, C. (1883), Hydrodynamische Untersuchen nebst einem Anhang uber die Probleme der Elecktrostatik und der magnetischen Induktion. Leipzig: Teubner. pp. 279–282.
Neumann, M. (1983), “Dipole moment fluctuation formulas in computer simulations of polar systems,” Mol. Phys. 50, 841–858.Google Scholar
Norris, W. T. (1995), “Charge images in a dielectric sphere,” IEE Proc. Sci. Meas. Technol. 142, 142–150.CrossRefGoogle Scholar
Nymand, T. M. & Linse, P. (2000), “Ewald summation and reaction field methods for potentials with atomic charges, dipoles, and polarizabilities,” J. Chem. Phys. 112, 6152–6160.Google Scholar
Nyströom, E. J. (1930), “ÜUber die praktische Auflöosung von Integralgleichungen mit Anwendungen auf Randwertaufgaben,” Acta Mathematica 54, 185–204.CrossRefGoogle Scholar
Okamoto, K. (2005), Fundamentals of Optical Waveguides, 2nd edn. New York: Academic Press.
Onsager, L. (1933), “Theories of concentrated electrolytes,” Chem. Rev. 13, 73–89.CrossRefGoogle Scholar
Onsager, L. (1936), “Electric moments of molecules in liquids,” J. Am. Chem. Soc. 58, 1486–1493.CrossRefGoogle Scholar
Onufriev, A. (2010), “Continuum electrostatics solvent modeling with the generalized Born model,” inM., Feig ed., Modeling Solvent Environments. New York: Wiley, pp. 127–165.CrossRef
Onufriev, A., Case, D. A., & Bashford, D. (2002), “Effective Born radii in the generalized Born approximation: the importance of being perfect,” J. Comput. Chem. 23, 1297–1304.Google Scholar
Onufriev, A., Ralph, A. W., & David, C. S. (2008), “Implicit solvent models in molecular dynamics simulations: a brief overview,” Annu. Rep. Comput. Chem. 4, 125–137.CrossRefGoogle Scholar
Osher, S. J. & Fedkiw, R. P. (2002), Level Set Methods and Dynamic Implicit Surfaces. Berlin: Springer.
Otto, A. (1968), “Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection,” Zeitschrift Physik 216, 398–410.CrossRefGoogle Scholar
Parr, R. G. & Yang, W. T. (1989), Density Functional Theory of Atoms and Molecules. Oxford, UK: Oxford University Press.
Pathria, R. K. (1996), Statistical Mechanics, 2nd edn. Oxford, UK: Butterworth-Heinemann.
Peterson, A. F. (1988), “Absorbing boundary conditions for the vector wave equation,” Microw. Opt. Technol. Lett. 1, 62–64.CrossRefGoogle Scholar
Pitarke, J. M., Silkin, V. M., Chulkov, E. V., & Echenique, P. M. (2007), “Theory of surface plasmons and surface-plasmon polaritons,” Rep. Prog. Phys. 70, 1–87.Google Scholar
Powell, K. G. (1994), An Approximate Riemann Solver for Magnetohydrodynamics (That Works in More Than One Dimension), Technical Report 94–24, ICASE, Langley, VA.
Powles, J. G., Fowler, R. F., & Evans, W. A. B. (1984), “The dielectric constant of a polar liquid by the simulation of microscopic drops,” Chem. Phys. Lett. 107, 280–283.Google Scholar
Press, W. H., Teukolsky, S. A., Vetterling, W. T., & Flannery, B. P. (1992), Numerical Recipes in FORTRAN: The Art of Scientific Computing, 2nd edn. Cambridge, UK: Cambridge University Press.
Prony, R. (1795), “Essai éxperimental et analytique: sur les lois de la dilatabilité de fluides élastique et sur celles de la force expansive de la vapeur de l'alkool, à différentes températures,” J. l' é Ecole Polytech. (Paris) 1, 24–76.Google Scholar
Rachowicz, W. & Demkowicz, L. (2002), “An hp-adaptive finite element method for electromagnetics – part II. A 3D implementation,” Int. J. Numer. Meth. Eng. 53, 147–180.Google Scholar
Ramo, S., Whinnery, J. R., & van Duzer, T. (1994), Fields and Waves in Communication Electronics, 3rd edn. Hoboken, NJ: John Wiley & Sons.
