Skip to main content Accessibility help
×
Home
Computational Methods for Electromagnetic Phenomena
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 1
  • Wei Cai, University of North Carolina, Charlotte
  • Export citation
  • Recommend to librarian
  • Buy the print book

Book description

A unique and comprehensive graduate text and reference on numerical methods for electromagnetic phenomena, from atomistic to continuum scales, in biology, optical-to-micro waves, photonics, nanoelectronics and plasmas. The state-of-the-art numerical methods described include: Statistical fluctuation formulae for the dielectric constant Particle-Mesh-Ewald, Fast-Multipole-Method and image-based reaction field method for long-range interactions High-order singular/hypersingular (Nyström collocation/Galerkin) boundary and volume integral methods in layered media for Poisson–Boltzmann electrostatics, electromagnetic wave scattering and electron density waves in quantum dots Absorbing and UPML boundary conditions High-order hierarchical Nédélec edge elements High-order discontinuous Galerkin (DG) and Yee finite difference time-domain methods Finite element and plane wave frequency-domain methods for periodic structures Generalized DG beam propagation method for optical waveguides NEGF(Non-equilibrium Green's function) and Wigner kinetic methods for quantum transport High-order WENO and Godunov and central schemes for hydrodynamic transport Vlasov-Fokker-Planck and PIC and constrained MHD transport in plasmas

Reviews

'This is a truly unique book that covers a variety of computational methods for several important physical (electromagnetics) problems in a rigorous manner with a great depth. It will benefit not only computational mathematicians, but also physicists and electrical engineers interested in numerical analysis of electrostatic, electrodynamic, and electron transport problems. The breadth (both in terms of physics and numerical analysis) and depth are very impressive. I like, in particular, the way the book is organized: a physical problem is described clearly first and then followed by the presentation of relevant state-of-the-art computational methods.'

Jian-Ming Jin - Y. T. Lo Chair Professor in Electrical and Computer Engineering, University of Illinois, Urbana-Champaign

'This book is a great and unique contribution to computational modeling of electromagnetic problems across many fields, covering in depth all interesting multiscale phenomena, from electrostatics in biomolecules, to EM scattering, to electron transport in plasmas, and quantum electron transport in semiconductors. It includes both atomistic descriptions and continuum based formulations with emphasis on long-range interactions and high-order algorithms, respectively. The book is divided into three main parts and includes both established but also new algorithms on every topic addressed, e.g. fast multipole expansions, boundary integral equations, high-order finite elements, discontinuous Galerkin and WENO methods. Both the organization of the material and the exposition of physical and algorithmic concepts are superb and make the book accessible to researchers and students in every discipline.'

George Karniadakis - Professor of Applied Mathematics, Brown University

'This is an excellent book for one who wants to study and understand the relationship between mathematical methods and the many different physical problems they can model and solve.'

Weng Cho Chew - Y. T. Lo Chair Professor in Electrical and Computer Engineering, University of Illinois, Urbana-Champaign

'A well-written book which will be of use to a broad range of students and researchers in applied mathematics, applied physics and engineering. It provides a clear presentation of many topics in computational electromagnetics and illustrates their importance in a distinctive and diverse set of applications.'

Leslie Greengard - Courant Institute, New York University

Refine List

Actions for selected content:

Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Send to Kindle
  • Send to Dropbox
  • Send to Google Drive

