Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-26T02:51:32.240Z Has data issue: false hasContentIssue false

Chapter 8 - Detection of regional blood flow using arterial spin labeling

from Section 1 - Physiological MR techniques

Published online by Cambridge University Press:  05 March 2013

Jonathan H. Gillard
Affiliation:
University of Cambridge
Adam D. Waldman
Affiliation:
Imperial College London
Peter B. Barker
Affiliation:
The Johns Hopkins University School of Medicine
Get access

Summary

Introduction

The motivation to measure regional perfusion is well established in physiology and medicine. Techniques to measure regional blood flow in animal models such as using microspheres [1] and radiolabeled tracers [2] have had a major impact on our understanding of the regulation of microcirculation in normal tissue and changes that occur during a variety of disease processes. A major limitation of these techniques is that, for the most part, they require sacrificing the animal after only one or a few independent measurements of blood flow. Techniques to measure regional blood flow in humans have relied on the wash-in/wash-out kinetics of tracers that can be detected by radiological imaging techniques. Most important have been the use of radiolabeled water detected by positron emission tomography (PET) [3] and regional distribution of inhaled xenon detected by X-ray computed tomography (CT).[4] The results from these techniques show a wide range of problems that perfusion imaging can address, from functional mapping of active brain regions during cognitive task activation to attempts to detect the development of Alzheimer’s disease. These techniques are limited by low spatial resolution compared with MRI and the inability to make numerous serial measurements owing to radiation dose issues. All of these approaches have been inspirational, offering theoretical frameworks and practical motivation to develop MRI techniques to measure regional perfusion. The goal has been to take advantage of the non-invasive nature of MRI and the very high resolution that can be obtained to make maps of tissue blood flow.

Early approaches to measure regional blood flow by MR techniques relied on adapting the well-developed class of techniques that measure tissue-specific wash-in and wash-out of tracers. Tracers such as deuterium oxide [5,6] or fluorinated inhalants [7,8] were first detected using MR spectroscopy (MRS) from specified regions and later images were made that enabled estimates of cerebral blood flow (CBF),[9,10] and blood flow in tumors.[11] A major drawback with the MR techniques that relied on directly detecting tracers was the low spatial resolution that could be obtained compared with normal MRI. A solution to this problem was to follow the tracer kinetics of MRI contrast agents indirectly through their effects on tissue water relaxation.[12,13] After a rapid bolus of gadolinium chelates, the change in contrast in a tissue can be used to calculate regional blood volume and blood flow at the resolution of standard MRI. This approach has become an important technique for assessing hemodynamics during ischemia in heart and brain [14] and is described in detail in Ch. 7.

