[1] Abramson, N.
1963. Information theory and coding.
New York: McGraw-Hill.

[2] Agrawal, M., Kayal, N. and Saxena, N.
2004. PRIMES is in P.
Ann. ofMath. (2),
160(2), 781–793.

[3] Aigner, M.
1979. Combinatorial theory.
New York: Springer.

[4] Albrecht, M. R. and Cid, C.
2008. Algebraic techniques in differentialcryptanalysis. Pages 55–60 of: Proceedings of the First International Conference on Symbolic Computation and Cryptography,
Beijing, China.

[5] Albrecht, M. R., Cid, C., Faugere, J.-C. and Perret, L.
2012. On the relation between the MXL family of algorithms and Gröbner basis algorithms.
J. Symb. Comput.,
47(8), 926–941.

[6] Aleshnikov, I., Deolalikar, V., Kumar, P. V. and Stichtenoth, H.
2001. Towards a basis for the space of regular functions in a tower of function fields meeting the Drinfeld-Vladut bound. Pages 14–24 of: Finite fields and applications (Augsburg, 1999).
Berlin: Springer.

[7] Ardila, F.
2007. Computing the Tutte polynomial of a hyperplane arrangement.
Pacific J. Math.,
230, 1–26.

[8] Arimoto, S.
1962. On a non-binary error-correcting code.
Inform. Process. Japan,
2, 22–23.

[9] Ashikhmin, A. and Barg, A.
1998. Minimal vectors in linear codes.
IEEE Trans. Inform. Theory,
44(5), 2010–2017.

[10] Assmus, E. F., Mattson, H.F. and Turyn, R.
1967. Cyclic codes.
Air Force Cambridge Research Labs, Report AFCRL-67-0365.

[11] Athanasiadis, C. A.
1996. Characteristic polynomials of subspace arrangements and finite fields.
Adv. Math.,
122, 193–233.

[12] Augot, D., Bardet, M. and Faugère, J.-C.
2009. On the decoding of cyclic codes with Newton identities.
J. Symb. Comp.,
44(12), 1608–1625.

[13] Ball, S.
2012. On sets of vectors of a finite vector space in which every subset of basis size is a basis.
J. Eur. Math. Soc. (JEMS),
14(3), 733–748.

[14] Bansal, N., Pendavingh, R. A. and Pol, J. G. van der. 2015. On the number of matroids.
Combinatorica,
35(3), 253–277.

[15] Bard, G. V.
2009. Algebraic cryptanalysis.
Dordrecht: Springer.

[16] Barg, A.
1993. At the dawn of the theory of codes.
Math. Intell.,
15, 2–26.

[17] Barg, A.
1997. The matroid of supports of a linear code.
Appl. Algebra Eng. Comm. Comput.,
8, 165–172.

[18] Barg, A.
1998. Complexity issues in coding theory. Pages 649–756 of: Handbook of coding theory, vol. 1. Elsevier.

[19] Bassa, A., Beelen, P., Garcia, A. and Stichtenoth, H.
2015. Towers of function fields over non-prime finite fields.
Mosc. Math. J.,
15(1), 1–29, 181.

[20] Bassalygo, L. A.
1965. New upper bounds for error-correcting codes.
Probl. Peredaci Inform.,
1(vyp. 4), 41–44.

[21] Becker, A., Joux, A., May, A. and Meurer, A.
2012. Decoding random binary linear codes in 2n/20: how 1+1 = 0 improves information set decoding. Pages 520–536 of: Advances in Cryptology –EUROCRYPT 2012. Lecture Notes in Computer Science, vol. 7237
Heidelberg: Springer.

[22] Beelen, P. and Hoholdt, T.
2008a. The decoding of algebraic geometry codes. Pages 49–98 of: Advances in algebraic geometry codes. Series on Coding Theory and Cryptology, vol. 5
Hackensack, NJ: World Scientific Publishing.

[23] Beelen, P. and Hoholdt, T.
2008b. List decoding using syndromes. Pages 315–331 of: Algebraic geometry and its applications. Series on Number Theory and its Applications, vol. 5
Hackensack, NJ: World Scientific Publishing.

[24] Berlekamp, E. R.
1973. Goppa codes. IEEE Trans. Inform. Theory, IT-19, 590–592.

[25] Berlekamp, E. R.
1974. Key papers in the development of coding theory.
New York: IEEE Press.

[26] Berlekamp, E. R.
1984. Algebraic coding theory.
Laguna Hills, CA: Aegon Park Press.

[27] Berlekamp, E. R., McEliece, R. J. and van Tilborg, H. C. A.
1978. On the inherent intractability of certain coding problems.
IEEE Trans. Inform. Theory,
24, 384–386.

[28] Bernstein, D. J., Lange, T. and Peters, C.
2008. Attacking and defending the McEliece cryptosystem. Pages 31–46 of: Post-Quantum Cryptography: Second International Workshop, PQCrypto 2008, proceedings. Lecture Notes in Computer Science, vol. 5299
Berlin: Springer.

[29] Bernstein, D. J, Buchmann, J. and Dahmen, E.
2009. Post-quantum cryptography.
Berlin: Springer.

[30] Bernstein, D. J., Lange, T. and Peters, C.
2011. Smaller decoding exponents: ball-collision decoding. Pages 743–760 of: Advances in Cryptology –CRYPTO 2011. Lecture Notes in Computer Science, vol. 6841. Springer, Heidelberg.

[31] Bierbrauer, J., Johansson, T., Kabatianskii, G. and Smeets, B.
1994. On families of hash functions via geometric codes and concatenation. Pages 331–342 of: Advances in Cryptology –CRYPTO 93. Lecture Notes in Computer Science, vol. 773
Berlin: Springer.

[32] Biggs, N.
1993. Algebraic graph theory.
Cambridge University Press.

[33] Biham, E. and Shamir, A.
1990. Differential cryptanalysis of DES-like cryptosystems. Pages 2–21 of: Advances in cryptology –CRYPTO 90. Lecture Notes in Computer Science, vol. 537
Berlin: Springer.

[34] Birkhoff, G.
1930. On the number of ways of coloring a map.
Proc. Edinburgh Math. Soc.,
2, 83–91.

[35] Birkhoff, G.
1935. Abstract linear dependence and lattices.
Amer. J. Math.,
56, 800–804.

[36] Björner, A. and Ekedahl, T.
1997. Subarrangments over finite fields: Chomological and enumerative aspects.
Adv. Math.,
129, 159–187.

[37] Blackburn, J. E., Crapo, H. and Higgs, D. A.
1973. A catalogue of combinatorial geometries.
Math. Comput.,
27, 155–166.

[38] Blahut, R. E.
1983. Theory and practice of error control codes.
Reading: Addison-Wesley.

[39] Blahut, R. E.
2003. Algebraic codes for data transmission.
Cambridge University Press.

[40] Blahut, R. E.
2008. Algebraic codes on lines, planes, and curves: an engineering approach.
Cambridge University Press.

[41] Blake, I. F.
1973. Algebraic coding theory: History and development.
Stroudsburg: Dowden, Hutchinson and Ross.

[42] Blakely, G. R.
1979. Safeguarding cryptographic keys. Pages 313–317 of: Proceedings of 1979 National Computer Conference.

[43] Blass, A., and Sagan, B.E. 1997. Möbius functions of lattices.
Adv. Math.,
129, 94–123.

[44] Blum, L., Shub, M. and Smale, S.
1989. On a theory of computation and complexity over the real numbers: NP-completeness, recursive functions and universal machines.
Bull. Amer. Math. Soc. (N.S.),
21(1), 1–46.

[45] Boer, M. A. de. 1996. Almost MDS Codes.
Des. Codes Cryptography,
9(2), 143–155.

[46] Boer, M. A. de and Pellikaan, R.
1999. Gröbner bases for codes. Chap. 10, pages 237–259 of: Some tapas of computer algebra.
Berlin: Springer- Verlag.