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.
×

Contents

References
References
Abarbanel, S. & Gottlieb, D. (1997), “A mathematical analysis of the PML method,” J. Comput. Phys. 134, 357–363.
Abarbanel, S. & Gottlieb, D. (1998), “On the construction and analysis of absorbing layers in CEM,” Appl. Numer. Math. 27, 331–340.
Abdul-Rahman, R. & Kasper, M. (2008), “Orthogonal hierarchical Néedéelec elements,” IEEE Trans. Mag. 44, 1210–1213.
Abramowitz, M. & Stegun, I. A. (1972), Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th edn. New York: Dover Publications.
Abrikosov, A. A., Gorkov, L. P., & Dzyaloshinski, I. E. (1975), Methods of Quantum Field Theory in Statistical Physics. New York: Dover.
Adams, D. J. & McDonald, I.-R. (1976), “Thermodynamic and dielectric properties of polar lattices,” Mol. Phys. 32, 931–947.
Aguado, A. & Madden, P. A. (2003), “Ewald summation of electrostatic multipole interactions up to the quadrupolar level,” J. Chem. Phys. 119, 7471–7483.
Ainsworth, M. & Coyle, J. (2001), “Hierarchic hp-edge element families for Maxwell's equations on hybrid quadrilateral/triangular meshes,” Comput. Meth. Appl. Mech. Eng. 190, 6709–6733.
Ainsworth, M. & Coyle, J. (2003), “Hierarchic finite element bases on unstructured tetrahedral meshes,” Int. J. Numer. Meth. Eng. 58, 2103–2130.
Allen, M. P. & Tildesley, D. J. (1989), Computer Simulation of Liquids. Oxford, UK: Oxford University Press.
Alouani-Bibi, F. & Matte, J.-P. (2002), “Influence of the electron distribution function shape on nonlocal electron heat transport in laser-heated plasmas,” Phys. Rev. E 66, 066414.
Alouani-Bibi, F., Shoucri, M. M., & Matte, J.-P. (2004), “Different Fokker–Planck approaches to simulate electron transport in plasmas,” Comput. Phys. Commun. 164, 60–66.
Alpert, B., Greengard, L., & Hagstrom, T. (2000), “Rapid evaluation of nonreflecting boundary kernels for time-domain wave propagation,” SIAM J. Numer. Anal. 37, 1138–1164.
Alpert, B., Greengard, L., & Hagstrom, T. (2002), “Nonreflecting boundary conditions for the timedependent wave equation,” J. Comput. Phys. 180, 270–296.
Andersen, L. S. & Volakis, J. L. (1999), “Development and application of a novel class of hierarchical tangential vector finite elements for electromagnetics,” IEEE Trans. Antenn. Propag. 47, 112–120.
Andriulli, F. P., Cools, K., Bagci, H., et al. (2008), “A multiplicative Calderon preconditioner for the electric field integral equation,” IEEE Trans. Antenn. Propag. 56, 2398–2412.
Atkinson, K. & Graham, I. (1990), “Iterative variants of the nyströom method for second kind boundary integral operators,” SIAM J. Sci. Stat. Comput. 13, 694–722.
Baccarani, G. & Wordeman, M. R. (1985), “An investigation of steady-state velocity overshoot in silicon,” Solid State Electron. 28, 407–416.
Ballenegger, V. & Hansen, J.-P. (2005), “Dielectric permittivity profiles of confined polar fluids,” J. Chem. Phys. 122, 114711.
Balsara, D. S. (2001), “Divergence-free adaptive mesh refinement for magnetohydrodynamics,” J. Comput. Phys. 174, 614–648.
Balsara, D. S. (2004), “Second order accurate schemes for magnetohydrodynamics with divergence-free reconstruction,” Astrophys. J. Suppl. S. 151, 149–184.
Balsara, D. S. (2009), “Divergence-free reconstruction of magnetic fields and WENO schemes for magnetohydrodynamics,” J. Comput. Phys. 228, 5040–5056.
Bao, G., Dobson, D. C., & Cox, J. A. (1995), “Mathematical studies in rigorous grating theory,” J. Opt. Soc. Am. A 12, 1029–1042.
Barnes, J. & Hut, P. (1986), “A hirerachical o(n log n) force-calculation algorithm,” Nature 324, 446–449.
Bashford, D. & Case, D. A. (2000), “Generalized Born models of macromolecular solvation effects,” Annu. Rev. Phys. Chem. 51, 129–152.
Bayliss, A. & Turkel, E. (1980), “Radiation boundary conditions for wave-like equations,” Commun. Pure Appl. Math. 33, 707–725.
Bell, A. R., Robinson, A. P. L., Sherlock, M., Kingham, R. J., & Rozmus, W. (2006), “Fast electron transport in laser-produced plasmas and the KALOS code for solution of the Vlasov–Fokker–Planck equation,” Plasma Phys. Control Fusion 48, R37–R57.
Berendsen, H. J. C. (1972), “Molecular dynamics and Monte Carlo calculations on water,” Report of a C.E.C.A.M. Workshop, Orsay, France, June 19 – Aug. 11, 1972, pp. 29–39.
Berenger, J.-P. (1994), “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 114, 185–200.
Bianco, F., Puppo, G., & Russo, G. (1999), “High-order central schemes for hyperbolic systems of conservation laws,” SIAM J. Sci. Comput. 21, 294–322.
Biegel, B. A. (1996), SQUADS Technical Reference. Unpublished, Stanford University.
Biegel, B. A. (1997), “Quantum electronic device simulation”. Unpublished Ph.D. thesis, Stanford University.
Birdsall, C. K. & Langdon, A. B. (2004), Plasma Physics via Computer Simulation. New York: Taylor & Francis.
Bittencourt, J. A. (2004), Fundamentals of Plasma Physics, 3rd edn. Berlin: Springer.
Blanchard, P. & Brüuning, E. (2002), Mathematical Methods in Physics. Cambridge, MA: Birkhauser, ex. 3.3.1 4.
Bleszynski, E., Bleszynski, M., & Jaroszewicz, T. (1996), “Aim: adaptive integral method for solving large scale electromagnetic scattering and radiation problems,” Radio Sci. 31, 1225–1251.
Bloch, F. & Walecka, J. D. (2001), Fundamentals of Statistical Mechanics: Manuscript and Notes of Felix Bloch. Singapore: World Scientific.
Bløtekjaer, K. (1970), “Transport equations for electrons in two-valley semiconductors,” IEEE Trans. Electron Dev. 17, 38–47.
Bockris, J. O., Reddy, A. K. N., & Gamboa-Aldeco, M. (2000), Modern Electrochemisty 2A: Fundamentals of Electrodics, 2nd edn. Norwell, MA: Kluwer Academic Publishers.
Boda, D., Fawcett, W. R., Henderson, D., & Sokołowski, S. (2002), “Monte Carlo, density functional theory, and Poisson–Boltzmann theory study of the structure of an electrolyte near an electrode,” J. Chem. Phys. 116, 7170–7176.
Boffi, D. (2010), “Finite element approximation of eigenvalue problems,” Acta Numerica 19, 1–120.
Boffi, D., Brezzi, F., & Gastaldi, L. (1997), “On the convergence of eigenvalues for mixed formulations,” Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 25, 131–154.
Boffi, D., Brezzi, F., & Gastaldi, L. (2000), “On the problem of spurious eigenvalues in the approximation of linear elliptic problems in mixed form,” Math. Comput. 69, 121–140.
Boffi, D., Conforti, M., & Gastaldi, L. (2006), “Modified edge finite elements for photonic crystals,” Numer. Math. 105, 249–266.
Boffi, D., Fernandes, P., Gastaldi, L., & Perugia, I. (1999), “Computational models of electromagnetic resonators: analysis of edge element approximation,” SIAM J. Numer. Anal. 36, 1264–1290.
Bohren, C. F. & Huffman, D. R. (1998), Absorption and Scattering of Light by Small Particles. Hoboken, NJ: Wiley-VCH.
Borel, S., Levadoux, D. P., & Alouges, F. (2005), “A new well-conditioned integral formulation for Maxwell equations in three dimensions,” IEEE Trans. Antenn. Propag. 53, 2995–3004.
Born, M. (1920), “Volumes and heats of hydration of ions,” Z. Phys. 1, 45–48.
Borukhov, I., Andelman, D., & Orland, H. (1997), “Steric effects in electrolytes: a modified Poisson–Boltzmann equation,” Phys. Rev. Lett. 79, 435–438.
Bossavit, A. (1990), “Solving Maxwell equations in a closed cavity, and the question of ‘spurious modes’,” IEEE Trans. Mag. 26, 702–705.
Bossavit, A. & Mayergoyz, I. D. (1997), Computational Electromagnetism: Variational Formulations, Complementarity, Edge Elements. New York: Academic Press.
Böottcher, C. J. F. (1973), Theory of Electric Polarization vol. 1: Dielectrics in Static Fields, 2nd edn. Amsterdam: Elsevier Sciences.
Boyd, J. P. (2001), Chebyshev and Fourier Spectral Methods, 2nd edn. New York: Dover Publications.
Brackbill, J. U. & Barnes, D. C. (1980), “The effect of nonzero ∇. B on the numerical solution of the magnetohydrodynamic equations,” J. Comput. Phys. 35, 426–430.
Brandt, A. (1982), Guide to Multigrid Development Vol. 960 of Lecture Notes in Mathematics. Berlin: Springer.
Brandt, A. & Lubrecht, A. (1990), “Multilevel matrix multiplication and fast solution of integral equations,” J. Comput. Phys. 90, 348–370.
Brezzi, F. (1974), “On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers,” RAIRO 8, 129–151.
Bruno, O., Elling, T., Paffenroth, R., & Turc, C. (2009), “Electromagnetic integral equations requiring small numbers of Krylov-subspace iterations,” J. Comput. Phys. 228, 6169–6183.
Buffa, A., Costabel, M., & Schwab, C. (2002), “Boundary element methods for Maxwell's equations on non-smooth domains,” Numer. Math. 92, 679–710.
Buffa, A., Costabel, M., & Sheen, D. (2002), “On traces for H(Curl, ω) in Lipschitz domains,” J. Math. Anal. Appl. 276, 845–867.
Butcher, P. N. & Cotter, D. (1991), The Elements of Nonlinear Optics. Cambridge, UK: Cambridge University Press.