Rao, S. M., Wilton, D. R., & Glisson, A. W. (1982), “Electromagnetic scattering by surfaces of arbitrary shape,” IEEE Trans. Antenn. Propag. 30, 409–418.Google Scholar
Rapetti, F. (2007), “High order edge elements on simplicial meshes,” ESAIM: M2AN 41, 1001–1020.CrossRefGoogle Scholar
Rapetti, F. & Bossavit, A. (2009), “Whitney forms of higher degree,” SIAM J. Numer. Anal. 47, 2369–2386.Google Scholar
Redlack, A. & Grindlay, J. (1972), “The electrostatic potential in a finite ionic crystal,” Can. J. Phys. 50, 2815–2825.Google Scholar
Redlack, A. & Grindlay, J. (1975), “Coulombic potential lattice sums,” J. Phys. Chem. Solids 36, 73–82.Google Scholar
Ren, Z., Venugopal, R., Goasguen, S., Datta, S., & Lundstrom, M. S. (2003), “NanoMOS 2–5: a two-dimensional simulator for quantum transport in double-gate MOSFETs,” IEEE Trans. Electron Dev. 50, 1914–1925.Google Scholar
Rickard Petersson, L. E. & Jin, J.-M. (2006a), “Analysis of periodic structures via a time-domain finite-element formulation with a Floquet ABC,” IEEE Trans. Antenn. Propag. 54, 933–944.Google Scholar
Rickard Petersson, L. E. & Jin, J.-M. (2006b), “A three-dimensional time-domain finiteelement formulation for periodic structures,” IEEE Trans. Antenn. Propag. 54, 12–19.Google Scholar
Ritchie, R. H. (1957), “Plasma losses by fast electrons in thin films,” Phys. Rev. 106, 874–881.Google Scholar
Roberts, J. E. & Schnitker, J. (1994), “How the unit cell surface charge distribution affects the energetics of ion–solvent interactions in simulations,” J. Chem. Phys. 101, 5024–5031.Google Scholar
Rodgers, J. M. & Weeks, J. D. (2008), “Interplay of local hydrogen-bonding and longranged dipolar forces in simulations of confined water,” Proc. Natl. Acad. Sci. USA 105, 19136–19141.Google Scholar
Roe, P. L. (1981), “Approximate Riemann solvers, parameter vectors, and difference schemes,” J. Comput. Phys. 43, 357–372.Google Scholar
Roe, P. L. (1985), “Upwind schemes using various formulations of the Euler equations,” inF., Angrand, A., Dervieux, R., Glowinski, & J. A., Desideri, eds., Numerical Methods for the Euler Equations of Fluid Dynamics. Philadelphia, PA: SIAM pp. 14–31.
Roe, P. L. & Balsara, D. S. (1996), “Notes on the eigensystem of magnetohydrodynamics,” SIAM J. Appl. Math. 56, 57–67.Google Scholar
Rokhlin, V. (1983), “Solution of acoustic scattering problem by means of second kind of integral equations,” Wave Motion 5, 257–272.Google Scholar
Rokhlin, V. (1990), “Rapid solution of integral equations of scattering theory in two dimensions,” J. Comput. Phys. 86, 414–439.CrossRefGoogle Scholar
Romano, V. & Russo, G. (2000), “Numerical solution for hydrodynamical models of semiconductors,” Math. Model Meth. Appl. Sci. 10, 1099–1120.Google Scholar
Rosenbluth, M. N., MacDonald, W. M., & Judd, D. L. (1957), “Fokker–Planck equation for an inverse-square force,” Phys. Rev. 107, 1–6.Google Scholar
Roux, B. (2001), “Implicit solvent models,” inO. M., Becker, A. D., MacKerell Jr., B., Roux, & M., Watanabe, eds., Computational Biochemistry and Biophysics. New York: Marcel Dekker, pp. 133–151.