[47] Bogdanov, A., Knudsen, L. R., Leander, G., Paar, C., Poschmann, A., Robshaw, M. J., Seurin, Y. and Vikkelsoe, C.
2007. PRESENT: an ultra-lightweight block cipher. Pages 450–466 of: Cryptographic Hardware and Embedded Systems –CHES 2007, 9th International Workshop, proceedings. Lecture Notes in Computer Science, no. 4727. Springer.

[48] Bogdanov, A., Khovratovich, D. and Rechberger, C.
2011. Biclique cryptanalysis of the full AES. Pages 344–371 of: Advances in Cryptology –ASIACRYPT 2011 –17th International Conference on the Theory and Application of Cryptology and Information Security, proceedings. 7073.
Berlin: Springer.

[49] Boppana, R. B. and Sipser, M.
1990. The complexity of finite functions. Pages 757–804 of: Handbook of theoretical computer science, vol.
Amsterdam: Elsevier.

[50] Borges-Quintana, M., Borges-Trenard, M. A., Fitzpatrick, P. and Martínez-Moro, E. 2008. Gröbner bases and combinatorics for binary codes.
Appl. Algebra Eng. Comm. Comput.,
19(5), 393–411.

[51] Bose, R. C. and Bush, K. A.
1952. Orthogonal arrays of strength two and three.
Ann. Math. Statistics,
23, 508–524.

[52] Bose, R. C., and Ray-Chaudhuri, D. K. 1960. On a class of error correcting binary group codes.
Inform. Control,
3, 68–79.

[53] Brickenstein, M. and Bulygin, S.
2008. Attacking AES via solving systems in the key variables only. Pages 118–123 of: Proceedings of the First International Conference on Symbolic Computation and Cryptography, Beijing, China.

[54] Britz, T.
2002. MacWilliams identities and matroid polynomials.
The Electronic J. Combin.,
9, R19.

[55] Britz, T.
2007. Higher support matroids.
Discrete Math.,
307, 2300–2308.

[56] Britz, T. and Rutherford, C. G.
2005. Covering radii are not matroid invariants.
Discrete Math.
296, 117–120.

[57] Britz, T. and Shiromoto, K.
2008. A MacWilliams type identity for matroids.
Discrete Math.,
308, 4551–4559.

[58] Brouwer, A. E.
1998. Bounds on the size of linear codes. Pages 295–461 of: Handbook of coding theory, vol. 1. Elsevier.

[59] Bruen, A. A., Thas, J. A. and Blokhuis, A.
1988. On M.D.S.
codes, arcs in PG(n, q) with q even, and a solution of three fundamental problems of B. Segre. Invent. Math.,
92(3), 441–459.

[60] Brylawski, T.
1972. A decomposition for combinatorial geometries.
Trans. Amer. Math. Soc.,
171, 235–282.

[61] Brylawski, T. and Oxley, J.
1979. Intersection theory for embeddings of matroids into uniform geometries.
Stud. Appl. Math.,
61, 211–244.

[62] Brylawski, T. and Oxley, J.
1980. Several identities for the characteristic polynomial of a combinatorial geometry.
Discrete Math.,
31(2), 161–170.

[63] Brylawski, T. and Oxley, J.
1992. The Tutte polynomial and its applications. Pages 173–226 of: Matroid applications.
Cambridge University Press.

[64] Buchberger, B.
1965. Ein Algorithmus zum Auffinden der Basiselemente des Restklassenrings nach einem nulldimensionalen Polynomideal. Ph.D. thesis, Universität Innsbruck.

[65] Buchmann, J.
2004. Introduction to cryptography.
Berlin: Springer.

[66] Buchmann, J., Pyshkin, A. and Weinmann, R.-P.
2006. A zerodimensional Groebner basis for AES-128. Pages 78–88 of: Fast Software Encryption, 13th International Workshop, FSE 2006, revised selected papers. Lecture Notes in Computer Science, vol. 4047
Berlin: Springer.

[67] Buhler, J. P., Lenstra, H. W. Jr., and Pomerance, C.
1993. Factoring integers with the number field sieve. Pages 50–94 of: The development of the number field sieve. Lecture Notes in Computer Science, vol. 1554
Berlin: Springer.

[68] Bulygin, S.
2009a. Computer algebra in coding theory and cryptanalysis: Polynomial system solving for decoding linear codes and algebraic cryptanalysis.
Saarbrücken, Deutschland: Südwestdeutscher Verlag für Hochschulschriften.

[69] Bulygin, S.
2009b. Polynomial system solving for decoding linear codes and algebraic cryptanysis. Ph.D. thesis, Universität Kaiserslautern.

[70] Bulygin, S. and Pellikaan, R.
2009. Bounded distance decoding of linear error-correcting codes with Gröbner bases.
J. Symbolic Comp.,
44, 1626–1643.

[71] Bulygin, S. and Pellikaan, R.
2010. Decoding and finding the minimum distance with Gröbner bases: history and new insights. Pages 585–622 of: Selected topics in information and coding theory. Series on Coding Theory and Cryptology, vol. 7
Hackensack, NJ: World Scientific Publishing.

[72] Bürgisser, P., Clausen, M. and Shokrollahi, M. A.
1997. Algebraic complexity theory. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 315
Berlin: Springer-Verlag. With the collaboration of Thomas Lickteig.

[73] Bush, K. A.
1952. Orthogonal arrays of index unity.
Ann. Math. Statistics,
23, 426–434.

[74] Caboara, M. and Mora, T.
2002. The Chen-Reed-Helleseth-Truong decoding algorithm and the Gianni-Kalkbrenner Gröbner shape theorem.
Appl. Algebra Eng. Comm. Computing,
13(3), 209–232.

[75] Cameron, P. J. and Lint, J. H. van. 1991. Designs, graphs, codes and their links. London Mathematical Society Student Texts, vol. 22. Cambridge University Press.

[76] Carlet, C.
2010. Boolean functions for cryptography and error correcting codes. Pages 257–397 of: Boolean models and methods in mathematics, computer science, and engineering.
Cambridge University Press.

[77] Carlitz, L.
1932. The arithmetic of polynomials in a Galois field.
Amer. J. Math.,
54, 39–50.

[78] Cartier, P.
1981. Les arrangements d'hyperplans: un chapitre de geometrie combinatoire.
Seminaire N. Bourbaki,
561, 1–22.

[79] Charpin, P.
1998. Open problems on cyclic codes. Pages 963–1063 of: Handbook of coding theory.
Amsterdam: North-Holland.

[80] Chen, H. and Cramer, R.
2006. Algebraic geometric secret sharing schemes and secure multi-party computations over small fields. Pages 521–536 of: Advances in Cryptology –CRYPTO 2006. Lecture Notes in Computer Science, vol. 4117
Berlin: Springer.

[81] Cid, C. and Leurent, G.
2005. An Analysis of the XSL Algorithm. Pages 333–352 of: Advances in Cryptology –ASIACRYPT 2005, 11th International Conference on the Theory and Application of Cryptology and Information Security, proceedings. Lecture Notes in Computer Science, vol. 3788
Berlin: Springer.

[82] Cid, C., Murphy, S. and Robshaw, M. J. B.
2005. Small scale variants of the AES. Pages 145–162 of: Fast Software Encryption: 12th International Workshop, FSE 2005, revised selected papers. Lecture Notes in Computer Science, vol. 3557
Berlin: Springer.

[83] Cid, C., Murphy, S. and Robshaw, M. J. B.
2006. Algebraic aspects of the Advanced Encryption Standard.
Springer-Verlag.

[84] Coffey, J. T. and Goodman, R. M.
1990. Any code of which we cannot think is good.
IEEE Trans. Inform. Theory,
36(6), 1453–1461.

[85] Cohen, H. and Frey, G. et al. 2012. Handbook of elliptic and hyperelliptic curve cryptography. Second edn.
Boca Raton, FL: Chapman & Hall/CRC.