Cai, W. (1999), “High-order mixed current basis functions for electromagnetic scattering of curved surfaces,” J. Sci. Comput. 14, 73–105.
Cai, W. & Deng, S. (2003), “An upwinding embedded boundary method for Maxwell's equations in media with material interfaces: 2D case,” J. Comput. Phys. 190, 159–183.
Cai, W., Deng, S., & Jacobs, D. (2007), “Extending the fast multipole method to charges inside or outside a dielectric sphere,” J. Comput. Phys. 223, 846–864.
Cai, W., Gottlieb, D., & Harten, A. (1992), “Cell averaging Chebyshev methods for hyperbolic problems,” Comput. Math. Appl. 24, 37–49.
Cai, W., Xu, Z., & Baumketner, A. (2008), “A new FFT-based algorithm to compute Born radii in the generalized Born theory of biomolecule solvation,” J. Comput. Phys. 227, 10162–10177.
Cai, W. & Yu, T. (2000), “Fast calculations of dyadic Green's functions for electromagnetic scattering in a multilayered medium,” J. Comput. Phys. 165, 1–21.
Cai, W., Yu, T., Wang, H., & Yu, Y. (2001), “High-order mixed RWG basis functions for electromagnetic applications,” IEEE Trans. Microw. Theory Tech. 49, 1295–1303.
Cai, W., Yu, Y., & Yuan, X. C. (2002), “Singularity treatment and high-order RWG basis functions for integral equations of electromagnetic scattering,” Int. J. Numer. Meth. Eng. 53, 31–47.
Canino, L. F., Ottusch, J. J., Stalzer, M. A., Visher, J. L., & Wandzura, S. M. (1998), “Numerical solution of the Helmholtz equations in 2D and 3D using a high-order Nyströom discretization,” J. Comput. Phys. 146, 627–663.
Caorsi, S., Fernandes, P., & Raffetto, M. (2000), “On the convergence of Galerkin finite element approximations of electromagnetic eigenproblems,” SIAM J. Numer. Anal. 38, 580–607.
Caorsi, S., Fernandes, P., & Raffetto, M. (2001), “Spurious-free approximations of electromagnetic eigenproblems by means of Néedéelec-type elements,” Math. Model Numer. Anal. 35, 331–354.
Chandler, G. (1984), “Galerkin's method for boundary integral equations on polygonal domains,” J. Austral. Math. Soc., Ser.B 26, 1–13.
Chapman, D. L. (1913), “A contribution to the theory of electrocapillarity,” Phil. Mag. 25, 475–481.
Chen, L., Holst, M., & Xu, J. (2007), “The finite element approximation of the nonlinear Poisson–Boltzmann equation,” SIAM J. Numer. Anal. 45, 2298–2320.
Chen, Z. & Néedéelec, J.-C. (2008), “On Maxwell equations with the transparent boundary condition,” J. Comput. Math. 26, 284–296.
Cheng, H., Crutchfield, W., Gimbutas, Z., et al. (2006a), “Remarks on the implementation of the wideband FMM for the Helmholtz equation in two dimensions,” Contemp. Math. 408, 99–110.
Cheng, H., Crutchfield, W., Gimbutas, Z., et al. (2006b), “A wideband fast multipole method for the Helmholtz equation in three dimensions,” J. Comput. Phys. 216, 300–325.
Chern, I.-L., Liu, J.-G., & Wang, W.-C. (2003), “Accurate evaluation of electrostatics for macromolecules in solution,” Meth. Appl. Anal. 10, 309–328.
Chew, W. C. (1990), Waves and Fields in Inhomogeneous Media. New York: Van Nostrand Reinhold.
Chew, W. C., Jin, J.-M., Michielssen, E., & Song, J. (2001), Fast and Efficient Algorithms in Computational Electromagnetics. Norwood, MA: Artech House Publishers.
Chew, W. C., Tong, M. S., & Hu, B. (2008), Integral Equation Methods for Electromagnetic and Elastic Waves. San Francisco, CA: Morgan & Claypool.
Chew, W. C., Xiong, J. L., & Saville, M. A. (2006), “A matrix-friendly formulation of layered medium Green's function,” IEEE Antenn. Wire. Propag. Lett. 5, 490–494.
Cho, M. H. & Cai, W. (2010), “A wideband fast multipole method for the two-dimensional complex Helmholtz equation,” Comput. Phys. Commun. 181, 2086–2090.
Cho, M. H. & Cai, W. (2012), “A parallel fast algorithm for computing the helmholtz integral operator in 3-d layered media,” J. Comput. Phys. 231, 5910–5925.
Chorin, A. J. (1968), “Numerical solution of the Navier–Stokes equations,” Math. Comput. 22, 745–762.
Chow, Y. L., Yang, J. J., Fang, D. G., & Howard, G. E. (1991), “A closed form spatial Green's function for the thick microstrip substrate,” IEEE Trans. Microw. Theory Tech. 39, 588–592.
Christiansen, S. H. & Néedéelec, J.-C. (2002), “A preconditioner for the electric field integral equation based on Calderon formulas,” SIAM J. Numer. Anal. 40, 1100–1135.
Chu, V. B., Bai, Y., Lipfert, J., Herschlag, D., & Doniach, S. (2007), “Evaluation of ion binding to DNA duplexes using a size-modified Poisson–Boltzmann theory,” Biophys. J. 93, 3202–3209.
Ciarlet, P. G. (1978), The Finite Element Method for Elliptic Problems. Amsterdam: North-Holland Publishing.
Clausius, R. (1879), Die mechanische Wöarmetheorie II. Braunschweig: Friedrich Vieweg und Sohn, pp. 62–97.
Cockburn, B. & Shu, C.-W. (1998), “The local discontinuous Galerkin method for time-dependent convection–diffusion systems,” SIAM J. Numer. Anal. 35, 2440–2463.
Cohen-Tannoudji, C., Diu, B., & Laloe, F. (2006), Quantum Mechanics vol. I.New York: Wiley-Interscience.
Colella, P. & Woodward, P. R. (1984), “The piecewise-parabolic method (PPM) for gas-dynamical simulations,” J. Comput. Phys. 54, 174–201.
Collin, R. E. (1990), Field Theory of Guided Waves. Hoboken, NJ: Wiley-IEEE Press.
Colton, D. & Kress, R. (1992), Inverse Acoustic and Electromagnetic Scattering Theory. Berlin: Springer.
Contopanagos, H., Dembart, B., Epton, M., et al. (2002), “Well-conditioned boundary integral equations for three-dimensional electromagnetic scattering,” IEEE Trans. Antenn. Propag. 50, 1824–1830.
Costabel, M. & Dauge, M. (1997), “Singularities of electromagnetic fields in polyhedral domains,” Arch. Ration. Mech. Anal. 151, 221–276.
Costabel, M. & Dauge, M. (2003), “Computation of resonance frequencies for Maxwell equations in non smooth domains,” in M., Ainsworth, P., Davies, D., Duncan, P., Martin, & B., Rynne eds., Topics in Computational Wave Propagation: Direct and Inverse Problems. Berlin: Springer, pp. 127–164.
Costabel, M., Dauge, M., & Nicaise, S. (1999), “Singularities of Maxwell interface problems,” Math. Model Numer. Anal. 33, 627–649.
Csendes, Z. J. & Silvester, P. (1970), “Numerical solution of dielectric loaded waveguides: I – finite-element analysis,” IEEE Trans. Microw. Theory Tech. 18, 1124–1131.
Cui, T. J. & Chew, W. C. (1999), “Fast evaluation of Sommerfeld integrals for EM scattering and radiation by three-dimensional buried objects,” IEEE Trans. Geosci. Remote Sens. 37, 887–900.
Darden, T., York, D., & Pedersen, L. (1993), “Particle mesh Ewald: an Nlog(N) method for Ewald sums in large systems,” J. Chem. Phys. 98, 10089–10092.
Datta, S. (1989), Quantum Phenomena. Reading, MA: Addison-Wesley.
Datta, S. (1997), Electronic Transport in Mesoscopic Systems. Cambridge, UK: Cambridge University Press.
Datta, S. (2005), Quantum Transport: Atom to Transistor. Cambridge, UK: Cambridge University Press.
Daubechies, I. (1992), Ten Lectures on Wavelets. Philadelphia, PA: SIAM.
Davies, J. B., Fernandez, F. A., & Philippou, G. Y. (1982), “Finite element and analysis of all modes in cavities with circular symmetry,” IEEE Trans. Microw. Theory Tech. 30, 1975–1980.
Davis, J. H. (1997), Physics of Low Dimensional Semiconductors: An Introduction. Cambridge, UK: Cambridge University Press.
Davis, M. E. & McCammon, J. A. (1990), “Electrostatics in biomolecular structure and dynamics,” Chem. Rev. 90, 509–521.
de Leeuw, S. W., Perram, J. W., & Smith, E. R. (1980), “Simulation of electrostatic systems in periodic boundary conditions. I. Lattice sums and dielectric constants,” Proc. R. Soc. Lond.A 373, 27–56.
Debye, P. (1909), “Der lichtdruck auf Kugeln von beliegigem Material,” Ann. Phys. (Leipzig) 30, 57–136.
Debye, P. & Hückel, E. (1923), “The theory of electrolytes. I. Lowering of freezing point and related phenomena,” Physik. Z. 24, 185–206.
Deng, S. & Cai, W. (2005), “Discontinuous spectral element method modeling of optical coupling by whispering gallery modes between microcylinders,” J. Opt. Soc. Am.A 22, 952–960.
Deng, S., Cai, W., & Jacobs, D. (2007), “A comparable study of image approximations to the reaction field,” Comput. Phys. Commun. 177, 689–699.
Dey, S. & Mittra, R. (1997), “A locally conformal finite difference time-domain (FDTD) algorithm for modeling three-dimensional perfectly conducting objects,” IEEE Microw. Guided Wave Lett. 7, 273–275.
Ditkowski, A., Dridi, K., & Hesthaven, J. S. (2001), “Convergent Cartesian grid methods for Maxwell's equations in complex geometries,” J. Comput. Phys. 170, 39–80.
Dobson, D. C. & Pasciak, J. E. (2001), “Analysis of an algorithm for computing electromagnetic Bloch modes using Néedéelec spaces,” Comput. Meth. Appl. Math. 1, 138–153.
Dubiner, M. (1991), “Spectral methods on triangles and other domains,” J. Sci. Comput. 6, 345–390.
Duffy, M. G. (1982), “Quadrature over a pyramid or cube of integrands with a singularity at a vertex,” SIAM J. Numer. Anal. 19, 1260–1262.
Duke, C. B. (1969), Tunneling Phenomena in Solids. New York: Academic Press.
