Skip to main content Accessibility help
×
Hostname: page-component-7c8c6479df-nwzlb Total loading time: 0 Render date: 2024-03-28T10:24:44.155Z Has data issue: false hasContentIssue false

10 - Device design, performance, and physics of optical gain of the InGaN MQW violet diode lasers

Published online by Cambridge University Press:  07 December 2009

W. P. Risk
Affiliation:
IBM Almaden Research Center, New York
T. R. Gosnell
Affiliation:
Los Alamos National Laboratory
A. V. Nurmikko
Affiliation:
Brown University, Rhode Island
Get access

Summary

OVERVIEW OF BLUE AND GREEN DIODE LASER DEVICE ISSUES

In this chapter we focus chiefly on the device science and engineering features of the violet edge-emitting InGaN MQW diode lasers. The extraordinary progress made with these devices since 1999, spearheaded by Nakamura and coworkers, seems to assure them an important place in future optoelectronics technology (Nakamura, 1999). By 2001, approximately half a dozen research groups reported achieving lifetimes of hundreds to a thousand hours for cw room-temperature operation, although the extrapolated lifetime of 15 000 hours at Nichia remained unequalled. Among the other groups we mention those at the laboratories of Sony, Toyoda Gosei, NEC, and Sharp in Japan, Samsung in Korea, and Xerox PARC, Cree Lighting, and Agilent Technologies in the USA.

A number of the core issues that intertwine the design, performance, and the physics of operation of the nitride lasers will be discussed in this chapter. We will focus on representative heterostructures that encompass the requirements of joint electronic and optical confinement, comment on some fabrication techniques, and highlight continuing challenges. The last include questions concerning the high threshold current density and the continued efforts to create artificial substrate templates for reducing the misfit (threading) dislocation density for improved device performance and lifetime. At a more fundamental level, there is evidence that the InGaN alloy which forms the optically-active QW medium has characteristic compositional disorder that impacts the gain spectrum of the laser. This feature, which increases in seriousness with the indium concentration, may restrict the operation of the devices at practical threshold current densities to the violet, leaving the longer blue and green regions to await future developments, perhaps involving complementary material approaches.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×