[86] Cook, S. A.
1971. The complexity of theorem proving procedures. Pages 151–158 of: Proceedings of the Third Annual ACM Symposium on Theory of Computing.

[87] Cooper, A. B.
1993. Toward a new method of decoding algebraic codes using Gröbner bases. Pages 1–11 of: Transactions of the Tenth Army Conference on Applied Mathematics and Computing.

[88] Courtois, N. and Pieprzyk, J.
2002. Cryptanalysis of block ciphers with overdefined systems of equations. Pages 267–287 of: Advances in Cryptology –ASIACRYPT 2002, 8th International Conference on the Theory and Application of Cryptology and Information Security, proceedings. Lecture Notes in Computer Science, vol. 2501
Berlin: Springer.

[89] Courtois, N., Klimov, A., Patarin, J. and Shamir, A.
2000. Efficient algorithms for solving overdefined systems of multivariate polynomial equations. Pages 392–407 of: Advances in Cryptology –EUROCRYPT 2000, International Conference on the Theory and Application of Cryptographic Techniques, proceedings. Lecture Notes in Computer Science, vol. 1807
Berlin: Springer.

[90] Cox, D. A., Little, J. and O'Shea, D.
2005. Using algebraic geometry. Second edn. Graduate Texts in Mathematics, vol. 185
New York: Springer.

[91] Cox, D. A., Little, J. and O'Shea, D.
2007. Ideals, varieties, and algorithms. Third edn.
Springer-Verlag.

[92] Crapo, H.
1968. Möbius inversion in lattices.
Arch. Math.,
19, 595–607.

[93] Crapo, H.
1969. The Tutte polynomial.
Aequationes Math.,
3, 211–229.

[94] Crapo, H. and Rota, G.-C.
1970. On the foundations of combinatorial theory: combinatorial geometries.
Cambridge MA: MIT Press.

[95] Daemen, J. and Vincent, R.
2001. The wide trail design strategy. Pages 222–238 of: Cryptography and Coding, 8th IMA International Conference, proceedings. Lecture Notes in Computer Science, vol. 2260
Berlin: Springer.

[96] Daemen, J. and Vincent, R.
2002. The design of Rijndael: AES –The Advanced Encryption Standard.
Berlin: Springer.

[97] Delsarte, P.
1973. An algebraic approach to the association schemes of coding theory. Philips Res. Rep. Suppl.

[98] Delsarte, P.
1975. On subfield subcodes of modified Reed-Solomon codes. IEEE Trans. Inform. Theory, IT-21(5), 575–576.

[99] Diffie, W.
1992. The first ten years of public key cryptography. Pages 135–176 of: Contemporary cryptology: The science of information integrity.
New York: IEEE Press.

[100] Diffie, W. and Hellman, M. E.
1976. New directions in cryptography.
IEEE Trans. Inform. Theory,
22, 644–654.

[101] Dodunekova, R., Dodunekov, S. M. and Klove, T.
1997. Almost-MDS and near-MDS codes for error detection.
IEEE Trans. Inform. Theory,
43(1), 285–290.

[102] Dornstetter, J. L.
1987. On the equivalence of the Berlekamp-Massey and the Euclidean algorithms.
IEEE Trans. Inform. Theory,
33, 428–431.

[103] Dür, A.
1987. The automorphism groups of Reed-Solomon codes.
J. Combin. Theory Ser. A,
44(1), 69–82.

[104] Duursma, I. M.
1993a. Algebraic decoding using special divisors.
IEEE Trans. Inform. Theory,
39, 694–698.

[105] Duursma, I. M.
1993b. Decoding codes from curves and cyclic codes. Ph.D. thesis, Eindhoven University of Technology.

[106] Duursma, I. M.
1993c. Majority coset decoding.
IEEE Trans. Inform. Theory,
39, 1067–1071.

[107] Duursma, I. M.
1999. Weight distributions of geometric Goppa codes.
Trans. Amer. Math. Soc.,
351, 3609–3639.

[108] Duursma, I. M.
2001. From weight enumerators to zeta functions.
Discrete Appl. Math.,
111, 55–73.

[109] Duursma, I. M.
2003. Combinatorics of the two-variable zeta function. Pages 109–136 of: International Conference on Finite Fields and Applications.

[110] Duursma, I. M.
2008. Algebraic geometry codes: general theory. Pages 1–48 of: Advances in algebraic geometry codes.
New Jersey: World Scientific.

[111] Duursma, I. M. and Kötter, R.
1994. Error-locating pairs for cyclic codes.
IEEE Trans. Inform. Theory,
40, 1108–1121.

[112] Duursma, I. M. and Mak, K.-H.
2013. On lower bounds for the Ihara constants A(2) and A(3).
Compos. Math.,
149(7), 1108–1128.

[113] Duursma, I. M., and Pellikaan, R.
2006. A symmetric Roos bound for linear codes.
J. Combin. Theory Ser. A,
113(8), 1677–1688.

[114] Duursma, I. M, Kirov, R. and Park, S.
2011. Distance bounds for algebraic geometric codes.
J. Pure Appl. Algebra,
215(8), 1863–1878.

[115] Ehrhard, D.
1993. Achieving the designed error capacity in decoding algebraic-geometric codes.
IEEE Trans. Inform. Theory,
39(3), 743–751.

[116] El Gamal, T.
1985. A public key cryptosystem and a signature scheme based on discrete logarithms.
IEEE Trans. Inform. Theory,
31, 469–472.

[117] Elias, P.
1957. List decoding for noisy channels. Research Laboratory of Electronics, Massachusetts Institute of Technology,
Cambridge, Mass., Rep. No. 335.

[118] Elias, P.
1991. Error-correcting codes for list decoding.
IEEE Trans. Inform. Theory,
37(1), 5–12.

[119] Euler, L.
1736. Solutio problematis ad geometriam situs pertinentis.
Commentarii Academiae Scientiarum Imperialis Petropolitanae,
8, 128–140.

[120] Farr, J. and Gao, S.
2005. Gröbner bases and generalized Pade approximation.
Math. Comput.,
75, 461–473.

[121] Faugère, J.-C.
1999. A new efficient algorithm for computing Gröbner bases (F4).
J. Pure Appl. Algebra,
139, 61–88.

[122] Faugère, J.-C.
2002. A new efficient algorithm for computing Gröbner bases without reduction to zero (F5). Pages 75–83 of: Proceedings of the 2002 International Symposium on Symbolic and Algebraic Computation.
New York: ACM.

[123] Faugère, J.-C., Otmani, A., Perret, L. and Tillich, J.-P.
2010. Algebraic cryptanalysis of McEliece variants with compact keys. Pages 279–298 of: Advances in Cryptology –EUROCRYPT 2010, 29th Annual International Conference on the Theory and Applications of Cryptographic Techniques, proceedings. Lecture Notes in Computer Science, vol. 6110
Berlin: Springer.

[124] Feng, G.-L. and Rao, T. R. N.
1993a. A class of algebraic geometric codes from curves in high-dimensional projective spaces. Pages 132–146 of: Applied algebra, algebraic algorithms and error-correcting codes (San Juan, PR, 1993). Lecture Notes in Comput. Science, vol. 673
Berlin: Springer.

[125] Feng, G.-L. and Rao, T. R. N.
1994. A simple approach for construction of algebraic-geometric codes from affine plane curves.
IEEE Trans. Inform. Theory,
40(4), 1003–1012.

[126] Feng, G.-L. and Rao, T. R. N.
1995. Improved geometric Goppa codes.
I. Basic theory. IEEE Trans. Inform. Theory,
41(6, part 1), 1678–1693. Special issue on algebraic geometry codes.

[127] Feng, G.-L.,Wei, V. K., Rao, T. R. N. and Tzeng, K. K.
1994. Simplified understanding and efficient decoding of a class of algebraic-geometric codes.
IEEE Trans. Inform. Theory,
40(4), 981–1002.

[128] Feng, G. L. and Rao, T. R. N.
1993b. Decoding algebraic-geometric codes up to the designed minimum distance.
IEEE Trans. Inform. Theory,
39(1), 37–45.