Dunkl, C. F. & Xu, Y. (2001), Orthogonal Polynomials of Several Variables. Cambridge, UK: Cambridge University Press.
Duvaut, G. & Lions, J. L. (1976), Inequalities in Mechanics and Physics. New York: Springer-Verlag, lemma 4.2, p. 341.
Ebbesen, T. W., Lezec, H. J., Ghaemi, H. F., Thio, T., & Wolff, P. A. (1998), “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669.
Eisenberg, B., Hyon, Y., & Liu, C. (2010), “Energy variational analysis of ions in water and channels: field theory for primitive models of complex ionic fluids,” J. Chem. Phys. 133, 104104.
Engquist, B. & Majda, A. (1977), “Absorbing boundary conditions for the numerical simulation of waves,” Math. Comput. 31, 629–651.
Erteza, A. & Park, B. K. (1969), “Nonuniqueness of resolution of Hertz vector in presence of a boundary, and the horizontal dipole problem,” IEEE Trans. Antenn. Propag. 17, 376–378.
Esaki, L. & Tsu, R. (1970), “Superlattice and negative differential conductivity in semiconductors,” IBM J. Res. Develop. 14, 61–65.
Esirkepov, T. Z. (2001), “Exact charge conservation scheme for particle-in-cell simulation with an arbitrary form-factor,” Comput. Phys. Commun. 135, 144–153.
Essmann, U., Perera, L., Berkowitz, M. L., et al. (1995), “A smooth particle mesh Ewald method,” J. Chem. Phys. 103, 8577–8593.
Evans, C. R. & Hawley, J. F. (1988), “Simulation of magnetohydrodynamic flows: a constrained transport method,” Astrophys. J. 332, 659–677.
Evans, L. C. (1998), Partial Differential Equations, Graduate Studies in Mathematics, vol. 19. Providence, RI: Proc. Amer. Math. Soc.
Ewald, P. (1921), “Die Berechnung optischer und elektrostatischer Gitterpotentiale,” Ann. Phys. 64, 253–287.
Fan, K., Cai, W., & Ji, X. (2008a), “A full vectorial generalized discontinuous Galerkin beam propagation method (GDG-BPM) for nonsmooth electromagnetic fields in waveguides,” J. Comput. Phys. 227, 7178–7191.
Fan, K., Cai, W., & Ji, X. (2008b), “A generalized discontinuous Galerkin (GDG) method for Schröodinger equations with nonsmooth solutions,” J. Comput. Phys. 227, 2387–2410.
Feig, M. & Brooks, C. L. III, (2004), “Recent advances in the development and application of implicit solvent models in biomolecule simulations,” Curr. Opin. Struc. Biol. 14, 217–224.
Feit, M. D. & Fleck, J. A., Jr. (1978), “Light propagation in graded-index optical fibers,” Appl. Opt. 17, 3990–3998.
Feit, M. D. & Fleck, J. A., Jr. (1980), “Computation of mode properties in optical fiber waveguide by a propagating beam method,” Appl. Opt. 19, 1154–1164.
Fetter, A. L. & Walecka, J. D. (1971), Quantum Theory of Many Particle Systems. New York: McGraw-Hill.
Feynman, R. (1972), Statistical Mechanics. Boulder, CO: Westview Press.
Finkelsteĭn, A. V. (1977), “Electrostatic interactions of charged groups in an aqueous medium and their effect on the formation of polypeptide chain secondary structure,” Mol. Biol. 11, 811–819.
Fogolari, F., Brigo, A., & Molinari, H. (2002), “The Poisson–Boltzmann equation for biomolecular electrostatics: a tool for structural biology,” J. Mol. Recognit. 15, 377–392.
Fortin, M. & Brezzi, F. (1991), Mixed and Hybrid Finite Element Methods. New York: Springer-Verlag.
Fox, C. (1957), “A generalization of the Cauchy principal value,” Can. J. Math. 9, 110–117.
Frenkel, D. & Smit, B. (2001), Understanding Molecular Simulation, 2nd edn. New York: Academic Press.
Frensley, W. R. (1987), “Wigner-function model of a resonant-tunneling semiconductor device,” Phys. Rev.B 36, 1570–1580.
Frensley, W. R. (1990), “Boundary conditions for open quantum systems driven far from equilibrium,” Rev. Mod. Phys. 62, 745–791.
Friedman, H. L. (1975), “Image approximation to the reaction field,” Mol. Phys. 29, 1533–1543.
Fröohlich, H. (1948), “General theory of the static dielectric constant,” Trans. Faraday Soc. 44, 238–243.
Fröohlich, H. (1958), Theory of Dielectrics: Dielectric Constant and Dielectric Loss, 2nd edn. Oxford, UK: Clarendon Press.
Gan, C. H. & Gbur, G. (2009), “Extraordinary optical transmission through multilayered systems of corrugated metallic thin films,” Opt. Express 17, 20553–20566.
Gardiner, T. A. & Stone, J. M. (2008), “An unsplit Godunov method for ideal MHD via constrained transport in three dimensions,” J. Comput. Phys. 227, 4123–4141.
Gardner, C. L. (1991), “Numerical simulation of a steady-state electron shock wave in a submicrometer semiconductor device,” IEEE Trans. Electron Dev. 38, 392–398.
Gardner, C. L., Gelb, A., & Hernandez, J. (2002), “A comparison of modern hyperbolic methods for semiconductor device simulation: NTK central schemes vs. CLAWPACK,” VLSI Des. 15, 721–728.
Gautschi, W. (1994), “Algorithm 726: ORTHPOL – a package of routines for generating orthogonal polynomials and Gauss-type quadrature rules,” ACM Trans. Math. Software 20, 21–62.
Gibbs, J. W. (1902), Elementary Principles in Statistical Mechanics. New Haven, CT: Yale University Press.
Girault, V. & Raviart, P.-A. (1986), Finite Element Methods for Navier–Stokes Equations, Theory and Algorithms. New York: Springer-Verlag.
Giroire, J. & Néedéelec, J. C. (1978), “Numerical solution of an exterior neumann problem using a double layer potential,” Math. Comp. 32, 973–990.
Givoli, D. & Keller, J. B. (1990), “Non-reflecting boundary conditions for elastic waves,” Wave Motion 12, 261–279.
Givoli, D. & Neta, B. (2003), “High-order non-reflecting boundary scheme for timedependent waves,” J. Comput. Phys. 186, 24–46.
Godlewski, E. & Raviart, P.-A. (1996), Numerical Approximation of Hyperbolic Systems of Conservation Laws. Berlin: Springer.
Godunov, S. K. (1959), “A finite-difference method for the numerical computation and discontinuous solutions of the equations of fluid dynamics,” Mat. Sb. 47, 271–306.
Gottlieb, D. & Orszag, S. (1987), Numerical Analysis of Spectral Methods: Theory and Applications. Philadelphia, PA: SIAM-CBMS.
Gottlieb, S. & Shu, C.-W. (1998), “Total variation diminishing Runge–Kutta schemes,” Math. Comput. 67, 73–85.
Gouy, G. (1910), “About the electric charge on the surface of an electrolyte,” J. Phys. (France) 9, 457–468.
Graglia, R. D., Peterson, A. F., & Andriulli, F. P. (2011), “Curl-conforming hierarchical vector bases for triangles and tetrahedra,” IEEE Trans. Antenn. Propag. 59, 950–959.
Graglia, R. D., Wilton, D. R., & Peterson, A. F. (1997), “Higher order interpolatory vector bases for computational electromagnetics,” IEEE Trans. Antenn. Propag. 45, 329–342.
Gray, L. J., Glaeser, J. M., & Kaplan, T. (2004), “Direct evaluation of hypersingular Galerkin surface integrals,” SIAM J. Sci. Comput. 25, 1534–1556.
Greengard, L. (1988), The Rapid Evaluation of Potential Fields in Particle Systems. Cambridge, MA: MIT Press.
Greengard, L. & Rokhlin, V. (1987), “A fast algorithm for particle simulations,” J. Comput. Phys. 73, 325–348.
Greiner, W., Neise, L., & Stöocker, H. (1995), Thermodynamics and Statistical Mechanics. Berlin: Springer.
Griffiths, D. J. (1999), Introduction to Electrodynamics, 3rd edn. San Francisco, CA: Benjamin Cummings.
Grote, M. J. (2006), “Local non-reflecting boundary condition for Maxwell's equations,” Comput. Meth. Appl. Mech. Eng. 195, 3691–3708.
Grote, M. J. & Keller, J. B. (1996), “Nonreflecting boundary conditions for timedependent scattering,” J. Comput. Phys. 127, 52–65.
Grycuk, T. (2003), “Deficiency of the Coulomb-field approximation in the generalized Born model: an improved formula for Born radii evaluation,” J. Chem. Phys. 119, 4817–4826.
Guiggiani, M. (1998), “Formulation and numerical treatment of boundary integral equations with hypersingular kernels,” inV., Sladek & J., Sladek eds., Singular Integrals in Boundary Element Methods. Southampton: Computational Mechanics Publications, chap. 3.
Guiggiani, M. & Gigante, A. (1990), “A general algorithm for multidimensional Cauchy principal value integrals in the boundary element method,” ASME J. Appl. Mech. 57, 906–915.
Guiggiani, M., Krishnasamy, G., Rudolphi, T. J., & Rizzo, F. J. (1992), “A general algorithm for the numerical solution of hypersingular boundary integral equations,” ASME J. Appl. Mech. 59, 604–614.
Gunter, N. M. (1967), Potential Theory and its Applications to Basic Problems of Mathematical Physics. New York: Fredrick Ungar.
Guo, S. & Albin, S. (2003), “Simple plane wave implementation for photonic crystal calculations,” Opt. Express 11, 167–175.
Hadamard, J. (2003), Lectures on Cauchy Problems in Linear Partial Differential Equations. New York: Dover Publications.
Hagstrom, T. (2003), “New results on absorbing layers and radiation boundary conditions,” inM., Ainsworth, P., Davies, D., Duncan, P., Martin, & B., Rynne eds., Topics in Computational Wave Propagation: Direct and Inverse Problems. Berlin: Springer, pp. 1–42.
Hagstrom, T. & Hariharan, S. I. (1998), “A formulation of asymptotic and exact boundary conditions using local operators,” Appl. Numer. Math. 27, 403–416.