Rudolphi, T. J. (1991), “The use of simple solutions in the regularization of hypersingular boundary integral equations,” Math. Comput. Model. 15, 269–278.CrossRefGoogle Scholar
Rullmann, J. A. C. & Duijnen, P. T. V. (1987), “Analysis of discrete and continuum dielectric models; application to the calculation of protonation energies in solution,” Mol. Phys. 61, 293–311.Google Scholar
Saad, Y. (2003), Iterative Methods for Sparse Linear Systems, 2nd edn. Philadelphia, PA: SIAM.
Sacks, Z. S., Kingsland, D. M., Lee, R., & Lee, J.-F. (1995), “A perfectly matched anisotropic absorber for use as an absorbing boundary condition,” IEEE Trans. Antenn. Propag. 43, 1460–1463.CrossRefGoogle Scholar
Sakoda, K. (1995a), “Optical transmittance of a two-dimensional triangular photonic lattice,” Phys. Rev.B 51, 4672–4675.
Sakoda, K. (1995b), “Transmittance and Bragg reflectivity of two-dimensional photonic lattices,” Phys. Rev.B 52, 8992–9002.
Sakoda, K. (2001), Optical Properties of Photonic Crystals. Berlin: Springer.
Sala, J., Guàrdia, E., & Masia, M. (2010), “The polarizable point dipoles method with electrostatic damping: implementation on a model system,” J. Chem. Phys. 133, 234101.Google Scholar
Schöoberl, J. & Zaglmayr, S. (2005), “High order Nédélec elements with local complete sequence properties,” COMPEL 24, 374–384.Google Scholar
Senior, T. B. A. & Volakis, J. L. (1995), Approximate Boundary Conditions in Electromagnetics, IEE Electromagnetic Waves vol. 41. Stevenage, UK: Institution of Electrical Engineers.
Sethian, J. A. (1999), Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science, 2nd edn. Cambridge, UK: Cambridge University Press.
Shannon, C. & Weaver, W. (1963), The Mathematical Theory of Communication. Urbana and Chicago, IL: University of Illinois Press.
Shao, S., Lu, T., & Cai, W. (2011), “Adaptive conservative cell average spectral element methods for transient Wigner equation in quantum transport,” Commun. Comput. Phys. 9, 711–739.Google Scholar
Sharp, K. A. & Honig, B. (1990), “Calculating total electrostatic energies with the nonlinear Poisson–Boltzmann equation,” J. Phys. Chem. 94, 7684–7692.Google Scholar
Shen, J., Tang, T., & Wang, L.-L. (2011), Spectral Methods: Algorithms, Analysis and Applications. New York: Springer-Verlag.
Shkarofsky, I. P., Johnston, T. W., & Bachynski, M. P. (1966), The Particle Kinetics of Plasmas. Reading, MA: Addison-Wesley.
Shu, C.-W. & Osher, S. (1989), “Efficient implementation of essentially non-oscillatory shock capturing schemes, II,” J. Comput. Phys. 83, 32–78.Google Scholar
Siegman, A. E. (1977), “Quasi fast Hankel transform,” Opt. Lett. 1, 13–15.CrossRefGoogle Scholar
Sigalov, G., Scheffel, P., & Onufriev, A. (2005), “Incorporating variable dielectric environments into the generalized Born model,” J. Chem. Phys. 122, 094511.Google Scholar
Smoller, J. (1983), Shock Waves and Reaction–Diffusion Equations. New York: Springer-Verlag.
Smythe, W. R. (1989), Static and Dynamic Electricity, 3rd edn. New York: Hemisphere Publishing.
Snyder, A. W. & Love, J. (1983), Optical Waveguide Theory. Berlin: Springer.
Sommerfeld, A. (1949), Partial Differential Equations in Physics. New York: Academic Press.
Sommerfeld, A. (1954), Optics. New York: Academic Press sect. 27.
