Skip to main content Accessibility help
×
Home
  • Print publication year: 2017
  • Online publication date: October 2017

References

[1] Abramson, N. 1963. Information theory and coding. New York: McGraw-Hill.
[2] Agrawal, M., Kayal, N. and Saxena, N. 2004. PRIMES is in P. Ann. ofMath. (2), 160(2), 781–793.
[3] Aigner, M. 1979. Combinatorial theory. New York: Springer.
[4] Albrecht, M. R. and Cid, C. 2008. Algebraic techniques in differentialcryptanalysis. Pages 55–60 of: Proceedings of the First International Conference on Symbolic Computation and Cryptography, Beijing, China.
[5] Albrecht, M. R., Cid, C., Faugere, J.-C. and Perret, L. 2012. On the relation between the MXL family of algorithms and Gröbner basis algorithms. J. Symb. Comput., 47(8), 926–941.
[6] Aleshnikov, I., Deolalikar, V., Kumar, P. V. and Stichtenoth, H. 2001. Towards a basis for the space of regular functions in a tower of function fields meeting the Drinfeld-Vladut bound. Pages 14–24 of: Finite fields and applications (Augsburg, 1999). Berlin: Springer.
[7] Ardila, F. 2007. Computing the Tutte polynomial of a hyperplane arrangement. Pacific J. Math., 230, 1–26.
[8] Arimoto, S. 1962. On a non-binary error-correcting code. Inform. Process. Japan, 2, 22–23.
[9] Ashikhmin, A. and Barg, A. 1998. Minimal vectors in linear codes. IEEE Trans. Inform. Theory, 44(5), 2010–2017.
[10] Assmus, E. F., Mattson, H.F. and Turyn, R. 1967. Cyclic codes. Air Force Cambridge Research Labs, Report AFCRL-67-0365.
[11] Athanasiadis, C. A. 1996. Characteristic polynomials of subspace arrangements and finite fields. Adv. Math., 122, 193–233.
[12] Augot, D., Bardet, M. and Faugère, J.-C. 2009. On the decoding of cyclic codes with Newton identities. J. Symb. Comp., 44(12), 1608–1625.
[13] Ball, S. 2012. On sets of vectors of a finite vector space in which every subset of basis size is a basis. J. Eur. Math. Soc. (JEMS), 14(3), 733–748.
[14] Bansal, N., Pendavingh, R. A. and Pol, J. G. van der. 2015. On the number of matroids. Combinatorica, 35(3), 253–277.
[15] Bard, G. V. 2009. Algebraic cryptanalysis. Dordrecht: Springer.
[16] Barg, A. 1993. At the dawn of the theory of codes. Math. Intell., 15, 2–26.
[17] Barg, A. 1997. The matroid of supports of a linear code. Appl. Algebra Eng. Comm. Comput., 8, 165–172.
[18] Barg, A. 1998. Complexity issues in coding theory. Pages 649–756 of: Handbook of coding theory, vol. 1. Elsevier.
[19] Bassa, A., Beelen, P., Garcia, A. and Stichtenoth, H. 2015. Towers of function fields over non-prime finite fields. Mosc. Math. J., 15(1), 1–29, 181.
[20] Bassalygo, L. A. 1965. New upper bounds for error-correcting codes. Probl. Peredaci Inform., 1(vyp. 4), 41–44.
[21] Becker, A., Joux, A., May, A. and Meurer, A. 2012. Decoding random binary linear codes in 2n/20: how 1+1 = 0 improves information set decoding. Pages 520–536 of: Advances in Cryptology –EUROCRYPT 2012. Lecture Notes in Computer Science, vol. 7237 Heidelberg: Springer.
[22] Beelen, P. and Hoholdt, T. 2008a. The decoding of algebraic geometry codes. Pages 49–98 of: Advances in algebraic geometry codes. Series on Coding Theory and Cryptology, vol. 5 Hackensack, NJ: World Scientific Publishing.
[23] Beelen, P. and Hoholdt, T. 2008b. List decoding using syndromes. Pages 315–331 of: Algebraic geometry and its applications. Series on Number Theory and its Applications, vol. 5 Hackensack, NJ: World Scientific Publishing.
[24] Berlekamp, E. R. 1973. Goppa codes. IEEE Trans. Inform. Theory, IT-19, 590–592.
[25] Berlekamp, E. R. 1974. Key papers in the development of coding theory. New York: IEEE Press.
[26] Berlekamp, E. R. 1984. Algebraic coding theory. Laguna Hills, CA: Aegon Park Press.
[27] Berlekamp, E. R., McEliece, R. J. and van Tilborg, H. C. A. 1978. On the inherent intractability of certain coding problems. IEEE Trans. Inform. Theory, 24, 384–386.
[28] Bernstein, D. J., Lange, T. and Peters, C. 2008. Attacking and defending the McEliece cryptosystem. Pages 31–46 of: Post-Quantum Cryptography: Second International Workshop, PQCrypto 2008, proceedings. Lecture Notes in Computer Science, vol. 5299 Berlin: Springer.
[29] Bernstein, D. J, Buchmann, J. and Dahmen, E. 2009. Post-quantum cryptography. Berlin: Springer.
[30] Bernstein, D. J., Lange, T. and Peters, C. 2011. Smaller decoding exponents: ball-collision decoding. Pages 743–760 of: Advances in Cryptology –CRYPTO 2011. Lecture Notes in Computer Science, vol. 6841. Springer, Heidelberg.
[31] Bierbrauer, J., Johansson, T., Kabatianskii, G. and Smeets, B. 1994. On families of hash functions via geometric codes and concatenation. Pages 331–342 of: Advances in Cryptology –CRYPTO 93. Lecture Notes in Computer Science, vol. 773 Berlin: Springer.
[32] Biggs, N. 1993. Algebraic graph theory. Cambridge University Press.
[33] Biham, E. and Shamir, A. 1990. Differential cryptanalysis of DES-like cryptosystems. Pages 2–21 of: Advances in cryptology –CRYPTO 90. Lecture Notes in Computer Science, vol. 537 Berlin: Springer.
[34] Birkhoff, G. 1930. On the number of ways of coloring a map. Proc. Edinburgh Math. Soc., 2, 83–91.
[35] Birkhoff, G. 1935. Abstract linear dependence and lattices. Amer. J. Math., 56, 800–804.
[36] Björner, A. and Ekedahl, T. 1997. Subarrangments over finite fields: Chomological and enumerative aspects. Adv. Math., 129, 159–187.
[37] Blackburn, J. E., Crapo, H. and Higgs, D. A. 1973. A catalogue of combinatorial geometries. Math. Comput., 27, 155–166.
[38] Blahut, R. E. 1983. Theory and practice of error control codes. Reading: Addison-Wesley.
[39] Blahut, R. E. 2003. Algebraic codes for data transmission. Cambridge University Press.
[40] Blahut, R. E. 2008. Algebraic codes on lines, planes, and curves: an engineering approach. Cambridge University Press.
[41] Blake, I. F. 1973. Algebraic coding theory: History and development. Stroudsburg: Dowden, Hutchinson and Ross.
[42] Blakely, G. R. 1979. Safeguarding cryptographic keys. Pages 313–317 of: Proceedings of 1979 National Computer Conference.
[43] Blass, A., and Sagan, B.E. 1997. Möbius functions of lattices. Adv. Math., 129, 94–123.
[44] Blum, L., Shub, M. and Smale, S. 1989. On a theory of computation and complexity over the real numbers: NP-completeness, recursive functions and universal machines. Bull. Amer. Math. Soc. (N.S.), 21(1), 1–46.
[45] Boer, M. A. de. 1996. Almost MDS Codes. Des. Codes Cryptography, 9(2), 143–155.
[46] Boer, M. A. de and Pellikaan, R. 1999. Gröbner bases for codes. Chap. 10, pages 237–259 of: Some tapas of computer algebra. Berlin: Springer- Verlag.