[129] Fitzgerald, J.
1996. On algebraic decoding of algebraic-geometric and cyclic codes. Ph.D. thesis, Linköping University of Technology.

[130] Fitzgerald, J. and Lax, R. F.
1998. Decoding affine variety codes using Gröbner bases.
Design. Code. Cryptogr.,
13, 147–158.

[131] Forney, G. D. Jr.
1965. On decoding BCH codes. IEEE Trans. Inform. Theory, IT-11, 549–557.

[132] Forney, G. D. Jr.
1966a. Concatenated codes.
Cambridge, MA: The MIT Press. MIT Research Monograph, No. 37.

[133] Forney, G. D. Jr.
1966b. Generalized minimum distance decoding. IEEE Trans. Inform. Theory, IT-12, 125–131.

[134] Fulton, W.
1989. Algebraic curves. Advanced Book Classics. An introduction to algebraic geometry, Notes written with the collaboration of Richard Weiss, Reprint of 1969 original.
Redwood City, CA: Addison-Wesley.

[135] García, A. and Stichtenoth, H.
1995a. Algebraic function fields over finite fields with many rational places.
IEEE Trans. Inform. Theory,
41(6, part 1), 1548–1563. Special issue on algebraic geometry codes.

[136] García, A. and Stichtenoth, H.
1995b. A tower of Artin-Schreier extensions of function fields attaining the Drinfeld-Vladut， bound.
Invent. Math.,
121(1), 211–222.

[137] García, A. and Stichtenoth, H.
1996. On the asymptotic behaviour of some towers of function fields over finite fields.
J. Number Theory,
61(2), 248–273.

[138] Geelen, J., Gerards, B. and Whittle, G.
2013. The highly connected matroids in minor-closed classes. http://arxiv.org/abs/1312.5012.

[139] Geil, O. and Pellikaan, R.
2002. On the structure of order domains.
Finite Fields Appl.,
8(3), 369–396.

[140] Geil, O., Matsumoto, R. and Ruano, D.
2013. Feng-Rao decoding of primary codes.
Finite Fields Appl.,
23, 35–52.

[141] Gentry, C.
2009. Fully homomorphic encryption using ideal lattices. Pages 169–178 of: Proceedings of the 41st Annual ACM Symposium on Theory of Computing, STOC 2009.

[142] Gilbert, E. N.
1952. A comparison of signalling alphabets.
Bell Syst. Techn. J.,
31, 504–522.

[143] Gilbert, E. N., MacWilliams, F. J., and Sloan, N. J. A.
1974. Codes, which detect deception.
Bell Syst. Tech. J.,
33(3), 405–424.

[144] Golay, M.
1962. Notes on digital coding.
Proc. IEEE,
37, 637.

[145] Goppa, V. D.
1970. A new class of linear correcting codes.
Probl. Peredaci Inform.,
6(3), 24–30.

[146] Goppa, V. D.
1977. Codes associated with divisors.
Probl. Inform. Transmission,
13, 22–26.

[147] Goppa, V. D.
1981. Codes on algebraic curves.
Soviet Math. Dokl.,
24, 170–172.

[148] Goppa, V. D.
1983. Algebraico-geometric codes.
Math. USSR Izvestija,
21, 75–91.

[149] Goppa, V. D.
1984. Codes and information.
Russian Math. Surveys,
39, 87–141.

[150] Goppa, V. D.
1989. Geometry and codes, mathematics and its applications.
Dordrecht: Soviet series 24, Kluwer Academic Publishing.

[151] Gorenstein, D. and Zierler, N.
1961. A class of error-correcting codes in pm symbols.
J. Soc. Indust. Appl. Math.,
9, 207–214.

[152] Granville, A.
2005. It is easy to determine whether a given integer is prime.
Bull. Amer. Math. Soc. (N.S.),
42(1), 3–38.

[153] Greene, C.
1976. Weight enumeration and the geometry of linear codes.
Stud. Appl. Math.,
55, 119–128.

[154] Greene, C. and Zaslavsky, T.
1983. On the interpretation of Whitney numbers through arrangements of hyperplanes, zonotopes, non-Radon partitions and orientations of graphs.
Trans. Amer. Math. Soc.,
280, 97–126.

[155] Greuel, G.-M. and Pfister, G.
2008. A singular introduction to commutative algebra. Second edn. Springer.

[156] Griesmer, J. H.
1960. A bound for error-correcting codes.
IBM J. Res. Develop.,
4, 532–542.

[157] Guruswami, V.
2001. List decoding of error-correcting codes.
Pro- Quest LLC, Ann Arbor, MI. Thesis (Ph.D.)–Massachusetts Institute of Technology.

[158] Guruswami, V. and Sudan, M.
1999. Improved decoding of Reed- Solomon and algebraic-geometry codes.
IEEE Trans. Inform. Theory,
45(6), 1757–1767.

[159] Guruswami, V. and Vardy, A.
2005. Maximum-likelihood decoding of Reed-Solomon codes is NP-hard.
IEEE Trans. Inform. Theory,
51, 2249–2256.

[160] Hämäläinen, H., Honkala, I., Litsyn, S. and Ostergard, P. R. J.
1995. Football pools –a game for mathematicians.
Amer. Math. Monthly,
102, 579–588.

[161] Hamming, R. W.
1950. Error detecting and error correcting codes.
Bell Syst. Tech. J.,
29, 147–160.

[162] Hamming, R. W.
1980. Coding and information theory.
New Jersey: Prentice-Hall.

[163] Hansen, J. P.
1987. Codes on the Klein quartic, ideals, and decoding.
IEEE Trans. Inform. Theory,
33(6), 923–925.

[164] Hartmann, C. R. P. and Tzeng, K. K.
1972. Generalizations of the BCH bound.
Inform. Contr.,
20, 489–498.

[165] Heijnen, P. and Pellikaan, R.
1998. Generalized Hamming weights of q-ary Reed-Muller codes.
IEEE Trans. Inform. Theory,
44(1), 181–196.

[166] Helgert, H. J.
1972. Srivastava codes. IEEE Trans. Inform. Theory, IT-18, 292–297.

[167] Helgert, H.J.
1974. Alternant codes.
Inform. Contr.,
26(4), 369–380.

[168] Helleseth, T., Klove, T. and Mykkeltveit, J.
1977. The weight distribution of irreducible cyclic codes with block lengths n1((ql − 1)/N).
Discrete Math.,
18, 179–211.

[169] Henocq, T. and Rotillon, D.
1996. The theta divisor of a Jacobian variety and the decoding of geometric Goppa codes.
J. Pure Appl. Algebra,
112(1), 13–28.

[170] Hermelina, M. and Nyberg, K.
2000. Correlation properties of the Bluetooth combiner generator. Pages 17–29 of: Information Security and Cryptology, ICISC 1999, Proceedings. Lecture Notes in Computer Science, vol. 1787
Berlin: Springer.

[171] Heytmann, A. E. and Jensen, J. M.
2000. On the equivalence of the Berlekamp-Massey and the Euclidean algorithm for decoding.
IEEE Trans. Inform. Theory,
46, 2614–2624.

[172] Hirschfeld, J. W. P. and Storme, L.
1998. The packing problem in statistics, coding theory and finite projective spaces.
J. Statist. Plann. Inference,
72(1-2), 355–380. R. C. Bose Memorial Conference (Fort Collins, CO, 1995).

[173] Hirschfeld, J. W. P. and Thas, J. A.
2016. General Galois geometries. Springer Monographs in Mathematics.
London: Springer.

[174] Hirschfeld, J. W. P., Korchmaros, G. and Torres, F.
2008. Algebraic curves over a finite field. Princeton Series in Applied Mathematics.
Princeton University Press.

[175] Hocquenghem, A.
1959. Codes correcteurs d'erreurs.
Chiffres,
2, 147–156.