Hagstrom, T. & Lau, S. (2007), “Radiation boundary conditions for Maxwell's equations: a review of accurate time domain formulation,” J. Comput. Math. 25, 305–336.
Hamann, C. H., Hamnett, A., & Vielstich, W. (2007), Electrochemistry. Hoboken, NJ: Wiley-VCH.
Han, H. D. & Wu, X. (2009), Artificial Boundary Method. Beijing: Tsinghua University Press (in Chinese).
Hara, M., Wada, T., Fukasawa, T., & Kikuchi, F. (1983), “A three dimensional analysis of RF electromagnetic fields by the finite element method,” IEEE Trans. Mag. 19, 2417–2420.
Harrington, R. F. (1993), Field Computation by Moment Methods. Hoboken, NJ: Wiley-IEEE Press.
Harrington, R. F. (2001), Time-Harmonic Electromagnetic Fields, 2nd edn. Hoboken, NJ: Wiley-IEEE Press.
Harten, A., Engquist, B., Osher, S., & Chakravarthy, S. R. (1997), “Uniformly high order accurate essentially non-oscillatory schemes, III,” J. Comput. Phys. 131, 3–47.
Harten, A. & Hyman, J. M. (1983), “Self adjusting grid methods for one-dimensional hyperbolic conservation laws,” J. Comput. Phys. 50, 235–269.
Haug, H. & Jauho, A. (2007), Quantum Kinetics in Transport and Optics of Semiconductors, 2nd edn. Berlin: Springer.
Havu, P., Havu, V., Puska, M. J., & Nieminen, R. M. (2004), “Nonequilibrium electron transport in two-dimensional nanostructures modeled using Green's functions and the finite-element method,” Phys. Rev.B 69, 115325.
Helmholtz, H. (1853), “Ueber einige Gesetze der Verteilung elektrischer Ströome in köorperlichen Leitern mit Anwendung auf diethierisch-elektrischen Versuche,” Pogg. Ann. Physik. Chemie. 89, 211–233.
Henderson, D. & Boda, D. (2009), “Insights from theory and simulation on the electrical double layer,” Phys. Chem. Chem. Phys. 11, 3822–3830.
Hesthaven, J. S. & Warburton, T. (2008), Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications. Berlin: Springer.
Heyes, D. M. (1981), “Electrostatic potential and fields in infinite point charge lattice,” J. Chem. Phys. 74, 1924–1929.
Higdon, R. L. (1987), “Numerical absorbing boundary conditions for the wave equation,” Math. Comput. 49, 65–90.
Hill, T. L. (1987), An Introduction to Statistical Thermodynamics. New York: Dover Publications.
Hiptmair, R. (1999), “Canonical construction of finite elements,” Math. Comput. 68, 1325–1346.
Hiptmair, R. (2001), “Higher order Whitney forms,” PIER 32, 271–299.
Hiptmair, R. & Xu, J. (2007), “Nodal auxiliary space preconditioning in H(curl) and H(div) spaces,” SIAM J. Numer. Anal. 45, 2483–2509.
Hirsch, C. (2011), Numerical Computation of Internal and External Flows: The Fundamentals of Computational Fluid Dynamics vol. 2, 2nd edn. Oxford, UK: Butterworth-Heinemann.
Hockney, R. W. & Eastwood, J. W. (1981), Computer Simulation Using Particles. New York: Taylor & Francis.
Honig, B. & Nicholls, A. (1995), “Classical electrostatics in biology and chemistry,” Science 268, 1144–1149.
Hsiao, G. C. & Kleinman, R. E. (1997), “Mathematical foundations for error estimation in numerical solutions of integral equations in electromagnetics,” IEEE Trans. Antenn. Propag. 45, 316–328.
Hsiao, G. C.Wendland, W. L. (2008), Boundary Integral Equations. Berlin: Springer.
Huan, R. & Thompson, L. (1999), “Accurate radiation boundary conditions for the time-dependent wave equation on unbounded domains,” Int. J. Numer. Meth. Eng. 47, 1569–1603.
Huang, K. (1987), Statistical Mechanics, 2nd edn. New York: Wiley.
Huang, Z., Jin, S., Markowich, P. A., & Sparber, C. (2009), “On the Bloch decomposition based spectral method for wave propagation in periodic media,” Wave Motion 46, 15–28.
Humphrey, W., Dalke, A., & Schulten, K. (1996), “VMD – VisualMolecular Dynamics,” J. Mol. Graphics 14, 33–38.
Ilić, M. M. & Notaroš, B. M. (2003), “Higher order hierarchical curved hexahedral vector finite elements for electromagnetic modeling,” IEEE Trans. Microw. Theory Tech. 51, 1026–1033.
Ingelströom, P. (2006), “A new set of H(curl)-conforming hierarchical basis functions for tetrahedral meshes,” IEEE Trans. Microw. Theory Tech. 54, 106–114.
Jackson, J. D. (2001), Classical Electrodynamics, 3rd edn. Hoboken, NJ: John Wiley & Sons.
Jacoboni, C. & Bordone, P. (2004), “The Wigner-function approach to non-equilibrium electron transport,” Rep. Prog. Phys. 67, 1033–1071.
Jacoboni, C., Brunetti, R., Bordone, P., & Bertoni, A. (2001), “Quantum transport and its simulation with the Wigner function approach,” Int. J. High Speed Electron. Syst. 11, 387–423.
Jacobs, G. B. & Hesthaven, J. S. (2006), “High-order nodal discontinuous Galerkin particle-in-cell method on unstructured grids,” J. Comput. Phys. 214, 96–121.
Ji, X., Cai, W., & Zhang, P. (2007), “High order DGTD methods for dispersive Maxwell's equations and modelling of silver nanowire coupling,” Int. J. Numer. Meth. Eng. 69, 308–325.
Ji, X., Lu, T., Cai, W., & Zhang, P. (2005), “Discontinuous Galerkin time domain (DGTD) methods for the study of 2-D waveguide coupled microring resonators,” J. Lightwave Technol. 23, 3864–3874.
Jiang, G.-S. & Shu, C.-W. (1996), “Efficient implementation of weighted ENO scheme,” J. Comput. Phys. 126, 202–228.
Jiang, H., Cai, W., & Tsu, R. (2011), “Accuracy of the Frensley inflow boundary condition for Wigner equations in simulating resonant tunneling diodes,” J. Comput. Phys. 230, 2031–2044.
Jiang, H., Shao, S., Cai, W., & Zhang, P. (2008), “Boundary treatments in the nonequilibrium Green's functions (NEGF) methods for transport in nano-MOSFETs,” J. Comput. Phys. 227, 6553–6573.
Jin, J.-M. (2002), The Finite Element Method in Electromagnetics, 2nd edn. New York: Wiley.
Jin, J.-M. & Riley, D. J. (2008), Finite Element Analysis of Antennas and Arrays. Piscataway, NJ: IEEE Press.
Johnson, S. G. & Joannopoulos, J. D. (2001), “Block-iterative frequency-domain methods for Maxwell's equations in a planewave basis,” Opt. Express 8, 173–190.
Jøorgensen, E., Volakis, J. L., Meincke, P., & Breinbjerg, O. (2004), “Higher order hierarchical Legendre basis functions for electromagnetic modeling,” IEEE Trans. Antenn. Propag. 52, 2985–2995.
Juffer, A. H., Botta, E. F. F., van Keulen, B. A. M., van der Ploeg, A., & Berendsen, H. J. C. (1991), “The electric potential of a macromolecule in a solvent: a fundamental approach,” J. Comput. Phys. 97, 144–171.
Jurgens, T. G., Taflove, A., Umashankar, K., & Moore, T. G. (1992), “Finite difference time domain modeling of curved surfaces,” IEEE Trans. Antenn. Propag. 40, 357–366.
Kantorovich, L. (2004), Quantum Theory of the Solid State: An Introduction (Fundamental Theories of Physics). Norwell, MA: Kluwer Academic Publishers.
Karniadakis, G. E. & Sherwin, S. J. (2005), Spectral/hp Element Methods for Computational Fluid Dynamics. Oxford, UK: Oxford University Press.
Kaxiras, E. (2003), Atomic and Electronic Structure of Solids. Cambridge, UK: Cambridge University Press.
Keller, J. B. & Givoli, D. (1989), “Exact non-reflecting boundary conditions,” J. Comput. Phys. 82, 172–192.
Kikuchi, F. (1987), “Mixed and penalty formulations for finite element analysis of an eigenvalue problem in electromagnetism,” Comput. Meth. Appl. Mech. Eng. 64, 509–521.
Kikuchi, F. (1989), “On a discrete compactness property for the Néedéelec finite elements,” J. Fac. Sci. Univ. Tokyo Sect. I A Math. 36, 479–490.
Kirkwood, J. G. (1934), “Theory of solutions of molecules containing widely separated charges with special applications to zwitterions,” J. Chem. Phys. 2, 351–361.
Kirkwood, J. G. (1935), “Statistical mechanics of fluid mixtures,” J. Chem. Phys. 3, 300–313.
Kirkwood, J. G. (1939), “The dielectric polarization of polar liquids,” J. Chem. Phys. 7, 911–919.
Kittel, C. (2004), Introduction to Solid State Physics, 8th edn. New York: Wiley.
Kluksdahl, N. C., Kriman, A. M., Ferry, D. K., & Ringhofer, C. (1989), “Self-consistent study of the resonant-tunneling diode,” Phys. Rev.B 39, 7720–7735.
Kress, R. A. (1990), “A nyströom method for boundary integral equations in domains with corners,” Numer. Math. 58, 145–161.
Kretschmann, E. & Raether, H. (1968), “Radiative decay of non-radiative surface plasmons excited by light,” Z. Naturforsh. 23, 2135–2136.
Kreyszig, E. (1991), Differential Geometry. New York: Dover Publications.
Krishnasamy, G., Rizzo, F. J., & Rudolphi, T. J. (1992), “Continuity requirements for density functions in the boundary integral equation method,” Comput. Mech. 9, 267–284.
Krishnasamy, G., Schmerr, L. W., Rudolphi, T. J., & Rizzo, F. J. (1990), “Hypersingular boundary integral equations: some applications in acoustic and elastic wave scattering,” ASME J. Appl. Mech. 57, 404–414.
Kythe, P. K. & Schöaferkotter, M. R. (2005), Handbook of Computational Methods for Integration. Boca Raton, FL: Chapman & Hall/CRC.
Laino, T. & Hutter, J. (2008), “Notes on ‘Ewald summation of electrostatic multipole interactions up to quadrupolar level” [J. Chem. Phys. 119, 7471 (2003)],” J. Chem. Phys. 129, 074102.