[47] Bogdanov, A., Knudsen, L. R., Leander, G., Paar, C., Poschmann, A., Robshaw, M. J., Seurin, Y. and Vikkelsoe, C. 2007. PRESENT: an ultra-lightweight block cipher. Pages 450–466 of: Cryptographic Hardware and Embedded Systems –CHES 2007, 9th International Workshop, proceedings. Lecture Notes in Computer Science, no. 4727. Springer.
[48] Bogdanov, A., Khovratovich, D. and Rechberger, C. 2011. Biclique cryptanalysis of the full AES. Pages 344–371 of: Advances in Cryptology –ASIACRYPT 2011 –17th International Conference on the Theory and Application of Cryptology and Information Security, proceedings. 7073. Berlin: Springer.
[49] Boppana, R. B. and Sipser, M. 1990. The complexity of finite functions. Pages 757–804 of: Handbook of theoretical computer science, vol. Amsterdam: Elsevier.
[50] Borges-Quintana, M., Borges-Trenard, M. A., Fitzpatrick, P. and Martínez-Moro, E. 2008. Gröbner bases and combinatorics for binary codes. Appl. Algebra Eng. Comm. Comput., 19(5), 393–411.
[51] Bose, R. C. and Bush, K. A. 1952. Orthogonal arrays of strength two and three. Ann. Math. Statistics, 23, 508–524.
[52] Bose, R. C., and Ray-Chaudhuri, D. K. 1960. On a class of error correcting binary group codes. Inform. Control, 3, 68–79.
[53] Brickenstein, M. and Bulygin, S. 2008. Attacking AES via solving systems in the key variables only. Pages 118–123 of: Proceedings of the First International Conference on Symbolic Computation and Cryptography, Beijing, China.
[54] Britz, T. 2002. MacWilliams identities and matroid polynomials. The Electronic J. Combin., 9, R19.
[55] Britz, T. 2007. Higher support matroids. Discrete Math., 307, 2300–2308.
[56] Britz, T. and Rutherford, C. G. 2005. Covering radii are not matroid invariants. Discrete Math. 296, 117–120.
[57] Britz, T. and Shiromoto, K. 2008. A MacWilliams type identity for matroids. Discrete Math., 308, 4551–4559.
[58] Brouwer, A. E. 1998. Bounds on the size of linear codes. Pages 295–461 of: Handbook of coding theory, vol. 1. Elsevier.
[59] Bruen, A. A., Thas, J. A. and Blokhuis, A. 1988. On M.D.S. codes, arcs in PG(n, q) with q even, and a solution of three fundamental problems of B. Segre. Invent. Math., 92(3), 441–459.
[60] Brylawski, T. 1972. A decomposition for combinatorial geometries. Trans. Amer. Math. Soc., 171, 235–282.
[61] Brylawski, T. and Oxley, J. 1979. Intersection theory for embeddings of matroids into uniform geometries. Stud. Appl. Math., 61, 211–244.
[62] Brylawski, T. and Oxley, J. 1980. Several identities for the characteristic polynomial of a combinatorial geometry. Discrete Math., 31(2), 161–170.
[63] Brylawski, T. and Oxley, J. 1992. The Tutte polynomial and its applications. Pages 173–226 of: Matroid applications. Cambridge University Press.
[64] Buchberger, B. 1965. Ein Algorithmus zum Auffinden der Basiselemente des Restklassenrings nach einem nulldimensionalen Polynomideal. Ph.D. thesis, Universität Innsbruck.
[65] Buchmann, J. 2004. Introduction to cryptography. Berlin: Springer.
[66] Buchmann, J., Pyshkin, A. and Weinmann, R.-P. 2006. A zerodimensional Groebner basis for AES-128. Pages 78–88 of: Fast Software Encryption, 13th International Workshop, FSE 2006, revised selected papers. Lecture Notes in Computer Science, vol. 4047 Berlin: Springer.
[67] Buhler, J. P., Lenstra, H. W. Jr., and Pomerance, C. 1993. Factoring integers with the number field sieve. Pages 50–94 of: The development of the number field sieve. Lecture Notes in Computer Science, vol. 1554 Berlin: Springer.
[68] Bulygin, S. 2009a. Computer algebra in coding theory and cryptanalysis: Polynomial system solving for decoding linear codes and algebraic cryptanalysis. Saarbrücken, Deutschland: Südwestdeutscher Verlag für Hochschulschriften.
[69] Bulygin, S. 2009b. Polynomial system solving for decoding linear codes and algebraic cryptanysis. Ph.D. thesis, Universität Kaiserslautern.
[70] Bulygin, S. and Pellikaan, R. 2009. Bounded distance decoding of linear error-correcting codes with Gröbner bases. J. Symbolic Comp., 44, 1626–1643.
[71] Bulygin, S. and Pellikaan, R. 2010. Decoding and finding the minimum distance with Gröbner bases: history and new insights. Pages 585–622 of: Selected topics in information and coding theory. Series on Coding Theory and Cryptology, vol. 7 Hackensack, NJ: World Scientific Publishing.
[72] Bürgisser, P., Clausen, M. and Shokrollahi, M. A. 1997. Algebraic complexity theory. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 315 Berlin: Springer-Verlag. With the collaboration of Thomas Lickteig.
[73] Bush, K. A. 1952. Orthogonal arrays of index unity. Ann. Math. Statistics, 23, 426–434.
[74] Caboara, M. and Mora, T. 2002. The Chen-Reed-Helleseth-Truong decoding algorithm and the Gianni-Kalkbrenner Gröbner shape theorem. Appl. Algebra Eng. Comm. Computing, 13(3), 209–232.
[75] Cameron, P. J. and Lint, J. H. van. 1991. Designs, graphs, codes and their links. London Mathematical Society Student Texts, vol. 22. Cambridge University Press.
[76] Carlet, C. 2010. Boolean functions for cryptography and error correcting codes. Pages 257–397 of: Boolean models and methods in mathematics, computer science, and engineering. Cambridge University Press.
[77] Carlitz, L. 1932. The arithmetic of polynomials in a Galois field. Amer. J. Math., 54, 39–50.
[78] Cartier, P. 1981. Les arrangements d'hyperplans: un chapitre de geometrie combinatoire. Seminaire N. Bourbaki, 561, 1–22.
[79] Charpin, P. 1998. Open problems on cyclic codes. Pages 963–1063 of: Handbook of coding theory. Amsterdam: North-Holland.
[80] Chen, H. and Cramer, R. 2006. Algebraic geometric secret sharing schemes and secure multi-party computations over small fields. Pages 521–536 of: Advances in Cryptology –CRYPTO 2006. Lecture Notes in Computer Science, vol. 4117 Berlin: Springer.
[81] Cid, C. and Leurent, G. 2005. An Analysis of the XSL Algorithm. Pages 333–352 of: Advances in Cryptology –ASIACRYPT 2005, 11th International Conference on the Theory and Application of Cryptology and Information Security, proceedings. Lecture Notes in Computer Science, vol. 3788 Berlin: Springer.
[82] Cid, C., Murphy, S. and Robshaw, M. J. B. 2005. Small scale variants of the AES. Pages 145–162 of: Fast Software Encryption: 12th International Workshop, FSE 2005, revised selected papers. Lecture Notes in Computer Science, vol. 3557 Berlin: Springer.
[83] Cid, C., Murphy, S. and Robshaw, M. J. B. 2006. Algebraic aspects of the Advanced Encryption Standard. Springer-Verlag.
[84] Coffey, J. T. and Goodman, R. M. 1990. Any code of which we cannot think is good. IEEE Trans. Inform. Theory, 36(6), 1453–1461.
[85] Cohen, H. and Frey, G. et al. 2012. Handbook of elliptic and hyperelliptic curve cryptography. Second edn. Boca Raton, FL: Chapman & Hall/CRC.