[176] Hoholdt, T. and Pellikaan, R.
1995. On decoding algebraic-geometric codes.
IEEE Trans. Inform. Theory,
41, 1589–1614.

[177] Hoholdt, T., Lint, J. H. van and Pellikaan, R.
1998. Algebraic geometry codes. Pages 871–961 of: Handbook of coding theory, vol. 1
Amsterdam: North-Holland.

[178] Huffman, W. C.
1998. Codes and groups. Pages 1345–1440 of: Handbook of coding theory.
Amsterdam: North-Holland.

[179] Huffman, W. C. and Pless, V.S. 1998. Handbook of coding theory.
New York: Elsevier.

[180] Huffman, W. C. and Pless, V. S.
2003. Fundamentals of error-correcting codes.
Cambridge University Press.

[181] Ihara, Y.
1981. Some remarks on the number of rational points of algebraic curves over finite fields.
J. Fac. Sci. Univ. Tokyo Sect. IA Math.,
28(3), 721–724.

[182] Johnson, S. M.
1962. A new upper bound for error-correcting codes.
IRE Trans. Inform. Theory,
8, 203–207.

[183] Joyner, D., Ksir, A. and Traves, W.
2007. Automorphism groups of generalized Reed-Solomon codes. Pages 114–125 of: Advances in coding theory and cryptography. Series on Coding Theory and Cryptology, vol. 3
Hackensack, NJ: World Scientific Publishing.

[184] Jurrius, R. P. M. J.
2012. Codes, arrangements, matroids, and their polynomial links. Ph.D. thesis, Technical University Eindhoven.

[185] Jurrius, R. P. M. J.
2008. Classifying polynomials of linear codes. M.Sc. thesis, Leiden University.

[186] Jurrius, R. P. M. J. and Pellikaan, R.
2011. Codes, arrangements and matroids. Pages 219–325 of: Algebraic geometry modelling in information theory, Series on Coding Theory and Cryptology, vol. 8
Hackensack, NJ: World Scientific Publishing.

[187] Justesen, J.
1976. On the complexity of decoding Reed-Solomon codes.
IEEE Trans. Inform. Theory,
22, 237–238.

[188] Justesen, J. and Hoholdt, T.
2004. A course in error-correcting codes.
Zürich: EMS Textbooks in Math.

[189] Justesen, J., Larsen, K. J., Jensen, H. E., Havemose, A. and Hoholdt, T.
1989. Construction and decoding of a class of algebraic geometry codes.
IEEE Trans. Inform. Theory,
35(4), 811–821.

[190] Karnin, E. D., Greene, J. W. and Hellman, M.E.
1983. On secret sharing systems.
IEEE Trans. Inform. Theory,
29(1), 35–31.

[191] Kasami, T., Lin, S. and Peterson, W. W.
1968. New generalizations of the Reed-Muller codes. I. Primitive codes. IEEE Trans. Inform. Theory, IT-14, 189–199.

[192] Kashyap, N.
2008. A decomposition theory for binary linear codes.
IEEE Trans. Inform. Theory,
54(7), 3035–3038.

[193] Katsman, G. L., Tsfasman, M. A. and Vlădut，, S. G.
1984. Modular curves and codes with a polynomial construction.
IEEE Trans. Inform. Theory,
30(2, part 2), 353–355.

[194] Katsman, G. L. and Tsfasman, M. A.
1987. Spectra of algebraicgeometric codes.
Probl. Peredachi Inform.,
23, 19–34.

[195] Katsman, G.L. and Tsfasman, M.A.
1989. A remark on algebraic geometric codes. Pages 197–199 of: Representation theory, group rings, and coding theory. Contemporary Mathematics, vol. 93
Providence, RI: American Mathematical Society.

[196] Katz, J.
2010. Digital signatures.
Springer.

[197] Kirfel, C. and Pellikaan, R.
1995. The minimum distance of codes in an array coming from telescopic semigroups.
IEEE Trans. Inform. Theory,
41(6, part 1), 1720–1732. Special issue on algebraic geometry codes.

[198] Klein, F.
1878. Ueber die Transformation siebenter Ordnung der elliptischen Functionen.
Math. Ann.,
14(3), 428–471.

[199] Kleinjung, T., Aoki, K., Franke, J., Lenstra, A. K., Thome, E., Bos, J. W., Gaudry, P., Kruppa, A., Montgomery, P. L., Osvik, D. A., Riele, H. te, Timofeev, A. and Zimmermann, P.
2010. Factorization of a 768-bit RSA Modulus. Pages 333–350 of: Advances in Cryptology –CRYPTO 2010, 30th Annual Cryptology Conference, proceedings. Lecture Notes in Computer Science, no. 6223.
Berlin: Springer.

[200] Klove, T.
1978. The weight distribution of linear codes over GF(ql) having generator matrix over GF(q).
Discrete Math.,
23, 159–168.

[201] Klove, T.
1992. Support weight distribution of linear codes.
Discrete Math.,
106/107, 311–316.

[202] Knudsen, L. R. and Robshaw, M.
2011. The block cipher companion. Information security and cryptography.
Heidelberg, London: Springer.

[203] Kolluru, M. S., Feng, G.-L. and Rao, T. R. N.
2000. Construction of improved geometric Goppa codes from Klein curves and Klein-like curves.
Appl. Algebra Engrg. Comm. Comput.,
10(6), 433–464.

[204] Kötter, R.
1992. A unified description of an error locating procedure for linear codes. Pages 113–117 of: Proceedings of Algebraic and Combinatorial Coding Theory.

[205] Kung, J. P. S.
1986. A source book in matroid theory.
Boston: Birkhäuser.

[206] Lachaud, G.
1986. Les codes geometriques de Goppa. Asterisque, 189–207. Seminar Bourbaki, Vol. 1984/85.

[207] Leonard, D. A.
2001. Finding the defining functions for one-point algebraic-geometry codes.
IEEE Trans. Inform. Theory,
47(6), 2566–2573.

[208] Levin, L. A.
1973. Universal search problems.
Probl. Peredachi Inform.,
9, 115–116.

[209] Lidl, R. and Niederreiter, H.
1994. Introduction to finite fields and their applications.
Cambridge University Press.

[210] Lin, S. and Costello, D. J.
1983. Error control coding: fundamentals and applications.
New Jersey: Prentice-Hall.

[211] Lint, J. H. van.
1975. A survey on perfect codes.
Rocky Mountain J. Math.,
5, 215–228.

[212] Lint, J. H. van.
1990. Algebraic geometric codes. Pages 137–162 of: Coding theory and design theory, Part I. IMA Volume in Mathematics and its Applications, vol. 20
New York: Springer.

[213] Lint, J. H. van.
1999. Introduction to coding theory. Graduate Texts in Mathematics, vol. 86. 3rd ed. New York: Springer-Verlag.

[214] Lint, J. H. van and Geer, G. van der. 1988. Introduction to coding theory and algebraic geometry. DMV Seminar, vol. 12
Basel: Birkhäuser Verlag.

[215] Lint, J. H. van and Springer, T. A.
1987. Generalized Reed-Solomon codes from algebraic geometry.
IEEE Trans. Inform. Theory,
33(3), 305–309.

[216] Lint, J. H. van and Wilson, R. M.
1986. On the minimum distance of cyclic codes.
IEEE Trans. Inform. Theory,
32(1), 23–40.

[217] Lint, J. H. van and Wilson, R. M.
1992. A course in combinatorics.
Cambridge University Press.

[218] Loeliger, H.-A.
1994. On the basic averaging arguments for linear codes. Pages 251–261 of: Communications and cryptography: Two sides of one tapestry.
Kluwer.

[219] Loeliger, H.-A.
1997. Averaging bounds for lattices and linear codes.
IEEE Trans. Inform. Theory,
43(6), 1767–1773.

[220] Lopez, B.
1996. Plane models of Drinfeld modular curves. Ph.D. thesis, Universidad Complutense, Madrid.

