Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-27T03:11:50.850Z Has data issue: false hasContentIssue false

11 - Prospects and properties for vertical-cavity blue light emitters

Published online by Cambridge University Press:  07 December 2009

W. P. Risk
Affiliation:
IBM Almaden Research Center, New York
T. R. Gosnell
Affiliation:
Los Alamos National Laboratory
A. V. Nurmikko
Affiliation:
Brown University, Rhode Island
Get access

Summary

BACKGROUND

VCSELs have gained importance in recent years for applications where beam quality, prospects for high-density arrays, and inherent compatibility with planar processing are particularly important. In the case of resonant-cavity LEDs (RCLEDs), the quasi-beam-like directionality in the spontaneous emission and possible enhancements to the radiative recombination rates likewise have spurred active research. VCSEL technologies that rely on III–V semiconductor heterostructures have now risen to a dominant position within the semiconductor laser industry, supplying high-performance components that play an increasingly vital role in optical communications technology. Both GaAs- and phosphide-based QW VCSELs are making significant headway in penetrating into the 1.3–1.5µm wavelength region, following spectacular device successes in the roughly 650–900 nm range in the 1990s.

To date, the shortest wavelength VCSELs that have been implemented have reached the short end of the red (∼630 nm). There are a number of reasons, both fundamental and practical, that make the development of blue and green VCSELs and RCLEDs in the wide-gap semiconductors challenging. In terms of the technological approaches and prospects for short-wavelength VCSELs and RCLEDs, this chapter is speculative in tone, given the early stages of research. At this writing, it is unclear what combination of epitaxial growth and device design/processing schemes might result in a technologically viable VCSEL, for instance. On the other hand, there are ample fundamental physical reasons that suggest that microcavity emitters based on wide-gap semiconductors, and the nitrides in particular, have special properties that offer unique opportunities both in terms of the basic physics and device performance.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×