[86] Cook, S. A. 1971. The complexity of theorem proving procedures. Pages 151–158 of: Proceedings of the Third Annual ACM Symposium on Theory of Computing.
[87] Cooper, A. B. 1993. Toward a new method of decoding algebraic codes using Gröbner bases. Pages 1–11 of: Transactions of the Tenth Army Conference on Applied Mathematics and Computing.
[88] Courtois, N. and Pieprzyk, J. 2002. Cryptanalysis of block ciphers with overdefined systems of equations. Pages 267–287 of: Advances in Cryptology –ASIACRYPT 2002, 8th International Conference on the Theory and Application of Cryptology and Information Security, proceedings. Lecture Notes in Computer Science, vol. 2501 Berlin: Springer.
[89] Courtois, N., Klimov, A., Patarin, J. and Shamir, A. 2000. Efficient algorithms for solving overdefined systems of multivariate polynomial equations. Pages 392–407 of: Advances in Cryptology –EUROCRYPT 2000, International Conference on the Theory and Application of Cryptographic Techniques, proceedings. Lecture Notes in Computer Science, vol. 1807 Berlin: Springer.
[90] Cox, D. A., Little, J. and O'Shea, D. 2005. Using algebraic geometry. Second edn. Graduate Texts in Mathematics, vol. 185 New York: Springer.
[91] Cox, D. A., Little, J. and O'Shea, D. 2007. Ideals, varieties, and algorithms. Third edn. Springer-Verlag.
[92] Crapo, H. 1968. Möbius inversion in lattices. Arch. Math., 19, 595–607.
[93] Crapo, H. 1969. The Tutte polynomial. Aequationes Math., 3, 211–229.
[94] Crapo, H. and Rota, G.-C. 1970. On the foundations of combinatorial theory: combinatorial geometries. Cambridge MA: MIT Press.
[95] Daemen, J. and Vincent, R. 2001. The wide trail design strategy. Pages 222–238 of: Cryptography and Coding, 8th IMA International Conference, proceedings. Lecture Notes in Computer Science, vol. 2260 Berlin: Springer.
[96] Daemen, J. and Vincent, R. 2002. The design of Rijndael: AES –The Advanced Encryption Standard. Berlin: Springer.
[97] Delsarte, P. 1973. An algebraic approach to the association schemes of coding theory. Philips Res. Rep. Suppl.
[98] Delsarte, P. 1975. On subfield subcodes of modified Reed-Solomon codes. IEEE Trans. Inform. Theory, IT-21(5), 575–576.
[99] Diffie, W. 1992. The first ten years of public key cryptography. Pages 135–176 of: Contemporary cryptology: The science of information integrity. New York: IEEE Press.
[100] Diffie, W. and Hellman, M. E. 1976. New directions in cryptography. IEEE Trans. Inform. Theory, 22, 644–654.
[101] Dodunekova, R., Dodunekov, S. M. and Klove, T. 1997. Almost-MDS and near-MDS codes for error detection. IEEE Trans. Inform. Theory, 43(1), 285–290.
[102] Dornstetter, J. L. 1987. On the equivalence of the Berlekamp-Massey and the Euclidean algorithms. IEEE Trans. Inform. Theory, 33, 428–431.
[103] Dür, A. 1987. The automorphism groups of Reed-Solomon codes. J. Combin. Theory Ser. A, 44(1), 69–82.
[104] Duursma, I. M. 1993a. Algebraic decoding using special divisors. IEEE Trans. Inform. Theory, 39, 694–698.
[105] Duursma, I. M. 1993b. Decoding codes from curves and cyclic codes. Ph.D. thesis, Eindhoven University of Technology.
[106] Duursma, I. M. 1993c. Majority coset decoding. IEEE Trans. Inform. Theory, 39, 1067–1071.
[107] Duursma, I. M. 1999. Weight distributions of geometric Goppa codes. Trans. Amer. Math. Soc., 351, 3609–3639.
[108] Duursma, I. M. 2001. From weight enumerators to zeta functions. Discrete Appl. Math., 111, 55–73.
[109] Duursma, I. M. 2003. Combinatorics of the two-variable zeta function. Pages 109–136 of: International Conference on Finite Fields and Applications.
[110] Duursma, I. M. 2008. Algebraic geometry codes: general theory. Pages 1–48 of: Advances in algebraic geometry codes. New Jersey: World Scientific.
[111] Duursma, I. M. and Kötter, R. 1994. Error-locating pairs for cyclic codes. IEEE Trans. Inform. Theory, 40, 1108–1121.
[112] Duursma, I. M. and Mak, K.-H. 2013. On lower bounds for the Ihara constants A(2) and A(3). Compos. Math., 149(7), 1108–1128.
[113] Duursma, I. M., and Pellikaan, R. 2006. A symmetric Roos bound for linear codes. J. Combin. Theory Ser. A, 113(8), 1677–1688.
[114] Duursma, I. M, Kirov, R. and Park, S. 2011. Distance bounds for algebraic geometric codes. J. Pure Appl. Algebra, 215(8), 1863–1878.
[115] Ehrhard, D. 1993. Achieving the designed error capacity in decoding algebraic-geometric codes. IEEE Trans. Inform. Theory, 39(3), 743–751.
[116] El Gamal, T. 1985. A public key cryptosystem and a signature scheme based on discrete logarithms. IEEE Trans. Inform. Theory, 31, 469–472.
[117] Elias, P. 1957. List decoding for noisy channels. Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Mass., Rep. No. 335.
[118] Elias, P. 1991. Error-correcting codes for list decoding. IEEE Trans. Inform. Theory, 37(1), 5–12.
[119] Euler, L. 1736. Solutio problematis ad geometriam situs pertinentis. Commentarii Academiae Scientiarum Imperialis Petropolitanae, 8, 128–140.
[120] Farr, J. and Gao, S. 2005. Gröbner bases and generalized Pade approximation. Math. Comput., 75, 461–473.
[121] Faugère, J.-C. 1999. A new efficient algorithm for computing Gröbner bases (F4). J. Pure Appl. Algebra, 139, 61–88.
[122] Faugère, J.-C. 2002. A new efficient algorithm for computing Gröbner bases without reduction to zero (F5). Pages 75–83 of: Proceedings of the 2002 International Symposium on Symbolic and Algebraic Computation. New York: ACM.
[123] Faugère, J.-C., Otmani, A., Perret, L. and Tillich, J.-P. 2010. Algebraic cryptanalysis of McEliece variants with compact keys. Pages 279–298 of: Advances in Cryptology –EUROCRYPT 2010, 29th Annual International Conference on the Theory and Applications of Cryptographic Techniques, proceedings. Lecture Notes in Computer Science, vol. 6110 Berlin: Springer.
[124] Feng, G.-L. and Rao, T. R. N. 1993a. A class of algebraic geometric codes from curves in high-dimensional projective spaces. Pages 132–146 of: Applied algebra, algebraic algorithms and error-correcting codes (San Juan, PR, 1993). Lecture Notes in Comput. Science, vol. 673 Berlin: Springer.
[125] Feng, G.-L. and Rao, T. R. N. 1994. A simple approach for construction of algebraic-geometric codes from affine plane curves. IEEE Trans. Inform. Theory, 40(4), 1003–1012.
[126] Feng, G.-L. and Rao, T. R. N. 1995. Improved geometric Goppa codes. I. Basic theory. IEEE Trans. Inform. Theory, 41(6, part 1), 1678–1693. Special issue on algebraic geometry codes.
[127] Feng, G.-L.,Wei, V. K., Rao, T. R. N. and Tzeng, K. K. 1994. Simplified understanding and efficient decoding of a class of algebraic-geometric codes. IEEE Trans. Inform. Theory, 40(4), 981–1002.