Song, W., Lin, Y., Baumketner, A., et al. (2013), “Effect of the reaction field on molecular forces and torques revealed by an image-charge solvation model,” Commun. Comput. Phys. 13, 129–149.Google Scholar
Spitzer, L., Jr. & Höarm, R. (1953), “Transport phenomena in a completely ionized gas,” Phys. Rev. 89, 977–981.CrossRefGoogle Scholar
Srinivasan, J., Trevathan, M. W., Beroza, P., & Case, D. A. (1999), “Application of a pairwise generalized Born model to proteins and nucleic acids: inclusion of salt effects,” Theor. Chem. Acc. 101, 426–434.CrossRefGoogle Scholar
Stern, H. A. & Feller, S. E. (2003), “Calculation of the dielectric permittivity profile for a nonuniform system: application to a lipid bilayer simulation,” J. Chem. Phys. 118, 3401–3412.Google Scholar
Stern, O. (1924), “Zur theorie der elektrolytischen Doppelschicht,” Z. Elektrochem. 30, 508–516.Google Scholar
Still, W. C., Tempczyk, A., Hawley, R. C., & Hendrickson, T. (1990), “Semianalytical treatment of solvation for molecular mechanics and dynamics,” J. Am. Chem. Soc. 112, 6127–6129.CrossRefGoogle Scholar
Strain, J. (1995), “Locally corrected multidimensional quadrature rules for singular functions,” SIAM J. Sci. Comput. 16, 992–1017.CrossRefGoogle Scholar
Stratton, J. A. (1941), Electromagnetic Theory. New York: McGraw-Hill.
Stratton, J. A. & Chu, L. J. (1939), “Diffraction theory of electromagnetic waves,” Phys. Rev. 56, 99–107.Google Scholar
Sweby, P. K. (1984), “High resolution schemes using flux limiters for hyperbolic conservation laws,” SIAM J. Numer. Anal. 21, 995–1011.CrossRefGoogle Scholar
Szabó, B. & Babuska, I. (1991), Finite Element Analysis. New York: Wiley-Interscience.
Taflove, A. & Hagness, S. C. (2000), Computational Electromagnetics: The Finite-Difference Time-Domain Method. Norwood, MA: Artech House Publishers.
Tai, C.-T. (1994), Dyadic Green Functions in Electromagnetic Theory, 2nd edn. Piscataway, NJ: IEEE Press.
Tatarskiĭ, V. I. (1983), “The Wigner representation of quantum mechanics,” Sov. Phys. Usp. 26, 311–327.Google Scholar
Temam, R. (1968), “Une méthode d'approximation des solutions des équations Navier–Stokes,” Bull. Soc. Math. France 98, 115–152.Google Scholar
Teng, T.-Z. (2003), “Exact boundary condition for time-dependent wave equation based on boundary integral,” J. Comput. Phys. 190, 398–418.CrossRefGoogle Scholar
Thomson, W. L. K. (1884), Reprint of Papers on Electrostatics and Magnetism, 2nd edn. London: Macmillan.
Thylen, L. & Yevick, D. (1982), “Beam propagation method in anisotropic media,” Appl. Opt. 21, 2751–2754.Google Scholar
Ting, L. & Miksis, M. J. (1986), “Exact boundary conditions for scattering problems,” J. Acoust. Soc. Am. 80, 1825–1827.Google Scholar
Tolman, R. C. (1950), The Principles of Statistical Mechanics. Oxford, UK: Oxford University Press.
Tomizawa, K. (1993), Numerical Simulation of Submicron Semiconductor Devices. Norwood, MA: Artech House Publishers.