[221] Lopez, B.
1999. A special integral basis for a plane model of the Drinfeld modular curve X1(n) mod T.
Manuscripta Math.,
99(1), 55–72.

[222] MacKay, D.
2003. Information theory, inference and learning algorithms.
Cambridge University Press.

[223] MacWilliams, F. J.
1963. A theorem on the distribution of weights in a systematic code.
Bell Syst. Tech. J.,
42, 79–94.

[224] MacWilliams, F. J.
1968. A historical survey. Pages 3–13 of: Error correcting codes.
New York: Wiley.

[225] MacWilliams, F. J. and Sloane, N. J. A.
1977. The theory of errorcorrecting codes.
Amsterdam: North-Holland Mathematical Library.

[226] Manin, Yu.
1981. What is the maximum number of points on a curve over F2? J.
Fac. Sci. Univ. Tokyo Sect. IA Math.,
28(3), 715–720.

[227] Marcolla, C., Orsini, E. and Sala, M.
2012. Improved decoding of affinevariety codes.
J. Pure Appl. Algebra,
216(7), 1533–1565.

[228] Marquez-Corbella, I. and Pellikaan, R.
2016. A characterization of MDS codes that have an error correcting pair.
Finite Fields Appl.,
40, 224–245.

[229] Martínez-Moro, E., Munuera, C. and Ruano, D.
2008. Advances in algebraic geometry codes. Series on Coding Theory and Cryptology, vol. 5
Hackensack, NJ: World Scientific Publishing.

[230] Massey, J. L.
1969. Shift-register synthesis and BCH decoding.
IEEE Trans. Inform. Theory,
15, 122–127.

[231] Massey, J. L.
1993. Minimal codewords and secret sharing. Pages 276–279 of: Sixth Joint Swedish-Russian Workshop on Information theory, proceedings.

[232] Massey, J. L.
1995. On some applications of coding theory. Pages 33–47 of: Cryptography, Codes and Ciphers: Cryptography and Coding IV.

[233] Massey, J. L. and Schaub, T.
Linear complexity in coding theory. Pages 19–32 of: Coding theory and applications (Cachan, 1986). Lecture Notes in Computer Science, vol. 311
Berlin: Springer.

[234] Matsui, M.
1994. Linear cryptanalysis method for DES cipher. Pages 386–397 of: Advances in Cryptology –EUROCRYPT 1993, proceedings. Lecture Notes in Computer Science, vol. 765
Berlin: Springer.

[235] Mattson, H. F. and Solomon, G.
1961. A new treatment of Bose- Chaudhuri codes.
J. Soc. Indust. Appl. Math.,
9, 654–669.

[236] McCurley, K. S.
1988. A key distribution system equivalent to factoring.
J. Cryptology,
1, 95–105.

[237] McEliece, R. J.
1977. The theory of information and coding.
Reading: Addison-Wesley.

[238] McEliece, R. J.
1978. A public-key cryptosystem based on algebraic coding theory.
DSN Progress Report,
42–44, 114–116.

[239] McEliece, R. J. and Sawate, D. V.
1981. On sharing secrets and Reed- Solomon codes.
Comm. ACM,
24, 583–584.

[240] McEliece, R. J. and Swanson, L.
1994. Reed-Solomon codes and the exploration of the solar system. Pages 25–40 of: Reed-Solomon codes and their applications.
New York: IEEE Press.

[241] McEliece, R. J.
Rodemich, E. R., Rumsey, H. Jr. and Welch, L. R.
1977. New upper bounds on the rate of a code via the Delsarte-MacWilliams inequalities. IEEE Trans. Inform. Theory, IT-23(2), 157–166.

[242] Menezes, A., Oorschot, P. van and Vanstone, S.
1996. Handbook of applied cryptography.
Boca Raton, FL: CRC Press.

[243] Miura, S.
1992. Algebraic geometric codes on certain plane curves.
IEICE Trans.,
75A(11), 1739–1745.

[244] Miura, S. and Kamiya, N.
1993. Geometric-Goppa codes on some maximal curves and their minimum distance. Proc. IEEE Inform. Theory Workshop, 85–86.

[245] Mohamed, M. S. E., Cabarcas, D., Ding, J., Buchmann, J. A. and Bulygin, S.
2009. MXL3: An efficient algorithm for computing Gröbner bases of zero-dimensional ideals. Pages 87–100 of: Information, Security and Cryptology –ICISC 2009, 12th International Conference.

[246] Mohamed, M. S. E., Bulygin, S., Zohner, M., Heuser, A., Walter, M. and Buchmann, J. A.
2013. Improved algebraic side-channel attack on AES.
J. Cryptogr. Eng.,
3(3), 139–156.

[247] Moreno, C.
1991. Algebraic curves over finite fields. Cambridge Tracts in Mathematics, vol. 97. Cambridge University Press.

[248] Mphako, E. G.
2000. Tutte polynomials of perfect matroid designs.
Comb., Probab. Comput.,
9, 363–367.

[249] Muller, D.E.
1954. Application of Boolean algebra to switching circuit design and to error detection.
IRE Trans. Electron. Comput.,
3, 6–12.

[250] Murphy, S. and Robshaw, M.
2002. Essential algebraic structure within the AES. Pages 1–16 of: Advances in Cryptology –CRYPTO 2002, 22nd Annual International Cryptology Conference, proceedings. Lecture Notes in Computer Science, vol. 2442
Berlin: Springer.

[251] Nechvatal, J.
1992. Public key cryptography. Pages 177–288 of: Contemporary cryptology: the science of information integrity.
New York: IEEE Press.

[252] Nelson, P. and Zwam, S. H. M. van. 2015. On the existence of asymptotically good linear codes in minor-closed classes.
IEEE Trans. Inform. Theory,
61(3), 1153–1158.

[253] Niederreiter, H. and Xing, C.
1998. Towers of global function fields with asymptotically many rational places and an improvement on the Gilbert-Varshamov bound.
Math. Nachr.,
195, 171–186.

[254] Niederreiter, H. and Xing, C.
2001. Rational points on curves over finite fields: theory and applications. London Mathematical Society Lecture Note Series, vol. 285. Cambridge University Press.

[255] NIST. 1977. Federal Information Standards Publication, Data Encryption Standard (DES).

[256] NIST. 2001. Federal Information Standards Publication, Advanced Encryption Standard (AES).

[257] Orlik, P. and Terao, H.
1992. Arrangements of hyperplanes. Grundlehren der Mathematischen Wissenschaften, vol. 300
Berlin: Springer-Verlag.

[258] Orsini, E. and Sala, M.
2005. Correcting errors and erasures via the syndrome variety.
J. Pure Appl. Algebra,
200, 191–226.

[259] Oxley, J. G.
2011. Matroid theory. Second edn. Oxford University Press.

[260] Pellikaan, R.
1988. On decoding linear codes by error correcting pairs.
Preprint Eindhoven University of Technology.

[261] Pellikaan, R.
1989. On a decoding algorithm of codes on maximal curves.
IEEE Trans. Inform. Theory,
35, 1228–1232.

[262] Pellikaan, R.
1992. On decoding by error location and dependent sets of error positions.
Discrete Math.,
106–107, 369–381.

[263] Pellikaan, R.
1996a. On the existence of error-correcting pairs. J. Stat. Plann. Infer., 229–242.

[264] Pellikaan, R.
1996b. The shift bound for cyclic, Reed-Muller and geometric Goppa codes. Pages 155–174 of: Arithmetic, geometry and coding theory (Luminy, 1993).
Berlin: de Gruyter.

[265] Pellikaan, R.
2001. On the existence of order functions.
J. Stat. Plan. Infer.,
94, 287–301.

[266] Pellikaan, R. and Wu, X.-W.
2004. List decoding of q-ary Reed-Muller codes.
IEEE Trans. Inform. Theory,
50(4), 679–682.

[267] Pellikaan, R., Shen, B.-Z. and Wee, G. J. M. van.
1991. Which linear codes are algebraic-geometric ? IEEE Trans.
Inform. Theory,
37, 583–602.