[128] Feng, G. L. and Rao, T. R. N. 1993b. Decoding algebraic-geometric codes up to the designed minimum distance. IEEE Trans. Inform. Theory, 39(1), 37–45.
[129] Fitzgerald, J. 1996. On algebraic decoding of algebraic-geometric and cyclic codes. Ph.D. thesis, Linköping University of Technology.
[130] Fitzgerald, J. and Lax, R. F. 1998. Decoding affine variety codes using Gröbner bases. Design. Code. Cryptogr., 13, 147–158.
[131] Forney, G. D. Jr. 1965. On decoding BCH codes. IEEE Trans. Inform. Theory, IT-11, 549–557.
[132] Forney, G. D. Jr. 1966a. Concatenated codes. Cambridge, MA: The MIT Press. MIT Research Monograph, No. 37.
[133] Forney, G. D. Jr. 1966b. Generalized minimum distance decoding. IEEE Trans. Inform. Theory, IT-12, 125–131.
[134] Fulton, W. 1989. Algebraic curves. Advanced Book Classics. An introduction to algebraic geometry, Notes written with the collaboration of Richard Weiss, Reprint of 1969 original. Redwood City, CA: Addison-Wesley.
[135] García, A. and Stichtenoth, H. 1995a. Algebraic function fields over finite fields with many rational places. IEEE Trans. Inform. Theory, 41(6, part 1), 1548–1563. Special issue on algebraic geometry codes.
[136] García, A. and Stichtenoth, H. 1995b. A tower of Artin-Schreier extensions of function fields attaining the Drinfeld-Vladut, bound. Invent. Math., 121(1), 211–222.
[137] García, A. and Stichtenoth, H. 1996. On the asymptotic behaviour of some towers of function fields over finite fields. J. Number Theory, 61(2), 248–273.
[138] Geelen, J., Gerards, B. and Whittle, G. 2013. The highly connected matroids in minor-closed classes. http://arxiv.org/abs/1312.5012.
[139] Geil, O. and Pellikaan, R. 2002. On the structure of order domains. Finite Fields Appl., 8(3), 369–396.
[140] Geil, O., Matsumoto, R. and Ruano, D. 2013. Feng-Rao decoding of primary codes. Finite Fields Appl., 23, 35–52.
[141] Gentry, C. 2009. Fully homomorphic encryption using ideal lattices. Pages 169–178 of: Proceedings of the 41st Annual ACM Symposium on Theory of Computing, STOC 2009.
[142] Gilbert, E. N. 1952. A comparison of signalling alphabets. Bell Syst. Techn. J., 31, 504–522.
[143] Gilbert, E. N., MacWilliams, F. J., and Sloan, N. J. A. 1974. Codes, which detect deception. Bell Syst. Tech. J., 33(3), 405–424.
[144] Golay, M. 1962. Notes on digital coding. Proc. IEEE, 37, 637.
[145] Goppa, V. D. 1970. A new class of linear correcting codes. Probl. Peredaci Inform., 6(3), 24–30.
[146] Goppa, V. D. 1977. Codes associated with divisors. Probl. Inform. Transmission, 13, 22–26.
[147] Goppa, V. D. 1981. Codes on algebraic curves. Soviet Math. Dokl., 24, 170–172.
[148] Goppa, V. D. 1983. Algebraico-geometric codes. Math. USSR Izvestija, 21, 75–91.
[149] Goppa, V. D. 1984. Codes and information. Russian Math. Surveys, 39, 87–141.
[150] Goppa, V. D. 1989. Geometry and codes, mathematics and its applications. Dordrecht: Soviet series 24, Kluwer Academic Publishing.
[151] Gorenstein, D. and Zierler, N. 1961. A class of error-correcting codes in pm symbols. J. Soc. Indust. Appl. Math., 9, 207–214.
[152] Granville, A. 2005. It is easy to determine whether a given integer is prime. Bull. Amer. Math. Soc. (N.S.), 42(1), 3–38.
[153] Greene, C. 1976. Weight enumeration and the geometry of linear codes. Stud. Appl. Math., 55, 119–128.
[154] Greene, C. and Zaslavsky, T. 1983. On the interpretation of Whitney numbers through arrangements of hyperplanes, zonotopes, non-Radon partitions and orientations of graphs. Trans. Amer. Math. Soc., 280, 97–126.
[155] Greuel, G.-M. and Pfister, G. 2008. A singular introduction to commutative algebra. Second edn. Springer.
[156] Griesmer, J. H. 1960. A bound for error-correcting codes. IBM J. Res. Develop., 4, 532–542.
[157] Guruswami, V. 2001. List decoding of error-correcting codes. Pro- Quest LLC, Ann Arbor, MI. Thesis (Ph.D.)–Massachusetts Institute of Technology.
[158] Guruswami, V. and Sudan, M. 1999. Improved decoding of Reed- Solomon and algebraic-geometry codes. IEEE Trans. Inform. Theory, 45(6), 1757–1767.
[159] Guruswami, V. and Vardy, A. 2005. Maximum-likelihood decoding of Reed-Solomon codes is NP-hard. IEEE Trans. Inform. Theory, 51, 2249–2256.
[160] Hämäläinen, H., Honkala, I., Litsyn, S. and Ostergard, P. R. J. 1995. Football pools –a game for mathematicians. Amer. Math. Monthly, 102, 579–588.
[161] Hamming, R. W. 1950. Error detecting and error correcting codes. Bell Syst. Tech. J., 29, 147–160.
[162] Hamming, R. W. 1980. Coding and information theory. New Jersey: Prentice-Hall.
[163] Hansen, J. P. 1987. Codes on the Klein quartic, ideals, and decoding. IEEE Trans. Inform. Theory, 33(6), 923–925.
[164] Hartmann, C. R. P. and Tzeng, K. K. 1972. Generalizations of the BCH bound. Inform. Contr., 20, 489–498.
[165] Heijnen, P. and Pellikaan, R. 1998. Generalized Hamming weights of q-ary Reed-Muller codes. IEEE Trans. Inform. Theory, 44(1), 181–196.
[166] Helgert, H. J. 1972. Srivastava codes. IEEE Trans. Inform. Theory, IT-18, 292–297.
[167] Helgert, H.J. 1974. Alternant codes. Inform. Contr., 26(4), 369–380.
[168] Helleseth, T., Klove, T. and Mykkeltveit, J. 1977. The weight distribution of irreducible cyclic codes with block lengths n1((ql − 1)/N). Discrete Math., 18, 179–211.
[169] Henocq, T. and Rotillon, D. 1996. The theta divisor of a Jacobian variety and the decoding of geometric Goppa codes. J. Pure Appl. Algebra, 112(1), 13–28.
[170] Hermelina, M. and Nyberg, K. 2000. Correlation properties of the Bluetooth combiner generator. Pages 17–29 of: Information Security and Cryptology, ICISC 1999, Proceedings. Lecture Notes in Computer Science, vol. 1787 Berlin: Springer.
[171] Heytmann, A. E. and Jensen, J. M. 2000. On the equivalence of the Berlekamp-Massey and the Euclidean algorithm for decoding. IEEE Trans. Inform. Theory, 46, 2614–2624.
[172] Hirschfeld, J. W. P. and Storme, L. 1998. The packing problem in statistics, coding theory and finite projective spaces. J. Statist. Plann. Inference, 72(1-2), 355–380. R. C. Bose Memorial Conference (Fort Collins, CO, 1995).
[173] Hirschfeld, J. W. P. and Thas, J. A. 2016. General Galois geometries. Springer Monographs in Mathematics. London: Springer.
[174] Hirschfeld, J. W. P., Korchmaros, G. and Torres, F. 2008. Algebraic curves over a finite field. Princeton Series in Applied Mathematics. Princeton University Press.
[175] Hocquenghem, A. 1959. Codes correcteurs d'erreurs. Chiffres, 2, 147–156.