Landau, L. (1936), “The transport equation in the case of Coulomb interactions,” Phys. Z. Sowj. Union 10, 154–164. (Reprinted in D., TerHaar ed. (1965), Collected Papers of L. D. Landau. Oxford, UK: Pergamon Press.).
Langdon, A. B. (1980), “Nonlinear inverse Bremsstrahlung and heated-electron distributions,” Phys. Rev. Lett. 44, 575–579.
Lax, P. D. (1972), Hyperbolic Systems of Conservation Laws and the Mathematical Theory of Shock Waves, SIAM Regional Conference Series in Applied Mathematics, vol. 11. Philadelphia, PA: SIAM.
Leach, A. R. (2001), Molecular Modelling: Principles and Applications, 2nd edn. Englewood Cliffs, NJ: Prentice-Hall.
Lee, M. S., Salsbury, F. R., Jr., & Olson, M. A. (2004), “An efficient hybrid explicit/implicit solvent method for biomolecular simulations,” J. Comput. Chem. 25, 1967–1978.
Leontovich, M. A. (1948), Investigations on Radiowave Propagation Part II. Moscow: Academy of Sciences.
LeVeque, R. J. (2002), Finite Volume Methods for Hyperbolic Problems. Cambridge, UK: Cambridge University Press.
Li, B. (2009), “Minimization of electrostatic free energy and the Poisson–Boltzmann equation for molecular solvation with implicit solvent,” SIAM J. Math. Anal. 40, 2536–2566.
Li, S. (2010), “A fourth-order divergence-free method for MHD flows,” J. Comput. Phys. 229, 7893–7910.
Li, T. T. & Qin, T. H. (2012), Physics and Partial Differential Equations vol. 1. Philadelphia, PA: SIAM.
Li, Z. & Ito, K. (2006), The Immersed Interface Method: Numerical Solutions of PDEs Involving Interfaces and Irregular Domains. Philadelphia, PA: SIAM.
Liboff, R. L. (2003), Kinetic Theory, Classical, Quantum, and Relativistic Descriptions, 3rd edn. Berlin: Springer.
Lin, M., Xu, Z., Tang, H., & Cai, W. (2011a), “Image approximations to electrostatic potentials in layered electrolytes/dielectrics and an ion-channel model,” J. Sci. Comput. DOI: 10.1007/s10915-011-9567-2.
Lin, Y., Baumketner, A., Deng, S., et al. (2009), “An image-based reaction field method for electrostatic interactions in molecular dynamics simulations of aqueous solutions,” J. Chem. Phys. 131, 154103.
Lin, Y., Baumketner, A., Song, S., et al. (2011b), “Ionic solvation studied by imagecharge reaction field method,” J. Chem. Phys. 134, 044105.
Lindell, I. V. (1992), “Electrostatic image theory for the dielectric sphere,” Radio Sci. 27, 1–8.
Lindskog, S. (1997), “Structure and mechanism of carbonic anhydrase,” Pharmacol. Therapeut. 74, 1–20.
Liu, H. & Lalanne, P. (2008), “Microscopic theory of the extraordinary optical transmission,” Nature 452, 728–731.
Liu, X.-D., Osher, S., & Chan, T. (1994), “Weighted essentially non-oscillatory schemes,” J. Comput. Phys. 115, 200–212.
Liu, X.-D. & Tadmor, E. (1998), “Third order non-oscillatory central scheme for hyperbolic conservation laws,” Numer. Math. 79, 397–425.
Liu, Y. (2009), Fast Multipole Boundary Element Method: Theory and Applications in Engineering. Cambridge, UK: Cambridge University Press.
Liu, Y. & Rizzo, F. J. (1992), “A weakly singular form of the hypersingular boundary integral equation applied to 3-D acoustic wave equations,” Comput. Meth. Appl. Mech. Eng. 96, 271–287.
Liu, Y. & Rudolphi, T. J. (1991), “Some identities for fundamental solutions and their applications to weakly-singular boundary element formulations,” Eng. Anal. Bound. Elem. 8, 301–311.
Liu, Y. & Rudolphi, T. J. (1999), “New identities for fundamental solutions and their applications to non-singular boundary element formulations,” Comput. Mech. 24, 286–292.
Liu, Y. & Shu, C.-W. (2007), “Local discontinuous Galerkin methods for moment models in device simulations: performance assessment and two-dimensional results,” Appl. Numer. Math. 57, 629–645.
Lord, Rayleigh (1914), “Further applications of Bessel's functions of high order to the whispering gallery and allied problems,” Phil. Mag. 27, 100–109.
Lu, B., Cheng, X., Huang, J., & McCammon, J. A. (2006), “Order N algorithm for computation of electrostatic interactions in biomolecular systems,” Proc. Natl. Acad. Sci. USA 103, 19314–19319.
Lu, B. & Zhou, Y. C. (2011), “Poisson–Nernst–Planck equations for simulating biomolecular diffusion–reaction processes II: size effects on ionic distributions and diffusion–reaction rates,” Biophys. J. 100, 2475–2485.
Lu, B., Zhou, Y. C., Holst, M. J., & McCammon, J. A. (2008), “Recent progress in numerical methods for the Poisson–Boltzmann equation in biophysical applications,” Commun. Comput. Phys. 3, 973–1009.
Lu, T., Zhang, P., & Cai, W. (2004), “Discontinuous Galerkin methods for dispersive and lossy Maxwell's equations and PML boundary conditions,” J. Comput. Phys. 200, 549–580.
Lundstrom, M. (2000), Fundamentals of Carrier Transport, 2nd edn. Cambridge, UK: Cambridge University Press.
Lynch, D. W. & Hunter, W. R. (1985), “Comments on the optical constants of metals and an introduction to the data for several metals,” inE. D., Palik ed., Handbook of Optical Constants of Solids. New York: Academic Press, pp. 275–367.
Mahammadian, A. H., Shankar, V., & Hall, W. F. (1991), “Computation of electromagnetic scattering and radiation using a time-domain finite-volume discretization procedure,” Comput. Phys. Commun. 68, 175–196.
Maier, S. A. (2007), Plasmonics: Fundamentals and Applications. New York: Springer-Verlag.
Markham, J. & Conchello, J. A. (2003), “Numerical evaluation of Hankel transforms for oscillating functions,” J. Opt. Soc. Am.A 20, 621–630.
Markowich, P. A. & Ringhofer, C. A. (1989), “An analysis of the quantum Liouville equation,” ZAMM – J. Appl. Math. Mech. 69, 121–127.
Markowich, P. A., Ringhofer, C. A., & Schmeiser, C. (2002), Semiconductor Equations. Berlin: Springer.
Martin, P. A. & Rizzo, F. J. (1989), “On boundary integral equations for crack problems,” Proc. R. Soc. Lond.A 421, 341–355.
Martin, P. A. & Rizzo, F. J. (1996), “Hypersingular integrals: how smooth must the density be?,” Int. J. Numer. Meth. Eng. 39, 687–704.
Maue, A. W. (1949), “Zur Formulierung eines allgemeinen Beugungsproblems durch eine Integralgleichung,” Z. Physik. 126, 601–618.
Mautz, J. R. & Harrington, R. F. (1978), “H-field, E-field, and combined-field solutions for conducting bodies of resolution,” Arch. Electron. Ubertragungstech. (Electron. Commun.) 32, 157–164.
Maxwell, J. C. (1891), Treatise on Electricity and Magnetism, 2 vols., 3rd edn. Oxford, UK: Oxford University Press. Reprinted 1954, New York: Dover Publications.
Michalski, K. A. & Zheng, D. (1990), “Electromagnetic scattering and radiation by surfaces of arbitrary shape in layered media, Part I: Theory,” IEEE Trans. Antenn. Propag. 38, 335–344.
Milner, S. R. (1912), “The virial of a mixture of ions,” Phil. Mag. 6, 551–578.
Moharam, M. G. & Gaylord, T. K. (1981), “Rigorous coupled-wave analysis of planargrating diffraction,” J. Opt. Soc. Am. 71, 811–818.
Monk, P. (2003), Finite Element Methods for Maxwell's Equations. Oxford, UK: Oxford University Press.
Monk, P. & Söuli, E. (1994), “A convergence analysis of Yee's scheme on nonuniform grids,” SIAM J. Numer. Anal. 31, 393–412.
Mosig, J. R. (1989), “Integral equation technique,” inT., Itoh ed., Numerical Techniques for Microwave and Millimeter-Wave Passive Structure. New York: Wiley, pp. 133–214.
Mossotti, O. F. (1850), “Discussione analitica sul'influenza che l'azione di un mezzo dielettrico ha sulla distribuzione dell'electricitá alla superficie di piú corpi elettrici disseminati in eso,” Mem. di Mathem. e Fis. Mod. 24, 49–74.
Möuller, C. (1969), Foundations of the Mathematical Theory of Electromagnetic Waves. New York: Springer-Verlag.
Mur, G. (1981), “Absorbing boundary conditions for the finite difference approximation of the time-domain electromagnetic-field equations,” IEEE Trans. Electromagn. Compat. 23, 377–382.
Muskhelishvili, N. I. (1953), Singular Integral Equations: Boundary Problems of Function Theory and Their Application to Mathematical Physics. Leiden: Noordhoff International.
Néedéelec, J. C. (1980), “Mixed finite elements in ℝ3,” Numer. Math. 35, 315–341.
Néedéelec, J. C. (1986), “A new family of mixed finite elements in ℝ3,” Numer. Math. 50, 57–81.
Néedéelec, J. C. (2001), Acoustic and Electromagnetic Equations: Integral Representations for Harmonic Problems. Berlin: Springer.
Nessyahu, H. & Tadmor, E. (1990), “Non-oscillatory central differencing for hyperbolic conservation laws,” J. Comput. Phys. 87, 408–463.
Neumann, C. (1883), Hydrodynamische Untersuchen nebst einem Anhang uber die Probleme der Elecktrostatik und der magnetischen Induktion. Leipzig: Teubner. pp. 279–282.
Neumann, M. (1983), “Dipole moment fluctuation formulas in computer simulations of polar systems,” Mol. Phys. 50, 841–858.
Norris, W. T. (1995), “Charge images in a dielectric sphere,” IEE Proc. Sci. Meas. Technol. 142, 142–150.