Tong, M. S. & Chew, W. C. (2005), “A higher-order Nyströom scheme for electromagnetic scattering by arbitrarily shaped surfaces,” IEEE Antenn. Wire. Propag. Lett. 4, 277–280.Google Scholar
Tong, M. S. & Chew, W. C. (2007), “Super-hyper singularity treatment for solving 3D electric field integral equations,” Microw. Opt. Technol. Lett. 49, 1383–1388.Google Scholar
Tóth, G. (2000), “The ∇. B = 0 constraint in shock-capturing magnetohydrodynamics codes,” J. Comput. Phys. 161, 605–652.CrossRefGoogle Scholar
Toukmaji, A. Y. & Board, J. A., Jr. (1996), “Ewald summation techniques in perspective: a survey,” Comput. Phys. Commun. 95, 73–92.Google Scholar
Trefethen, L. N. & Halpern, L. (1986), “Well-posedness of one-way wave equations and absorbing boundary conditions,” Math. Comput. 47, 421–435.Google Scholar
Tsu, R. & Esaki, L. (1973), “Tunneling in a finite superlattice,” Appl. Phys. Lett. 22, 562–564.Google Scholar
Tsuji, Y., Koshiba, M., & Takimoto, N. (1999), “Finite element beam propagation method for anisotropic optical waveguides,” J. Lightwave Technol. 17, 723–728.CrossRefGoogle Scholar
Tsynkov, S. V. (2004), “On the application of lacunae-based methods to Maxwell's equations,” J. Comput. Phys. 199, 126–149.CrossRefGoogle Scholar
Tzoufras, M., Bell, A., Norreys, P. A., & Tsung, F. S. (2011), “A Vlasov–Fokker–Planck code for high energy density physics,” J. Comput. Phys. 230, 6475–6494.Google Scholar
Umeda, T., Omura, Y., Tominaga, T., & Matsumoto, H. (2003), “A new charge conservation method in electromagnetic particle-in-cell simulations,” Comput. Phys. Commun. 156, 73–85.CrossRefGoogle Scholar
van Bladel, J. (1991), Singular Electromagnetic Fields and Sources. Oxford, UK: Clarendon Press & Oxford University Press.
van Leer, B. (1977), “Towards the ultimate conservative difference scheme. IV. A new approach to numerical convection,” J. Comput. Phys. 23, 276–299.Google Scholar
van Leer, B. (1979), “Towards the ultimate conservative difference scheme. V. A secondorder sequel to Godunov's method,” J. Comput. Phys. 32, 101–136.Google Scholar
Villasenor, J. & Buneman, O. (1992), “Rigorous charge conservation for local electromagnetic field solvers,” Comput. Phys. Commun. 69, 306–316.Google Scholar
von Neumann, J. (1927), “Wahrscheinlichkeitstheoretischer aufbau der quantenmechanik,” Nachr. Ges. Wiss. Gottingen 1, 245–272.Google Scholar
Wait, J. R. (1967), “Electromagnetic whispering gallery modes in a dielectric rod,” Radio Sci. 2, 1005–1017.Google Scholar
Wallqvist, A. (1993), “On the implementation of Friedman boundary conditions in liquid water simulations,” Mol. Simul. 10, 13–17.CrossRefGoogle Scholar
Wandzura, S. M. (1992), “Electric current basis functions for curved surfaces,” Electromag. 12, 77–91.CrossRefGoogle Scholar
Wang, J., Cai, Q., Li, Z.-L., Zhao, H.-K., & Luo, R. (2009), “Achieving energy conservation in Poisson–Boltzmann molecular dynamics: accuracy and precision with finite-difference algorithms,” Chem. Phys. Lett. 468, 112–118.Google Scholar
Wang, L. & Hermans, J. (1995), “Reaction field molecular dynamics simulation with Friedman's image charge method,” J. Phys. Chem. 99, 12001–12007.Google Scholar
Webb, J. P. (1999), “Hierarchical vector basis functions of arbitrary order for triangular and tetrahedral finite elements,” IEEE Trans. Antenn. Propag. 47, 1244–1253.CrossRefGoogle Scholar
Weiss, L. & McDonough, R. N. (1963), “Prony's method, z-transforms, and Padé approximation,” SIAM Rev. 5, 145–149.Google Scholar
Whitney, H. (1957), Geometric Integration Theory. Princeton, NJ: Princeton University Press.