[176] Hoholdt, T. and Pellikaan, R. 1995. On decoding algebraic-geometric codes. IEEE Trans. Inform. Theory, 41, 1589–1614.
[177] Hoholdt, T., Lint, J. H. van and Pellikaan, R. 1998. Algebraic geometry codes. Pages 871–961 of: Handbook of coding theory, vol. 1 Amsterdam: North-Holland.
[178] Huffman, W. C. 1998. Codes and groups. Pages 1345–1440 of: Handbook of coding theory. Amsterdam: North-Holland.
[179] Huffman, W. C. and Pless, V.S. 1998. Handbook of coding theory. New York: Elsevier.
[180] Huffman, W. C. and Pless, V. S. 2003. Fundamentals of error-correcting codes. Cambridge University Press.
[181] Ihara, Y. 1981. Some remarks on the number of rational points of algebraic curves over finite fields. J. Fac. Sci. Univ. Tokyo Sect. IA Math., 28(3), 721–724.
[182] Johnson, S. M. 1962. A new upper bound for error-correcting codes. IRE Trans. Inform. Theory, 8, 203–207.
[183] Joyner, D., Ksir, A. and Traves, W. 2007. Automorphism groups of generalized Reed-Solomon codes. Pages 114–125 of: Advances in coding theory and cryptography. Series on Coding Theory and Cryptology, vol. 3 Hackensack, NJ: World Scientific Publishing.
[184] Jurrius, R. P. M. J. 2012. Codes, arrangements, matroids, and their polynomial links. Ph.D. thesis, Technical University Eindhoven.
[185] Jurrius, R. P. M. J. 2008. Classifying polynomials of linear codes. M.Sc. thesis, Leiden University.
[186] Jurrius, R. P. M. J. and Pellikaan, R. 2011. Codes, arrangements and matroids. Pages 219–325 of: Algebraic geometry modelling in information theory, Series on Coding Theory and Cryptology, vol. 8 Hackensack, NJ: World Scientific Publishing.
[187] Justesen, J. 1976. On the complexity of decoding Reed-Solomon codes. IEEE Trans. Inform. Theory, 22, 237–238.
[188] Justesen, J. and Hoholdt, T. 2004. A course in error-correcting codes. Zürich: EMS Textbooks in Math.
[189] Justesen, J., Larsen, K. J., Jensen, H. E., Havemose, A. and Hoholdt, T. 1989. Construction and decoding of a class of algebraic geometry codes. IEEE Trans. Inform. Theory, 35(4), 811–821.
[190] Karnin, E. D., Greene, J. W. and Hellman, M.E. 1983. On secret sharing systems. IEEE Trans. Inform. Theory, 29(1), 35–31.
[191] Kasami, T., Lin, S. and Peterson, W. W. 1968. New generalizations of the Reed-Muller codes. I. Primitive codes. IEEE Trans. Inform. Theory, IT-14, 189–199.
[192] Kashyap, N. 2008. A decomposition theory for binary linear codes. IEEE Trans. Inform. Theory, 54(7), 3035–3038.
[193] Katsman, G. L., Tsfasman, M. A. and Vlădut,, S. G. 1984. Modular curves and codes with a polynomial construction. IEEE Trans. Inform. Theory, 30(2, part 2), 353–355.
[194] Katsman, G. L. and Tsfasman, M. A. 1987. Spectra of algebraicgeometric codes. Probl. Peredachi Inform., 23, 19–34.
[195] Katsman, G.L. and Tsfasman, M.A. 1989. A remark on algebraic geometric codes. Pages 197–199 of: Representation theory, group rings, and coding theory. Contemporary Mathematics, vol. 93 Providence, RI: American Mathematical Society.
[196] Katz, J. 2010. Digital signatures. Springer.
[197] Kirfel, C. and Pellikaan, R. 1995. The minimum distance of codes in an array coming from telescopic semigroups. IEEE Trans. Inform. Theory, 41(6, part 1), 1720–1732. Special issue on algebraic geometry codes.
[198] Klein, F. 1878. Ueber die Transformation siebenter Ordnung der elliptischen Functionen. Math. Ann., 14(3), 428–471.
[199] Kleinjung, T., Aoki, K., Franke, J., Lenstra, A. K., Thome, E., Bos, J. W., Gaudry, P., Kruppa, A., Montgomery, P. L., Osvik, D. A., Riele, H. te, Timofeev, A. and Zimmermann, P. 2010. Factorization of a 768-bit RSA Modulus. Pages 333–350 of: Advances in Cryptology –CRYPTO 2010, 30th Annual Cryptology Conference, proceedings. Lecture Notes in Computer Science, no. 6223. Berlin: Springer.
[200] Klove, T. 1978. The weight distribution of linear codes over GF(ql) having generator matrix over GF(q). Discrete Math., 23, 159–168.
[201] Klove, T. 1992. Support weight distribution of linear codes. Discrete Math., 106/107, 311–316.
[202] Knudsen, L. R. and Robshaw, M. 2011. The block cipher companion. Information security and cryptography. Heidelberg, London: Springer.
[203] Kolluru, M. S., Feng, G.-L. and Rao, T. R. N. 2000. Construction of improved geometric Goppa codes from Klein curves and Klein-like curves. Appl. Algebra Engrg. Comm. Comput., 10(6), 433–464.
[204] Kötter, R. 1992. A unified description of an error locating procedure for linear codes. Pages 113–117 of: Proceedings of Algebraic and Combinatorial Coding Theory.
[205] Kung, J. P. S. 1986. A source book in matroid theory. Boston: Birkhäuser.
[206] Lachaud, G. 1986. Les codes geometriques de Goppa. Asterisque, 189–207. Seminar Bourbaki, Vol. 1984/85.
[207] Leonard, D. A. 2001. Finding the defining functions for one-point algebraic-geometry codes. IEEE Trans. Inform. Theory, 47(6), 2566–2573.
[208] Levin, L. A. 1973. Universal search problems. Probl. Peredachi Inform., 9, 115–116.
[209] Lidl, R. and Niederreiter, H. 1994. Introduction to finite fields and their applications. Cambridge University Press.
[210] Lin, S. and Costello, D. J. 1983. Error control coding: fundamentals and applications. New Jersey: Prentice-Hall.
[211] Lint, J. H. van. 1975. A survey on perfect codes. Rocky Mountain J. Math., 5, 215–228.
[212] Lint, J. H. van. 1990. Algebraic geometric codes. Pages 137–162 of: Coding theory and design theory, Part I. IMA Volume in Mathematics and its Applications, vol. 20 New York: Springer.
[213] Lint, J. H. van. 1999. Introduction to coding theory. Graduate Texts in Mathematics, vol. 86. 3rd ed. New York: Springer-Verlag.
[214] Lint, J. H. van and Geer, G. van der. 1988. Introduction to coding theory and algebraic geometry. DMV Seminar, vol. 12 Basel: Birkhäuser Verlag.
[215] Lint, J. H. van and Springer, T. A. 1987. Generalized Reed-Solomon codes from algebraic geometry. IEEE Trans. Inform. Theory, 33(3), 305–309.
[216] Lint, J. H. van and Wilson, R. M. 1986. On the minimum distance of cyclic codes. IEEE Trans. Inform. Theory, 32(1), 23–40.
[217] Lint, J. H. van and Wilson, R. M. 1992. A course in combinatorics. Cambridge University Press.
[218] Loeliger, H.-A. 1994. On the basic averaging arguments for linear codes. Pages 251–261 of: Communications and cryptography: Two sides of one tapestry. Kluwer.
[219] Loeliger, H.-A. 1997. Averaging bounds for lattices and linear codes. IEEE Trans. Inform. Theory, 43(6), 1767–1773.
[220] Lopez, B. 1996. Plane models of Drinfeld modular curves. Ph.D. thesis, Universidad Complutense, Madrid.