Nymand, T. M. & Linse, P. (2000), “Ewald summation and reaction field methods for potentials with atomic charges, dipoles, and polarizabilities,” J. Chem. Phys. 112, 6152–6160.
Nyströom, E. J. (1930), “ÜUber die praktische Auflöosung von Integralgleichungen mit Anwendungen auf Randwertaufgaben,” Acta Mathematica 54, 185–204.
Okamoto, K. (2005), Fundamentals of Optical Waveguides, 2nd edn. New York: Academic Press.
Onsager, L. (1933), “Theories of concentrated electrolytes,” Chem. Rev. 13, 73–89.
Onsager, L. (1936), “Electric moments of molecules in liquids,” J. Am. Chem. Soc. 58, 1486–1493.
Onufriev, A. (2010), “Continuum electrostatics solvent modeling with the generalized Born model,” inM., Feig ed., Modeling Solvent Environments. New York: Wiley, pp. 127–165.
Onufriev, A., Case, D. A., & Bashford, D. (2002), “Effective Born radii in the generalized Born approximation: the importance of being perfect,” J. Comput. Chem. 23, 1297–1304.
Onufriev, A., Ralph, A. W., & David, C. S. (2008), “Implicit solvent models in molecular dynamics simulations: a brief overview,” Annu. Rep. Comput. Chem. 4, 125–137.
Osher, S. J. & Fedkiw, R. P. (2002), Level Set Methods and Dynamic Implicit Surfaces. Berlin: Springer.
Otto, A. (1968), “Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection,” Zeitschrift Physik 216, 398–410.
Parr, R. G. & Yang, W. T. (1989), Density Functional Theory of Atoms and Molecules. Oxford, UK: Oxford University Press.
Pathria, R. K. (1996), Statistical Mechanics, 2nd edn. Oxford, UK: Butterworth-Heinemann.
Peterson, A. F. (1988), “Absorbing boundary conditions for the vector wave equation,” Microw. Opt. Technol. Lett. 1, 62–64.
Pitarke, J. M., Silkin, V. M., Chulkov, E. V., & Echenique, P. M. (2007), “Theory of surface plasmons and surface-plasmon polaritons,” Rep. Prog. Phys. 70, 1–87.
Powell, K. G. (1994), An Approximate Riemann Solver for Magnetohydrodynamics (That Works in More Than One Dimension), Technical Report 94–24, ICASE, Langley, VA.
Powles, J. G., Fowler, R. F., & Evans, W. A. B. (1984), “The dielectric constant of a polar liquid by the simulation of microscopic drops,” Chem. Phys. Lett. 107, 280–283.
Press, W. H., Teukolsky, S. A., Vetterling, W. T., & Flannery, B. P. (1992), Numerical Recipes in FORTRAN: The Art of Scientific Computing, 2nd edn. Cambridge, UK: Cambridge University Press.
Prony, R. (1795), “Essai éxperimental et analytique: sur les lois de la dilatabilité de fluides élastique et sur celles de la force expansive de la vapeur de l'alkool, à différentes températures,” J. l' é Ecole Polytech. (Paris) 1, 24–76.
Rachowicz, W. & Demkowicz, L. (2002), “An hp-adaptive finite element method for electromagnetics – part II. A 3D implementation,” Int. J. Numer. Meth. Eng. 53, 147–180.
Ramo, S., Whinnery, J. R., & van Duzer, T. (1994), Fields and Waves in Communication Electronics, 3rd edn. Hoboken, NJ: John Wiley & Sons.
Rao, S. M., Wilton, D. R., & Glisson, A. W. (1982), “Electromagnetic scattering by surfaces of arbitrary shape,” IEEE Trans. Antenn. Propag. 30, 409–418.
Rapetti, F. (2007), “High order edge elements on simplicial meshes,” ESAIM: M2AN 41, 1001–1020.
Rapetti, F. & Bossavit, A. (2009), “Whitney forms of higher degree,” SIAM J. Numer. Anal. 47, 2369–2386.
Redlack, A. & Grindlay, J. (1972), “The electrostatic potential in a finite ionic crystal,” Can. J. Phys. 50, 2815–2825.
Redlack, A. & Grindlay, J. (1975), “Coulombic potential lattice sums,” J. Phys. Chem. Solids 36, 73–82.
Ren, Z., Venugopal, R., Goasguen, S., Datta, S., & Lundstrom, M. S. (2003), “NanoMOS 2–5: a two-dimensional simulator for quantum transport in double-gate MOSFETs,” IEEE Trans. Electron Dev. 50, 1914–1925.
Rickard Petersson, L. E. & Jin, J.-M. (2006a), “Analysis of periodic structures via a time-domain finite-element formulation with a Floquet ABC,” IEEE Trans. Antenn. Propag. 54, 933–944.
Rickard Petersson, L. E. & Jin, J.-M. (2006b), “A three-dimensional time-domain finiteelement formulation for periodic structures,” IEEE Trans. Antenn. Propag. 54, 12–19.
Ritchie, R. H. (1957), “Plasma losses by fast electrons in thin films,” Phys. Rev. 106, 874–881.
Roberts, J. E. & Schnitker, J. (1994), “How the unit cell surface charge distribution affects the energetics of ion–solvent interactions in simulations,” J. Chem. Phys. 101, 5024–5031.
Rodgers, J. M. & Weeks, J. D. (2008), “Interplay of local hydrogen-bonding and longranged dipolar forces in simulations of confined water,” Proc. Natl. Acad. Sci. USA 105, 19136–19141.
Roe, P. L. (1981), “Approximate Riemann solvers, parameter vectors, and difference schemes,” J. Comput. Phys. 43, 357–372.
Roe, P. L. (1985), “Upwind schemes using various formulations of the Euler equations,” inF., Angrand, A., Dervieux, R., Glowinski, & J. A., Desideri, eds., Numerical Methods for the Euler Equations of Fluid Dynamics. Philadelphia, PA: SIAM pp. 14–31.
Roe, P. L. & Balsara, D. S. (1996), “Notes on the eigensystem of magnetohydrodynamics,” SIAM J. Appl. Math. 56, 57–67.
Rokhlin, V. (1983), “Solution of acoustic scattering problem by means of second kind of integral equations,” Wave Motion 5, 257–272.
Rokhlin, V. (1990), “Rapid solution of integral equations of scattering theory in two dimensions,” J. Comput. Phys. 86, 414–439.
Romano, V. & Russo, G. (2000), “Numerical solution for hydrodynamical models of semiconductors,” Math. Model Meth. Appl. Sci. 10, 1099–1120.
Rosenbluth, M. N., MacDonald, W. M., & Judd, D. L. (1957), “Fokker–Planck equation for an inverse-square force,” Phys. Rev. 107, 1–6.
Roux, B. (2001), “Implicit solvent models,” inO. M., Becker, A. D., MacKerell Jr., B., Roux, & M., Watanabe, eds., Computational Biochemistry and Biophysics. New York: Marcel Dekker, pp. 133–151.
Rudolphi, T. J. (1991), “The use of simple solutions in the regularization of hypersingular boundary integral equations,” Math. Comput. Model. 15, 269–278.
Rullmann, J. A. C. & Duijnen, P. T. V. (1987), “Analysis of discrete and continuum dielectric models; application to the calculation of protonation energies in solution,” Mol. Phys. 61, 293–311.
Saad, Y. (2003), Iterative Methods for Sparse Linear Systems, 2nd edn. Philadelphia, PA: SIAM.
Sacks, Z. S., Kingsland, D. M., Lee, R., & Lee, J.-F. (1995), “A perfectly matched anisotropic absorber for use as an absorbing boundary condition,” IEEE Trans. Antenn. Propag. 43, 1460–1463.
Sakoda, K. (1995a), “Optical transmittance of a two-dimensional triangular photonic lattice,” Phys. Rev.B 51, 4672–4675.
Sakoda, K. (1995b), “Transmittance and Bragg reflectivity of two-dimensional photonic lattices,” Phys. Rev.B 52, 8992–9002.
Sakoda, K. (2001), Optical Properties of Photonic Crystals. Berlin: Springer.
Sala, J., Guàrdia, E., & Masia, M. (2010), “The polarizable point dipoles method with electrostatic damping: implementation on a model system,” J. Chem. Phys. 133, 234101.
Schöoberl, J. & Zaglmayr, S. (2005), “High order Nédélec elements with local complete sequence properties,” COMPEL 24, 374–384.
Senior, T. B. A. & Volakis, J. L. (1995), Approximate Boundary Conditions in Electromagnetics, IEE Electromagnetic Waves vol. 41. Stevenage, UK: Institution of Electrical Engineers.
Sethian, J. A. (1999), Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science, 2nd edn. Cambridge, UK: Cambridge University Press.
Shannon, C. & Weaver, W. (1963), The Mathematical Theory of Communication. Urbana and Chicago, IL: University of Illinois Press.
Shao, S., Lu, T., & Cai, W. (2011), “Adaptive conservative cell average spectral element methods for transient Wigner equation in quantum transport,” Commun. Comput. Phys. 9, 711–739.
Sharp, K. A. & Honig, B. (1990), “Calculating total electrostatic energies with the nonlinear Poisson–Boltzmann equation,” J. Phys. Chem. 94, 7684–7692.
Shen, J., Tang, T., & Wang, L.-L. (2011), Spectral Methods: Algorithms, Analysis and Applications. New York: Springer-Verlag.
Shkarofsky, I. P., Johnston, T. W., & Bachynski, M. P. (1966), The Particle Kinetics of Plasmas. Reading, MA: Addison-Wesley.
Shu, C.-W. & Osher, S. (1989), “Efficient implementation of essentially non-oscillatory shock capturing schemes, II,” J. Comput. Phys. 83, 32–78.
Siegman, A. E. (1977), “Quasi fast Hankel transform,” Opt. Lett. 1, 13–15.
Sigalov, G., Scheffel, P., & Onufriev, A. (2005), “Incorporating variable dielectric environments into the generalized Born model,” J. Chem. Phys. 122, 094511.
Smoller, J. (1983), Shock Waves and Reaction–Diffusion Equations. New York: Springer-Verlag.
Smythe, W. R. (1989), Static and Dynamic Electricity, 3rd edn. New York: Hemisphere Publishing.
Snyder, A. W. & Love, J. (1983), Optical Waveguide Theory. Berlin: Springer.
Sommerfeld, A. (1949), Partial Differential Equations in Physics. New York: Academic Press.
Sommerfeld, A. (1954), Optics. New York: Academic Press sect. 27.