[268] Pellikaan, R., Perret, M. and Vlădut，, S. G.
1996. Arithmetic, geometry and coding theory (Luminy, 1993).
Berlin: de Gruyter.

[269] Pellikaan, R., Stichtenoth, H. and Torres, F.
1998. Weierstrass semigroups in an asymptotically good tower of function fields.
Finite Fields Appl.,
4(4), 381–392.

[270] Peters, C.
2011. Curves, codes, and cryptography. Ph.D. thesis, Eindhoven University of Technology.

[271] Peterson, W. W.
1960. Encoding and error-correction procedures for the Bose-Chaudhuri codes. Trans. IRE, IT-6, 459–470.

[272] Peterson, W. W. and Weldon, E. J.
1972. Error-correcting codes.
Cambridge, MA: MIT Press.

[273] Pieprzyk, J. and Zhang, X. M.
2003. Ideal threshold schemes from MDS codes. Pages 269–279 of: Information Security and Cryptology, ICISC 2002, Proceedings. Lecture Notes in Computer Science, vol. 2587
Berlin: Springer.

[274] Pless, V.
1968. On the uniqueness of the Golay codes.
J. Comb. Theory,
5, 215–228.

[275] Pless, V.
1982. Introduction to the theory of error-correcting codes.
New York: John Wiley & Sons.

[276] Pless, V.
1998. Coding constructions. Pages 141–176 of: Handbook of coding theory, vol. 1
Amsterdam: North-Holland.

[277] Plotkin, M.
1960. Binary codes with specified minimum distance. IRE Trans., IT-6, 445–450.

[278] Pomerance, C.
1990. Factoring. Pages 27–47 of: Cryptology and computational number theory, vol. 42
Rhode Island: American Mathematical Society.

[279] Prange, E.
1962. The use of information sets in decoding cyclic codes. IRE Trans., IT-8, 5–9.

[280] Rabin, M.
1979. Digitalized signatures and public-key functions as intractable as factorization. Tech. rept. MIT/LCS/TR-212.
Massachusetts Institute of Technology.

[281] Raddum, H.
2007. MRHS Equation Systems. Pages 232–245 of: Selected Areas in Cryptography, 14th International Workshop, SAC 2007, revised selected papers. Lecture Notes in Computer Science, vol. 4876
Berlin: Springer.

[282] Rao, R. C.
1947. Factorial experiments derivable from combinatorial arrangements of arrays.
Suppl. J. Roy. Statist. Soc.,
9, 128–139.

[283] Reed, I. S. and Solomon, G.
1960. Polynomial codes over certain finite fields.
J. Soc. Indust. Appl. Math.,
8, 300–304.

[284] Reid, M.
1988. Undergraduate algebraic geometry. LondonMathematical Society Student Texts, vol. 12. Cambridge University Press.

[285] Retter, C. T.
1976. Bounds on Goppa codes.
IEEE Trans. Inform. Theory,
22(4), 476–482.

[286] Rivest, R. L., Shamir, A. and Adleman, L.M.
1977. A method for obtaining digital signatures and public-key cryptosystems.
Communications of ACM,
21, 120–126.

[287] Roos, C.
1982. A generalization of the BCH bound for cyclic codes, including the Hartmann-Tzeng bound.
J. Combin. Theory Ser. A,
33(2), 229–232.

[288] Roos, C.
1983. A new lower bound for the minimum distance of a cyclic code.
IEEE Trans. Inform. Theory,
29(3), 330–332.

[289] Rota, G.-C.
1964. On the foundations of combinatorial theory I: Theory of Möbius functions.
Zeitschriften für Wahrscheinlichkeitstheorie und Verwandte Gebiete,
2, 340–368.

[290] Roth, R. M. and Ruckenstein, G.
2000. Efficient decoding of Reed- Solomon codes beyond half the minimum distance.
IEEE Trans. Inform. Theory,
46(1), 246–257.

[291] Roth, R. M. and Seroussi, G.
1985. On generator matrices of MDS codes.
IEEE Trans. Inform. Theory,
31(6), 826–830.

[292] Safavi-Naini, R., Wang, H. and Xing, C.
2001. Linear Authentication Codes: Bounds and Constructions. Pages 127–135 of: Advances in Cryptology –INDOCRYPT 2001, proceedings. Lecture Notes in Computer Science, vol. 2247
Berlin: Springer.

[293] Sarwate, D.
1977. On the complexity of decoding Goppa codes.
IEEE Trans. Inform. Theory,
23, 515–516.

[294] Schoof, R.
1992. Algebraic curves over F2 with many rational points.
J. Number Theory,
41(1), 6–14.

[295] Schouhamer Immink, K. A.
1994. Reed-Solomon codes and the compact disc. Pages 41–59 of: Reed-Solomon codes and their applications.
New York: IEEE Press.

[296] Serre, J.-P.
1983. Sur le nombre des points rationnels d'une courbe algebrique sur un corps fini.
C. R. Acad. Sci. Paris Ser. I Math.,
296(9), 397–402.

[297] Shamir, A.
1979. How to share a secret.
Comm. ACM,
22, 612–613.

[298] Shannon, A.
1948. A mathematical theory of communication.
Bell Sys. Tech. J.,
27, 379–423 and 623–656.

[299] Shor, P. W.
1997. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer.
SIAM J. Comput.,
26, 1484–1509.

[300] Shoup, V.
1994. Fast construction of irreducible polynomials over finite fields.
J. Symbolic Comput.,
17(5), 371–391.

[301] Shparlinski, I. E.
1993. Finding irreducible and primitive polynomials.
Appl. Algebra Engrg. Comm. Comput.,
4(4), 263–268.

[302] Shum, K. W., Aleshnikov, I., Kumar, P. V., Stichtenoth, H. and Deolaikar, V.
2001. A low-complexity algorithm for the construction of algebraic-geometric codes better than the Gilbert-Varshamov bound.
IEEE Trans. Inform. Theory,
47(6), 2225–2241.

[303] Simonis, J.
1993. The effective length of subcodes.
Appl. Algebra Eng. Comm. Comput.,
5, 371–377.

[304] Singleton, R. C.
1964. Maximum distance q-nary codes. IEEE Trans. Inform. Theory, IT-10, 116–118.

[305] Skorobogatov, A. N.
1991. The parameters of subcodes of algebraicgeometric codes over prime subfields.
Discrete Appl. Math.,
33(1-3), 205–214. Applied algebra, algebraic algorithms, and error-correcting codes (Toulouse, 1989).

[306] Skorobogatov, A. N.
1992. Linear codes, strata of Grassmannians, and the problems of Segre. Pages 210–223 of: Coding theory and algebraic geometry. Lecture Notes in Mathematics, vol. 1518
Berlin: Springer- Verlag.

[307] Slepian, D.
1974. Key papers in the development of information theory.
New York: IEEE Press.

[308] Smid, M. E. and Branstad, D. K.
1992. The Data Encryption Standard: Past and Future. Pages 43–64 of: Contemporary cryptology: the science of information integrity.
New York: IEEE Press.

[309] Stanley, R. P.
1997. Enumerative combinatorics. Vol. 1. Cambridge University Press.

[310] Stanley, R. P.
2007. An introduction to hyperplane arrangements. Pages 389–496 of: Geometric combinatorics. IAS/Park City Mathematical Series, vol. 13
Providence, RI: American Mathematical Society.

[311] Stepanov, S. A.
1999. Codes on algebraic curves.
New York: Kluwer Academic/Plenum Publishers.

[312] Stichtenoth, H.
1988. A note on Hermitian codes over GF(q2).
IEEE Trans. Inform. Theory,
34(5, part 2), 1345–1348. Coding techniques and coding theory.

[313] Stichtenoth, H.
1990. On the dimension of subfield subcodes.
IEEE Trans. Inform. Theory,
36(1), 90–93.

[314] Stichtenoth, H.
1993. Algebraic function fields and codes.
Berlin: Springer.