[221] Lopez, B. 1999. A special integral basis for a plane model of the Drinfeld modular curve X1(n) mod T. Manuscripta Math., 99(1), 55–72.
[222] MacKay, D. 2003. Information theory, inference and learning algorithms. Cambridge University Press.
[223] MacWilliams, F. J. 1963. A theorem on the distribution of weights in a systematic code. Bell Syst. Tech. J., 42, 79–94.
[224] MacWilliams, F. J. 1968. A historical survey. Pages 3–13 of: Error correcting codes. New York: Wiley.
[225] MacWilliams, F. J. and Sloane, N. J. A. 1977. The theory of errorcorrecting codes. Amsterdam: North-Holland Mathematical Library.
[226] Manin, Yu. 1981. What is the maximum number of points on a curve over F2? J. Fac. Sci. Univ. Tokyo Sect. IA Math., 28(3), 715–720.
[227] Marcolla, C., Orsini, E. and Sala, M. 2012. Improved decoding of affinevariety codes. J. Pure Appl. Algebra, 216(7), 1533–1565.
[228] Marquez-Corbella, I. and Pellikaan, R. 2016. A characterization of MDS codes that have an error correcting pair. Finite Fields Appl., 40, 224–245.
[229] Martínez-Moro, E., Munuera, C. and Ruano, D. 2008. Advances in algebraic geometry codes. Series on Coding Theory and Cryptology, vol. 5 Hackensack, NJ: World Scientific Publishing.
[230] Massey, J. L. 1969. Shift-register synthesis and BCH decoding. IEEE Trans. Inform. Theory, 15, 122–127.
[231] Massey, J. L. 1993. Minimal codewords and secret sharing. Pages 276–279 of: Sixth Joint Swedish-Russian Workshop on Information theory, proceedings.
[232] Massey, J. L. 1995. On some applications of coding theory. Pages 33–47 of: Cryptography, Codes and Ciphers: Cryptography and Coding IV.
[233] Massey, J. L. and Schaub, T. Linear complexity in coding theory. Pages 19–32 of: Coding theory and applications (Cachan, 1986). Lecture Notes in Computer Science, vol. 311 Berlin: Springer.
[234] Matsui, M. 1994. Linear cryptanalysis method for DES cipher. Pages 386–397 of: Advances in Cryptology –EUROCRYPT 1993, proceedings. Lecture Notes in Computer Science, vol. 765 Berlin: Springer.
[235] Mattson, H. F. and Solomon, G. 1961. A new treatment of Bose- Chaudhuri codes. J. Soc. Indust. Appl. Math., 9, 654–669.
[236] McCurley, K. S. 1988. A key distribution system equivalent to factoring. J. Cryptology, 1, 95–105.
[237] McEliece, R. J. 1977. The theory of information and coding. Reading: Addison-Wesley.
[238] McEliece, R. J. 1978. A public-key cryptosystem based on algebraic coding theory. DSN Progress Report, 42–44, 114–116.
[239] McEliece, R. J. and Sawate, D. V. 1981. On sharing secrets and Reed- Solomon codes. Comm. ACM, 24, 583–584.
[240] McEliece, R. J. and Swanson, L. 1994. Reed-Solomon codes and the exploration of the solar system. Pages 25–40 of: Reed-Solomon codes and their applications. New York: IEEE Press.
[241] McEliece, R. J. Rodemich, E. R., Rumsey, H. Jr. and Welch, L. R. 1977. New upper bounds on the rate of a code via the Delsarte-MacWilliams inequalities. IEEE Trans. Inform. Theory, IT-23(2), 157–166.
[242] Menezes, A., Oorschot, P. van and Vanstone, S. 1996. Handbook of applied cryptography. Boca Raton, FL: CRC Press.
[243] Miura, S. 1992. Algebraic geometric codes on certain plane curves. IEICE Trans., 75A(11), 1739–1745.
[244] Miura, S. and Kamiya, N. 1993. Geometric-Goppa codes on some maximal curves and their minimum distance. Proc. IEEE Inform. Theory Workshop, 85–86.
[245] Mohamed, M. S. E., Cabarcas, D., Ding, J., Buchmann, J. A. and Bulygin, S. 2009. MXL3: An efficient algorithm for computing Gröbner bases of zero-dimensional ideals. Pages 87–100 of: Information, Security and Cryptology –ICISC 2009, 12th International Conference.
[246] Mohamed, M. S. E., Bulygin, S., Zohner, M., Heuser, A., Walter, M. and Buchmann, J. A. 2013. Improved algebraic side-channel attack on AES. J. Cryptogr. Eng., 3(3), 139–156.
[247] Moreno, C. 1991. Algebraic curves over finite fields. Cambridge Tracts in Mathematics, vol. 97. Cambridge University Press.
[248] Mphako, E. G. 2000. Tutte polynomials of perfect matroid designs. Comb., Probab. Comput., 9, 363–367.
[249] Muller, D.E. 1954. Application of Boolean algebra to switching circuit design and to error detection. IRE Trans. Electron. Comput., 3, 6–12.
[250] Murphy, S. and Robshaw, M. 2002. Essential algebraic structure within the AES. Pages 1–16 of: Advances in Cryptology –CRYPTO 2002, 22nd Annual International Cryptology Conference, proceedings. Lecture Notes in Computer Science, vol. 2442 Berlin: Springer.
[251] Nechvatal, J. 1992. Public key cryptography. Pages 177–288 of: Contemporary cryptology: the science of information integrity. New York: IEEE Press.
[252] Nelson, P. and Zwam, S. H. M. van. 2015. On the existence of asymptotically good linear codes in minor-closed classes. IEEE Trans. Inform. Theory, 61(3), 1153–1158.
[253] Niederreiter, H. and Xing, C. 1998. Towers of global function fields with asymptotically many rational places and an improvement on the Gilbert-Varshamov bound. Math. Nachr., 195, 171–186.
[254] Niederreiter, H. and Xing, C. 2001. Rational points on curves over finite fields: theory and applications. London Mathematical Society Lecture Note Series, vol. 285. Cambridge University Press.
[255] NIST. 1977. Federal Information Standards Publication, Data Encryption Standard (DES).
[256] NIST. 2001. Federal Information Standards Publication, Advanced Encryption Standard (AES).
[257] Orlik, P. and Terao, H. 1992. Arrangements of hyperplanes. Grundlehren der Mathematischen Wissenschaften, vol. 300 Berlin: Springer-Verlag.
[258] Orsini, E. and Sala, M. 2005. Correcting errors and erasures via the syndrome variety. J. Pure Appl. Algebra, 200, 191–226.
[259] Oxley, J. G. 2011. Matroid theory. Second edn. Oxford University Press.
[260] Pellikaan, R. 1988. On decoding linear codes by error correcting pairs. Preprint Eindhoven University of Technology.
[261] Pellikaan, R. 1989. On a decoding algorithm of codes on maximal curves. IEEE Trans. Inform. Theory, 35, 1228–1232.
[262] Pellikaan, R. 1992. On decoding by error location and dependent sets of error positions. Discrete Math., 106–107, 369–381.
[263] Pellikaan, R. 1996a. On the existence of error-correcting pairs. J. Stat. Plann. Infer., 229–242.
[264] Pellikaan, R. 1996b. The shift bound for cyclic, Reed-Muller and geometric Goppa codes. Pages 155–174 of: Arithmetic, geometry and coding theory (Luminy, 1993). Berlin: de Gruyter.
[265] Pellikaan, R. 2001. On the existence of order functions. J. Stat. Plan. Infer., 94, 287–301.
[266] Pellikaan, R. and Wu, X.-W. 2004. List decoding of q-ary Reed-Muller codes. IEEE Trans. Inform. Theory, 50(4), 679–682.