Wigner, E. (1932), “On the quantum correction for thermodynamic equilibrium,” Phys. Rev. 40, 749–759.CrossRefGoogle Scholar
Wilcox, C. H. (1956), “An expansion theorem for electromagnetic fields,” Commun. Pure Appl. Math. 9, 115–134.CrossRefGoogle Scholar
Wilcox, C. H. (1978), “Theory of Bloch waves,” J. D'anal. Math. 33, 146–167.CrossRefGoogle Scholar
Xiao, T. & Liu, Q. H. (2004), “A staggered upwind embedded boundary (SUEB) method to eliminate the FDTD staircasing error,” IEEE Trans. Antenn. Propag. 52, 730–741.Google Scholar
Xin, J. & Cai, W. (2011a), “A well-conditioned hierarchical basis for triangular H(curl)-conforming elements,” Commun. Comput. Phys. 9, 780–806.Google Scholar
Xin, J. & Cai, W. (2011b), “Well-conditioned orthonormal hierarchical ℒ2 bases on ℝn simplicial elements,” J. Sci. Comput. 50, 446–461.Google Scholar
Xin, J., Guo, N., & Cai, W. (2011), “On the construction of well-conditioned hierarchical bases for tetrahedral H(curl)-conforming Nédélec elements,” J. Comput. Math. 29, 526–542.Google Scholar
Xu, C. L., Huang, W. P., Chrostowski, J., & Chaudhuri, S. K. (1994), “A fullvectorial beam propagation method for anisotropic waveguide,” J. Lightwave Technol. 12, 1926–1931.Google Scholar
Xu, Z., Deng, S., & Cai, W. (2009), “Image charge approximations of reaction fields in solvents with arbitrary ionic strength,” J. Comput. Phys. 228, 2092–2099.Google Scholar
Xu, Z. L. & Cai, W. (2011), “Fast analytical methods for macroscopic electrostatic models in biomolecular simulations,” SIAM Review 53, 683–720.Google Scholar
Yaghjian, A. D. (1980), “Electric dyadic Green's functions in the source region,” Proc. IEEE 68, 248–263.Google Scholar
Yaghjian, A. D. (1981), “Augmented electric- and magnetic-field integral equations,” Radio Sci. 16, 987–1001.Google Scholar
Yang, P.-K., Liaw, S.-H., & Lim, C. (2002), “Representing an infinite solvent system with a rectangular finite system using image charges,” J. Phys. Chem.B 106, 2973–2982.CrossRefGoogle Scholar
Yariv, A. (1989), Quantum Electronics, 3rd edn. Hoboken, NJ: John Wiley & Sons.
Yariv, A., Xu, Y., Lee, R. K., & Scherer, A. (1999), “Coupled resonator optical waveguide: a proposal and analysis,” Opt. Lett. 24, 711–713.CrossRefGoogle Scholar
Ying, L., Biros, G., & Zorin, D. (2004), “A kernel-independent adaptive fast multipole algorithm in two and three dimensions,” J. Comput. Phys. 196, 591–626.CrossRefGoogle Scholar
Yu, S., Geng, W., & Wei, G. W. (2007), “Treatment of geometric singularities in implicit solvent models,” J. Chem. Phys. 126, 244108.Google Scholar
Yu, T. & Cai, W. (2001), “High-order window functions and fast algorithms for calculating dyadic electromagnetic Green's functions in multilayered media,” Radio Sci. 36, 559–569.Google Scholar
Yu, T. & Cai, W. (2006), “FIFA – fast interpolation and filtering algorithm for calculating dyadic Green's function in the electromagnetic scattering of multi-layered structures,” Commun. Comput. Phys. 1, 228–258.Google Scholar
Zhou, H.-X. (1994), “Macromolecular electrostatic energy within the nonlinear Poisson–Boltzmann equation,” J. Chem. Phys. 100, 3152–3162.CrossRefGoogle Scholar
Ziolkowski, R. W. (1997), “Time derivative Lorentz material model-based absorbing boundary condition,” IEEE Trans. Antenn. Propag. 45, 1530–1535.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Wei Cai, University of North Carolina, Charlotte
  • Book: Computational Methods for Electromagnetic Phenomena
  • Online publication: 05 February 2013
  • Chapter DOI: https://doi.org/10.1017/CBO9781139108157.019
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Wei Cai, University of North Carolina, Charlotte
  • Book: Computational Methods for Electromagnetic Phenomena
  • Online publication: 05 February 2013
  • Chapter DOI: https://doi.org/10.1017/CBO9781139108157.019
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Wei Cai, University of North Carolina, Charlotte
  • Book: Computational Methods for Electromagnetic Phenomena
  • Online publication: 05 February 2013
  • Chapter DOI: https://doi.org/10.1017/CBO9781139108157.019
Available formats
×