[315] Stichtenoth, H. and Tsfasman, M. A.
1992. Coding theory and algebraic geometry (Luminy, 1991). Lecture Notes in Mathematics, vol. 1518
Berlin: Springer.

[316] Stinson, D. R.
1990. The combinatorics of authentication and secrecy.
J. Cryptol.,
2, 23–49.

[317] Stinson, D. R.
1992. Combinatorial characterization of authentication codes.
Design. Code. Cryptogr.,
2, 175–187.

[318] Stinson, D. R.
2005. Cryptography, theory and practice. Third edn.
Boca Raton, FL: Chapman & Hall/CRC.

[319] Sudan, M.
1997. Decoding of Reed Solomon codes beyond the errorcorrection bound.
J. Complexity,
13(1), 180–193.

[320] Sugiyama, Y., Kasahara, M., Hirasawa, S. and Namekawa, T.
1975. A method for solving the key equation for decoding Goppa codes.
Information and Control,
27, 87–99.

[321] Thas, J. A.
1992. M.D.S. codes and arcs in projective spaces: a survey
Matematiche (Catania),
47(2), 315–328. Combinatorics 1992.

[322] Tsfasman, M. A., Vlădut，, S. G. and Zink, Th.
1982. Modular curves, Shimura curves, and Goppa codes, better than Varshamov-Gilbert bound.
Math. Nachr.,
109, 21–28.

[323] Tsfasman, M. A. and Vlădut，, S. G.
1991. Algebraic-geometric codes.
Dordrecht: Kluwer Academic Publishers.

[324] Tsfasman, M. A. and Vlădut，, S. G. 1995. Geometric approach to higher weights.
IEEE Trans. Inform. Theory,
41, 1564–1588.

[325] Tutte, W. T.
1947. A ring in graph theory.
Proc. Amer. Math. Soc.,
43, 26–40.

[326] Tutte, W. T.
1948. An algebraic theory of graphs. Ph.D. thesis,
University of Cambridge.

[327] Tutte, W. T.
1954. A contribution to the theory of chromatic polynomials.
Can. J. Math.,
6, 80–91.

[328] Tutte, W.T.
1959. Matroids and graphs.
Trans. Amer. Math. Soc.,
90, 527–552.

[329] Tutte, W.T.
1965. Lectures on matroids.
J. Res. Nat. Bur. Stand., Sect. B,
69, 1–47.

[330] Tutte, W. T.
1966. On the algebraic theory of graph coloring.
J. Comb. Theory,
1, 15–50.

[331] Tutte, W. T.
1967. On dichromatic polynomials.
J. Comb. Theory,
2, 301–320.

[332] Tutte, W. T.
1974. Cochromatic graphs.
J. Comb. Theory,
16, 168–174.

[333] Tutte, W. T.
2004. Graphs-polynomials.
Adv. Appl. Math.,
32, 5–9.

[334] Valiant, L. G.
1979. Completeness classes in algebra. Pages 249–261 of: Conference record of the Eleventh Annual ACM Symposium on Theory of Computing (Atlanta, GA, 1979).
New York: ACM.

[335] Vardy, A.
1997. The intractability of computing the minimum distance of a code.
IEEE Trans. Inform. Theory,
43, 1757–1766.

[336] Vardy, A.
1998. Codes, curves, and signals (Urbana, IL, 1997). Kluwer International Series in Engineering and Computer Science, vol. 485
Boston, MA: Kluwer Academic Publishers.

[337] Varshamov, R. R.
1957. Estimate of the number of signals in error correcting codes.
Dokl. Acad. Nauk SSSR,
117, 739–741.

[338] Vlădut，, S. G. and Drinfeld, V. G.
1983. The number of points of an algebraic curve.
Funktsional. Anal. i Prilozhen.,
17(1), 68–69.

[339] Vlădut，, S. G. and Manin, Yu. I.
1984. Linear codes and modular curves. Pages 209–257 of: Current problems in mathematics, Vol. 25. Moscow: Itogi Nauki i Tekhniki. Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform.

[340] Wegener, I.
1987. The complexity of Boolean functions. Wiley-Teubner Series in Computer Science.
Chichester: John Wiley & Sons; Stuttgart: B. G. Teubner.

[341] Wegener, I.
2005. Complexity theory.
Berlin: Springer-Verlag. Exploring the limits of efficient algorithms, Translated from the German by Randall Pruim.

[342] Wei, V. K.
1991. Generalized Hamming weights for linear codes.
IEEE Trans. Inform. Theory,
37, 1412–1418.

[343] Welsh, D. J. A.
1976. Matroid theory.
London: Academic Press.

[344] White, N.
1986. Theory of matroids.
Cambridge: Encyclopedia of Mathmatics and its Applications, vol. 26, Cambridge University Press.

[345] White, N.
1992. Matroid applications.
Cambridge: Encyclopedia of Mathmatics and its Applications, vol. 40, Cambridge University Press.

[346] Whitney, H.
1932a. The coloring of graphs.
Ann. Math.,
33, 688–718.

[347] Whitney, H.
1932b. A logical expansion in mathematics.
Bull. Amer. Math. Soc.,
38, 572–579.

[348] Whitney, H.
1935. On the abstract properties of linear dependence.
Amer. J. Math.,
57, 509–533.

[349] Whittle, G.
1995. A charactrization of the matroids representable over GF(3) and the rationals.
J. Comb. Theory, Series B,
65, 222–261.

[350] Whittle, G.
1997. On matroids representable over GF(3) and other fields.
Trans. Amer. Math. Soc.,
349, 579–603.

[351] Wicker, S. B.
1998. Deep space applications. Pages 2119–2169 of: Handbook of coding theory, vol. 2
Amsterdam: North-Holland.

[352] Wicker, S. B. and Bhargava, V. K.
1994. Reed-Solomon codes and their applications.
New York: IEEE Press.

[353] Wigderson, A.
2007. P, NP and mathematics –a computational complexity perspective. Pages 665–712 of: International Congress of Mathematicians. Vol. I. Zürich: European Mathematical Society.

[354] Wilson, R. J. and Watkins, J. J.
1990. Graphs; An introductory approach.
New York: J. Wiley & Sons.

[355] Wirtz, M.
1988. On the parameters of Goppa codes.
IEEE Trans. Inform. Theory,
34(5, part 2), 1341–1343. Coding techniques and coding theory.

[356] Wolf, J. K. and Elspas, B.
1963. Error-locating codes –a new concept in error control. IEEE Trans. Inform. Theory, IT-9, 113–117.

[357] Wozencraft, J. M.
1958. List decoding.
Quarterly Progress Report, Research Laboratory of Electronics, MIT,
48, 90–95.

[358] Xing, C. and Chen, H.
2002. Improvements on parameters of one-point AG codes from Hermitian curves.
IEEE Trans. Inform. Theory,
48(2), 535–537.

[359] Yang, K. and Kumar, P. V.
1992. On the true minimum distance of Hermitian codes. Pages 99–107 of: Coding theory and algebraic geometry (Luminy, 1991). Lecture Notes in Mathematics, vol. 1518
Berlin: Springer.

[360] Yao, A. C.-C.
1982. Protocols for Secure Computations. Pages 160–164 of: Proceedings of the 23rd Annual Symposium on Foundations of Computer Science, FOCS 1982.

[361] Yuan, J. and Ding, C.
2006. Secret sharing schemes from three classes of linear codes.
IEEE Trans. Inform. Theory,
52(1), 206–212.

[362] Zaslavsky, T.
1975. Facing up to arrangements: face-count fomulas for partitions of space by hyperplanes. Memoirs of the American Mathematical Society, no. 154. American Mathematical Society.

[363] Zaslavsky, T.
1982. Signed graph colouring.
Discrete Math.,
39, 215–228.

[364] Zhuangzi. 287 BC. Heaven and Earth, chapter 14. http://ctext.org/zhuangzi/heaven-and-earth.