[267] Pellikaan, R., Shen, B.-Z. and Wee, G. J. M. van. 1991. Which linear codes are algebraic-geometric ? IEEE Trans. Inform. Theory, 37, 583–602.
[268] Pellikaan, R., Perret, M. and Vlădut,, S. G. 1996. Arithmetic, geometry and coding theory (Luminy, 1993). Berlin: de Gruyter.
[269] Pellikaan, R., Stichtenoth, H. and Torres, F. 1998. Weierstrass semigroups in an asymptotically good tower of function fields. Finite Fields Appl., 4(4), 381–392.
[270] Peters, C. 2011. Curves, codes, and cryptography. Ph.D. thesis, Eindhoven University of Technology.
[271] Peterson, W. W. 1960. Encoding and error-correction procedures for the Bose-Chaudhuri codes. Trans. IRE, IT-6, 459–470.
[272] Peterson, W. W. and Weldon, E. J. 1972. Error-correcting codes. Cambridge, MA: MIT Press.
[273] Pieprzyk, J. and Zhang, X. M. 2003. Ideal threshold schemes from MDS codes. Pages 269–279 of: Information Security and Cryptology, ICISC 2002, Proceedings. Lecture Notes in Computer Science, vol. 2587 Berlin: Springer.
[274] Pless, V. 1968. On the uniqueness of the Golay codes. J. Comb. Theory, 5, 215–228.
[275] Pless, V. 1982. Introduction to the theory of error-correcting codes. New York: John Wiley & Sons.
[276] Pless, V. 1998. Coding constructions. Pages 141–176 of: Handbook of coding theory, vol. 1 Amsterdam: North-Holland.
[277] Plotkin, M. 1960. Binary codes with specified minimum distance. IRE Trans., IT-6, 445–450.
[278] Pomerance, C. 1990. Factoring. Pages 27–47 of: Cryptology and computational number theory, vol. 42 Rhode Island: American Mathematical Society.
[279] Prange, E. 1962. The use of information sets in decoding cyclic codes. IRE Trans., IT-8, 5–9.
[280] Rabin, M. 1979. Digitalized signatures and public-key functions as intractable as factorization. Tech. rept. MIT/LCS/TR-212. Massachusetts Institute of Technology.
[281] Raddum, H. 2007. MRHS Equation Systems. Pages 232–245 of: Selected Areas in Cryptography, 14th International Workshop, SAC 2007, revised selected papers. Lecture Notes in Computer Science, vol. 4876 Berlin: Springer.
[282] Rao, R. C. 1947. Factorial experiments derivable from combinatorial arrangements of arrays. Suppl. J. Roy. Statist. Soc., 9, 128–139.
[283] Reed, I. S. and Solomon, G. 1960. Polynomial codes over certain finite fields. J. Soc. Indust. Appl. Math., 8, 300–304.
[284] Reid, M. 1988. Undergraduate algebraic geometry. LondonMathematical Society Student Texts, vol. 12. Cambridge University Press.
[285] Retter, C. T. 1976. Bounds on Goppa codes. IEEE Trans. Inform. Theory, 22(4), 476–482.
[286] Rivest, R. L., Shamir, A. and Adleman, L.M. 1977. A method for obtaining digital signatures and public-key cryptosystems. Communications of ACM, 21, 120–126.
[287] Roos, C. 1982. A generalization of the BCH bound for cyclic codes, including the Hartmann-Tzeng bound. J. Combin. Theory Ser. A, 33(2), 229–232.
[288] Roos, C. 1983. A new lower bound for the minimum distance of a cyclic code. IEEE Trans. Inform. Theory, 29(3), 330–332.
[289] Rota, G.-C. 1964. On the foundations of combinatorial theory I: Theory of Möbius functions. Zeitschriften für Wahrscheinlichkeitstheorie und Verwandte Gebiete, 2, 340–368.
[290] Roth, R. M. and Ruckenstein, G. 2000. Efficient decoding of Reed- Solomon codes beyond half the minimum distance. IEEE Trans. Inform. Theory, 46(1), 246–257.
[291] Roth, R. M. and Seroussi, G. 1985. On generator matrices of MDS codes. IEEE Trans. Inform. Theory, 31(6), 826–830.
[292] Safavi-Naini, R., Wang, H. and Xing, C. 2001. Linear Authentication Codes: Bounds and Constructions. Pages 127–135 of: Advances in Cryptology –INDOCRYPT 2001, proceedings. Lecture Notes in Computer Science, vol. 2247 Berlin: Springer.
[293] Sarwate, D. 1977. On the complexity of decoding Goppa codes. IEEE Trans. Inform. Theory, 23, 515–516.
[294] Schoof, R. 1992. Algebraic curves over F2 with many rational points. J. Number Theory, 41(1), 6–14.
[295] Schouhamer Immink, K. A. 1994. Reed-Solomon codes and the compact disc. Pages 41–59 of: Reed-Solomon codes and their applications. New York: IEEE Press.
[296] Serre, J.-P. 1983. Sur le nombre des points rationnels d'une courbe algebrique sur un corps fini. C. R. Acad. Sci. Paris Ser. I Math., 296(9), 397–402.
[297] Shamir, A. 1979. How to share a secret. Comm. ACM, 22, 612–613.
[298] Shannon, A. 1948. A mathematical theory of communication. Bell Sys. Tech. J., 27, 379–423 and 623–656.
[299] Shor, P. W. 1997. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput., 26, 1484–1509.
[300] Shoup, V. 1994. Fast construction of irreducible polynomials over finite fields. J. Symbolic Comput., 17(5), 371–391.
[301] Shparlinski, I. E. 1993. Finding irreducible and primitive polynomials. Appl. Algebra Engrg. Comm. Comput., 4(4), 263–268.
[302] Shum, K. W., Aleshnikov, I., Kumar, P. V., Stichtenoth, H. and Deolaikar, V. 2001. A low-complexity algorithm for the construction of algebraic-geometric codes better than the Gilbert-Varshamov bound. IEEE Trans. Inform. Theory, 47(6), 2225–2241.
[303] Simonis, J. 1993. The effective length of subcodes. Appl. Algebra Eng. Comm. Comput., 5, 371–377.
[304] Singleton, R. C. 1964. Maximum distance q-nary codes. IEEE Trans. Inform. Theory, IT-10, 116–118.
[305] Skorobogatov, A. N. 1991. The parameters of subcodes of algebraicgeometric codes over prime subfields. Discrete Appl. Math., 33(1-3), 205–214. Applied algebra, algebraic algorithms, and error-correcting codes (Toulouse, 1989).
[306] Skorobogatov, A. N. 1992. Linear codes, strata of Grassmannians, and the problems of Segre. Pages 210–223 of: Coding theory and algebraic geometry. Lecture Notes in Mathematics, vol. 1518 Berlin: Springer- Verlag.
[307] Slepian, D. 1974. Key papers in the development of information theory. New York: IEEE Press.
[308] Smid, M. E. and Branstad, D. K. 1992. The Data Encryption Standard: Past and Future. Pages 43–64 of: Contemporary cryptology: the science of information integrity. New York: IEEE Press.
[309] Stanley, R. P. 1997. Enumerative combinatorics. Vol. 1. Cambridge University Press.
[310] Stanley, R. P. 2007. An introduction to hyperplane arrangements. Pages 389–496 of: Geometric combinatorics. IAS/Park City Mathematical Series, vol. 13 Providence, RI: American Mathematical Society.
[311] Stepanov, S. A. 1999. Codes on algebraic curves. New York: Kluwer Academic/Plenum Publishers.
[312] Stichtenoth, H. 1988. A note on Hermitian codes over GF(q2). IEEE Trans. Inform. Theory, 34(5, part 2), 1345–1348. Coding techniques and coding theory.
[313] Stichtenoth, H. 1990. On the dimension of subfield subcodes. IEEE Trans. Inform. Theory, 36(1), 90–93.