Song, W., Lin, Y., Baumketner, A., et al. (2013), “Effect of the reaction field on molecular forces and torques revealed by an image-charge solvation model,” Commun. Comput. Phys. 13, 129–149.
Spitzer, L., Jr. & Höarm, R. (1953), “Transport phenomena in a completely ionized gas,” Phys. Rev. 89, 977–981.
Srinivasan, J., Trevathan, M. W., Beroza, P., & Case, D. A. (1999), “Application of a pairwise generalized Born model to proteins and nucleic acids: inclusion of salt effects,” Theor. Chem. Acc. 101, 426–434.
Stern, H. A. & Feller, S. E. (2003), “Calculation of the dielectric permittivity profile for a nonuniform system: application to a lipid bilayer simulation,” J. Chem. Phys. 118, 3401–3412.
Stern, O. (1924), “Zur theorie der elektrolytischen Doppelschicht,” Z. Elektrochem. 30, 508–516.
Still, W. C., Tempczyk, A., Hawley, R. C., & Hendrickson, T. (1990), “Semianalytical treatment of solvation for molecular mechanics and dynamics,” J. Am. Chem. Soc. 112, 6127–6129.
Strain, J. (1995), “Locally corrected multidimensional quadrature rules for singular functions,” SIAM J. Sci. Comput. 16, 992–1017.
Stratton, J. A. (1941), Electromagnetic Theory. New York: McGraw-Hill.
Stratton, J. A. & Chu, L. J. (1939), “Diffraction theory of electromagnetic waves,” Phys. Rev. 56, 99–107.
Sweby, P. K. (1984), “High resolution schemes using flux limiters for hyperbolic conservation laws,” SIAM J. Numer. Anal. 21, 995–1011.
Szabó, B. & Babuska, I. (1991), Finite Element Analysis. New York: Wiley-Interscience.
Taflove, A. & Hagness, S. C. (2000), Computational Electromagnetics: The Finite-Difference Time-Domain Method. Norwood, MA: Artech House Publishers.
Tai, C.-T. (1994), Dyadic Green Functions in Electromagnetic Theory, 2nd edn. Piscataway, NJ: IEEE Press.
Tatarskiĭ, V. I. (1983), “The Wigner representation of quantum mechanics,” Sov. Phys. Usp. 26, 311–327.
Temam, R. (1968), “Une méthode d'approximation des solutions des équations Navier–Stokes,” Bull. Soc. Math. France 98, 115–152.
Teng, T.-Z. (2003), “Exact boundary condition for time-dependent wave equation based on boundary integral,” J. Comput. Phys. 190, 398–418.
Thomson, W. L. K. (1884), Reprint of Papers on Electrostatics and Magnetism, 2nd edn. London: Macmillan.
Thylen, L. & Yevick, D. (1982), “Beam propagation method in anisotropic media,” Appl. Opt. 21, 2751–2754.
Ting, L. & Miksis, M. J. (1986), “Exact boundary conditions for scattering problems,” J. Acoust. Soc. Am. 80, 1825–1827.
Tolman, R. C. (1950), The Principles of Statistical Mechanics. Oxford, UK: Oxford University Press.
Tomizawa, K. (1993), Numerical Simulation of Submicron Semiconductor Devices. Norwood, MA: Artech House Publishers.
Tong, M. S. & Chew, W. C. (2005), “A higher-order Nyströom scheme for electromagnetic scattering by arbitrarily shaped surfaces,” IEEE Antenn. Wire. Propag. Lett. 4, 277–280.
Tong, M. S. & Chew, W. C. (2007), “Super-hyper singularity treatment for solving 3D electric field integral equations,” Microw. Opt. Technol. Lett. 49, 1383–1388.
Tóth, G. (2000), “The ∇. B = 0 constraint in shock-capturing magnetohydrodynamics codes,” J. Comput. Phys. 161, 605–652.
Toukmaji, A. Y. & Board, J. A., Jr. (1996), “Ewald summation techniques in perspective: a survey,” Comput. Phys. Commun. 95, 73–92.
Trefethen, L. N. & Halpern, L. (1986), “Well-posedness of one-way wave equations and absorbing boundary conditions,” Math. Comput. 47, 421–435.
Tsu, R. & Esaki, L. (1973), “Tunneling in a finite superlattice,” Appl. Phys. Lett. 22, 562–564.
Tsuji, Y., Koshiba, M., & Takimoto, N. (1999), “Finite element beam propagation method for anisotropic optical waveguides,” J. Lightwave Technol. 17, 723–728.
Tsynkov, S. V. (2004), “On the application of lacunae-based methods to Maxwell's equations,” J. Comput. Phys. 199, 126–149.
Tzoufras, M., Bell, A., Norreys, P. A., & Tsung, F. S. (2011), “A Vlasov–Fokker–Planck code for high energy density physics,” J. Comput. Phys. 230, 6475–6494.
Umeda, T., Omura, Y., Tominaga, T., & Matsumoto, H. (2003), “A new charge conservation method in electromagnetic particle-in-cell simulations,” Comput. Phys. Commun. 156, 73–85.
van Bladel, J. (1991), Singular Electromagnetic Fields and Sources. Oxford, UK: Clarendon Press & Oxford University Press.
van Leer, B. (1977), “Towards the ultimate conservative difference scheme. IV. A new approach to numerical convection,” J. Comput. Phys. 23, 276–299.
van Leer, B. (1979), “Towards the ultimate conservative difference scheme. V. A secondorder sequel to Godunov's method,” J. Comput. Phys. 32, 101–136.
Villasenor, J. & Buneman, O. (1992), “Rigorous charge conservation for local electromagnetic field solvers,” Comput. Phys. Commun. 69, 306–316.
von Neumann, J. (1927), “Wahrscheinlichkeitstheoretischer aufbau der quantenmechanik,” Nachr. Ges. Wiss. Gottingen 1, 245–272.
Wait, J. R. (1967), “Electromagnetic whispering gallery modes in a dielectric rod,” Radio Sci. 2, 1005–1017.
Wallqvist, A. (1993), “On the implementation of Friedman boundary conditions in liquid water simulations,” Mol. Simul. 10, 13–17.
Wandzura, S. M. (1992), “Electric current basis functions for curved surfaces,” Electromag. 12, 77–91.
Wang, J., Cai, Q., Li, Z.-L., Zhao, H.-K., & Luo, R. (2009), “Achieving energy conservation in Poisson–Boltzmann molecular dynamics: accuracy and precision with finite-difference algorithms,” Chem. Phys. Lett. 468, 112–118.
Wang, L. & Hermans, J. (1995), “Reaction field molecular dynamics simulation with Friedman's image charge method,” J. Phys. Chem. 99, 12001–12007.
Webb, J. P. (1999), “Hierarchical vector basis functions of arbitrary order for triangular and tetrahedral finite elements,” IEEE Trans. Antenn. Propag. 47, 1244–1253.
Weiss, L. & McDonough, R. N. (1963), “Prony's method, z-transforms, and Padé approximation,” SIAM Rev. 5, 145–149.
Whitney, H. (1957), Geometric Integration Theory. Princeton, NJ: Princeton University Press.
Wigner, E. (1932), “On the quantum correction for thermodynamic equilibrium,” Phys. Rev. 40, 749–759.
Wilcox, C. H. (1956), “An expansion theorem for electromagnetic fields,” Commun. Pure Appl. Math. 9, 115–134.
Wilcox, C. H. (1978), “Theory of Bloch waves,” J. D'anal. Math. 33, 146–167.
Xiao, T. & Liu, Q. H. (2004), “A staggered upwind embedded boundary (SUEB) method to eliminate the FDTD staircasing error,” IEEE Trans. Antenn. Propag. 52, 730–741.
Xin, J. & Cai, W. (2011a), “A well-conditioned hierarchical basis for triangular H(curl)-conforming elements,” Commun. Comput. Phys. 9, 780–806.
Xin, J. & Cai, W. (2011b), “Well-conditioned orthonormal hierarchical ℒ2 bases on ℝn simplicial elements,” J. Sci. Comput. 50, 446–461.
Xin, J., Guo, N., & Cai, W. (2011), “On the construction of well-conditioned hierarchical bases for tetrahedral H(curl)-conforming Nédélec elements,” J. Comput. Math. 29, 526–542.
Xu, C. L., Huang, W. P., Chrostowski, J., & Chaudhuri, S. K. (1994), “A fullvectorial beam propagation method for anisotropic waveguide,” J. Lightwave Technol. 12, 1926–1931.
Xu, Z., Deng, S., & Cai, W. (2009), “Image charge approximations of reaction fields in solvents with arbitrary ionic strength,” J. Comput. Phys. 228, 2092–2099.
Xu, Z. L. & Cai, W. (2011), “Fast analytical methods for macroscopic electrostatic models in biomolecular simulations,” SIAM Review 53, 683–720.
Yaghjian, A. D. (1980), “Electric dyadic Green's functions in the source region,” Proc. IEEE 68, 248–263.
Yaghjian, A. D. (1981), “Augmented electric- and magnetic-field integral equations,” Radio Sci. 16, 987–1001.
Yang, P.-K., Liaw, S.-H., & Lim, C. (2002), “Representing an infinite solvent system with a rectangular finite system using image charges,” J. Phys. Chem.B 106, 2973–2982.
Yariv, A. (1989), Quantum Electronics, 3rd edn. Hoboken, NJ: John Wiley & Sons.
Yariv, A., Xu, Y., Lee, R. K., & Scherer, A. (1999), “Coupled resonator optical waveguide: a proposal and analysis,” Opt. Lett. 24, 711–713.
Ying, L., Biros, G., & Zorin, D. (2004), “A kernel-independent adaptive fast multipole algorithm in two and three dimensions,” J. Comput. Phys. 196, 591–626.
Yu, S., Geng, W., & Wei, G. W. (2007), “Treatment of geometric singularities in implicit solvent models,” J. Chem. Phys. 126, 244108.
Yu, T. & Cai, W. (2001), “High-order window functions and fast algorithms for calculating dyadic electromagnetic Green's functions in multilayered media,” Radio Sci. 36, 559–569.
Yu, T. & Cai, W. (2006), “FIFA – fast interpolation and filtering algorithm for calculating dyadic Green's function in the electromagnetic scattering of multi-layered structures,” Commun. Comput. Phys. 1, 228–258.
Zhou, H.-X. (1994), “Macromolecular electrostatic energy within the nonlinear Poisson–Boltzmann equation,” J. Chem. Phys. 100, 3152–3162.
Ziolkowski, R. W. (1997), “Time derivative Lorentz material model-based absorbing boundary condition,” IEEE Trans. Antenn. Propag. 45, 1530–1535.