[314] Stichtenoth, H. 1993. Algebraic function fields and codes. Berlin: Springer.
[315] Stichtenoth, H. and Tsfasman, M. A. 1992. Coding theory and algebraic geometry (Luminy, 1991). Lecture Notes in Mathematics, vol. 1518 Berlin: Springer.
[316] Stinson, D. R. 1990. The combinatorics of authentication and secrecy. J. Cryptol., 2, 23–49.
[317] Stinson, D. R. 1992. Combinatorial characterization of authentication codes. Design. Code. Cryptogr., 2, 175–187.
[318] Stinson, D. R. 2005. Cryptography, theory and practice. Third edn. Boca Raton, FL: Chapman & Hall/CRC.
[319] Sudan, M. 1997. Decoding of Reed Solomon codes beyond the errorcorrection bound. J. Complexity, 13(1), 180–193.
[320] Sugiyama, Y., Kasahara, M., Hirasawa, S. and Namekawa, T. 1975. A method for solving the key equation for decoding Goppa codes. Information and Control, 27, 87–99.
[321] Thas, J. A. 1992. M.D.S. codes and arcs in projective spaces: a survey Matematiche (Catania), 47(2), 315–328. Combinatorics 1992.
[322] Tsfasman, M. A., Vlădut,, S. G. and Zink, Th. 1982. Modular curves, Shimura curves, and Goppa codes, better than Varshamov-Gilbert bound. Math. Nachr., 109, 21–28.
[323] Tsfasman, M. A. and Vlădut,, S. G. 1991. Algebraic-geometric codes. Dordrecht: Kluwer Academic Publishers.
[324] Tsfasman, M. A. and Vlădut,, S. G. 1995. Geometric approach to higher weights. IEEE Trans. Inform. Theory, 41, 1564–1588.
[325] Tutte, W. T. 1947. A ring in graph theory. Proc. Amer. Math. Soc., 43, 26–40.
[326] Tutte, W. T. 1948. An algebraic theory of graphs. Ph.D. thesis, University of Cambridge.
[327] Tutte, W. T. 1954. A contribution to the theory of chromatic polynomials. Can. J. Math., 6, 80–91.
[328] Tutte, W.T. 1959. Matroids and graphs. Trans. Amer. Math. Soc., 90, 527–552.
[329] Tutte, W.T. 1965. Lectures on matroids. J. Res. Nat. Bur. Stand., Sect. B, 69, 1–47.
[330] Tutte, W. T. 1966. On the algebraic theory of graph coloring. J. Comb. Theory, 1, 15–50.
[331] Tutte, W. T. 1967. On dichromatic polynomials. J. Comb. Theory, 2, 301–320.
[332] Tutte, W. T. 1974. Cochromatic graphs. J. Comb. Theory, 16, 168–174.
[333] Tutte, W. T. 2004. Graphs-polynomials. Adv. Appl. Math., 32, 5–9.
[334] Valiant, L. G. 1979. Completeness classes in algebra. Pages 249–261 of: Conference record of the Eleventh Annual ACM Symposium on Theory of Computing (Atlanta, GA, 1979). New York: ACM.
[335] Vardy, A. 1997. The intractability of computing the minimum distance of a code. IEEE Trans. Inform. Theory, 43, 1757–1766.
[336] Vardy, A. 1998. Codes, curves, and signals (Urbana, IL, 1997). Kluwer International Series in Engineering and Computer Science, vol. 485 Boston, MA: Kluwer Academic Publishers.
[337] Varshamov, R. R. 1957. Estimate of the number of signals in error correcting codes. Dokl. Acad. Nauk SSSR, 117, 739–741.
[338] Vlădut,, S. G. and Drinfeld, V. G. 1983. The number of points of an algebraic curve. Funktsional. Anal. i Prilozhen., 17(1), 68–69.
[339] Vlădut,, S. G. and Manin, Yu. I. 1984. Linear codes and modular curves. Pages 209–257 of: Current problems in mathematics, Vol. 25. Moscow: Itogi Nauki i Tekhniki. Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform.
[340] Wegener, I. 1987. The complexity of Boolean functions. Wiley-Teubner Series in Computer Science. Chichester: John Wiley & Sons; Stuttgart: B. G. Teubner.
[341] Wegener, I. 2005. Complexity theory. Berlin: Springer-Verlag. Exploring the limits of efficient algorithms, Translated from the German by Randall Pruim.
[342] Wei, V. K. 1991. Generalized Hamming weights for linear codes. IEEE Trans. Inform. Theory, 37, 1412–1418.
[343] Welsh, D. J. A. 1976. Matroid theory. London: Academic Press.
[344] White, N. 1986. Theory of matroids. Cambridge: Encyclopedia of Mathmatics and its Applications, vol. 26, Cambridge University Press.
[345] White, N. 1992. Matroid applications. Cambridge: Encyclopedia of Mathmatics and its Applications, vol. 40, Cambridge University Press.
[346] Whitney, H. 1932a. The coloring of graphs. Ann. Math., 33, 688–718.
[347] Whitney, H. 1932b. A logical expansion in mathematics. Bull. Amer. Math. Soc., 38, 572–579.
[348] Whitney, H. 1935. On the abstract properties of linear dependence. Amer. J. Math., 57, 509–533.
[349] Whittle, G. 1995. A charactrization of the matroids representable over GF(3) and the rationals. J. Comb. Theory, Series B, 65, 222–261.
[350] Whittle, G. 1997. On matroids representable over GF(3) and other fields. Trans. Amer. Math. Soc., 349, 579–603.
[351] Wicker, S. B. 1998. Deep space applications. Pages 2119–2169 of: Handbook of coding theory, vol. 2 Amsterdam: North-Holland.
[352] Wicker, S. B. and Bhargava, V. K. 1994. Reed-Solomon codes and their applications. New York: IEEE Press.
[353] Wigderson, A. 2007. P, NP and mathematics –a computational complexity perspective. Pages 665–712 of: International Congress of Mathematicians. Vol. I. Zürich: European Mathematical Society.
[354] Wilson, R. J. and Watkins, J. J. 1990. Graphs; An introductory approach. New York: J. Wiley & Sons.
[355] Wirtz, M. 1988. On the parameters of Goppa codes. IEEE Trans. Inform. Theory, 34(5, part 2), 1341–1343. Coding techniques and coding theory.
[356] Wolf, J. K. and Elspas, B. 1963. Error-locating codes –a new concept in error control. IEEE Trans. Inform. Theory, IT-9, 113–117.
[357] Wozencraft, J. M. 1958. List decoding. Quarterly Progress Report, Research Laboratory of Electronics, MIT, 48, 90–95.
[358] Xing, C. and Chen, H. 2002. Improvements on parameters of one-point AG codes from Hermitian curves. IEEE Trans. Inform. Theory, 48(2), 535–537.
[359] Yang, K. and Kumar, P. V. 1992. On the true minimum distance of Hermitian codes. Pages 99–107 of: Coding theory and algebraic geometry (Luminy, 1991). Lecture Notes in Mathematics, vol. 1518 Berlin: Springer.
[360] Yao, A. C.-C. 1982. Protocols for Secure Computations. Pages 160–164 of: Proceedings of the 23rd Annual Symposium on Foundations of Computer Science, FOCS 1982.
[361] Yuan, J. and Ding, C. 2006. Secret sharing schemes from three classes of linear codes. IEEE Trans. Inform. Theory, 52(1), 206–212.
[362] Zaslavsky, T. 1975. Facing up to arrangements: face-count fomulas for partitions of space by hyperplanes. Memoirs of the American Mathematical Society, no. 154. American Mathematical Society.
[363] Zaslavsky, T. 1982. Signed graph colouring. Discrete Math., 39, 215–228.
[364] Zhuangzi. 287 BC. Heaven and Earth, chapter 14. http://ctext.org/zhuangzi/heaven-and-earth.