Type
Chapter
Information
Clinical MR Neuroimaging
Physiological and Functional Techniques
, pp. 94 - 112
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Heyman, MA, Payne, BD, Hoffman, JI.Blood flow measurements with radionuclide-labeled particles. Prog Cardiovasc Dis 1977; 20: 55–79.CrossRefGoogle Scholar
Reivich, M, Jehle, J, Sokoloff, L, Kety, SS.Measurement of regional cerebral blood flow with antipyrine-14C in awake cats. J Appl Physiol 1969; 27: 296–300.CrossRefGoogle ScholarPubMed
Herscovitch, P.Cerebral blood flow and metabolism measured with oxygen-15 radiotracers. J Neuropsychiatr Clin Neurosci 1989; 1: S19–S29.Google ScholarPubMed
Gur, D, Good, WF, Wolfson, SK, Yonas, H, Shabason, L.In vivo mapping of local cerebral blood flow by xenon-enhanced computed tomography. Science 1982; 215: 1267–1268.CrossRefGoogle ScholarPubMed
Kim, SG, Ackerman, JJH.Quantification of regional blood flow by monitoring of exogenous tracer via nuclear magnetic resonance spectroscopy. Magn Reson Med 1990; 14: 266–282.CrossRefGoogle ScholarPubMed
Ackerman, JJH, Ewy, CS, Becker, NN, Shalwitz, RA.Deuterium nuclear magnetic resonance measurements of blood flow and tissue perfusion employing 2H2O as a freely diffusible tracer. Proc Natl Acad Sci USA 1987; 84: 4099–4102.CrossRefGoogle ScholarPubMed
Eleff, SM, Schnall, MD, Ligeti, L, et al. Concurrent measurement of cerebral blood flow, sodium, lactate, and high-energy phosphate metabolism using 19F, 23Na, 1H and 31P nuclear magnetic resonance spectroscopy. Magn Reson Med 1988; 7: 412–424.CrossRefGoogle Scholar
Detre, JA, Eskey, CJ, Koretsky, AP.Measurement of cerebral blood flow in rat brain by 19F-NMR detection of trifluoromethane washout. Magn Reson Med 1990; 15: 45–57. [Erratum in Magn Reson Med 1990; 16: 179.]CrossRefGoogle ScholarPubMed
Detre, JA, Subramanian, VH, Mitchell, MD, et al. Measurement of regional cerebral blood flow in cat brain using intracarotid 2H2O and 2H NMR imaging. Magn Reson Med 1990; 14: 389–395.CrossRefGoogle ScholarPubMed
Pekar, J, Ligeti, L, Ruttner, Z, et al. In vivo measurement of cerebral oxygen consumption and blood flow using 17O magnetic resonance imaging. Magn Reson Med 1991; 21: 313–319.CrossRefGoogle ScholarPubMed
Eskey, CJ, Koretsky, AP, Domach, MM, Jain, RK.2H-Nuclear magnetic resonance imaging of tumor blood flow: spatial and temporal heterogeneity in a tissue-isolated mammary adenocarcinoma. Cancer Res 1992; 52: 6010–6019.Google Scholar
Østergaard, L, Sorensen, AG, Kwong, KK, et al. High resolution measurement of cerebral blood flow using intravascular tracer bolus passages. Part II: experimental comparison and preliminary results. Magn Reson Med 1996; 36: 726–736.CrossRefGoogle ScholarPubMed
Rosen, BR, Belliveau, JW, Chein, D.Perfusion imaging by nuclear magnetic resonance. Magn Reson Q 1989; 5: 263–281.Google ScholarPubMed
Calamante, F, Thomas, DL, Pell, GS, Wiersma, J, Turner, R.Measuring cerebral blood flow using magnetic resonance imaging techniques. J Cereb Blood Flow Metab 1999; 19: 701–735.CrossRefGoogle ScholarPubMed
Miyazaki, M, Lee, VS.Non-enhancing MR angiography. Radiology 2008; 248: 20–43.CrossRefGoogle Scholar
Williams, DS, Detre, JA, Leigh, JS, Koretsky, AP.Magnetic resonance imaging of perfusion using spin inversion of arterial water. Proc Natl Acad Sci USA 1992; 89: 212–216.CrossRefGoogle ScholarPubMed
Detre, JA, Leigh, JS, Williams, DS, Koretsky, AP.Perfusion imaging. Magn Reson Med 1992; 23: 37–45.CrossRefGoogle ScholarPubMed
Edelman, RR, Siewert, B, Darby, DG, et al. Qualitative mapping of cerebral blood flow and functional localization with echo-planar MR imaging and signal targeting with alternating radio frequency. Radiology 1994; 192: 513–520.CrossRefGoogle ScholarPubMed
Roberts, DA, Detre, JA, Bolinger, L, Insko, EK, Leigh, JS. Quantitative magnetic resonance imaging of human brain perfusion at 1.5 T using steady-state inversion of arterial water. Proc Natl Acad Sci USA 1994; 91: 33–37.CrossRefGoogle Scholar
Detre, JA, Zhang, W, Roberts, DA, et al. Tissue specific perfusion imaging using arterial spin labeling. NMR Biomed 1994; 7: 75–82.CrossRefGoogle ScholarPubMed
Barbier, EL, Lamalle, L, Decorps, M.Methodology of brain perfusion imagingJ Magn Reson Imaging 2001; 13: 496–520.CrossRefGoogle ScholarPubMed
Brown, GG, Clark, C, Liu, TT.Measurement of cerebral perfusion with arterial spin labeling: Part 2. Applications. J Intl Neurophyschol Soc 2007; 13: 526–538.Google ScholarPubMed
Golay, X, Hendrikse, J, Lim TC, C.Perfusion imaging using arterial spin labeling. Top Magn Reson Imaging 2004; 15: 10–27.CrossRefGoogle ScholarPubMed
Liu, TT, Brown, GG.Measurement of cerebral perfusion with arterial spin labeling. Part 1. Methods. J Int Neuropsychol Soc 2007; 13: 517–525.CrossRefGoogle ScholarPubMed
Wong, EC, Buxton, RB, Frank, LR.Quantitative perfusion imaging using arterial spin labeling. Neuroimaging Clin N Am 1999; 9: 333–342.Google ScholarPubMed
Silva, AC, Zhang, W, Williams, DS, Koretsky, AP.Estimation of water extraction fractions in rat brain using magnetic resonance measurement of perfusion with arterial spin labeling. Magn Reson Med 1997; 37: 58–68.CrossRefGoogle ScholarPubMed
Dixon, WT, Du, LN, Faul, DD, Gado, MH, Rossnick, S.Projection angiograms of blood labeled by adiabatic fast passage. Magn Reson Med 1986; 3: 454–462.CrossRefGoogle ScholarPubMed
Maccotta, L, Detre, JA, Alsop, DC.The efficiency of adiabatic inversion for perfusion imaging by arterial spin labeling. NMR Biomed 1997; 10: 216–221.3.0.CO;2-U>CrossRefGoogle ScholarPubMed
Gach, HM, Kam, AW, Reid, ED, Talagala, SL.Quantitative analysis of adiabatic fast passage for steady laminar and turbulent flows. Magn Reson Med 2002; 47: 709–719.CrossRefGoogle ScholarPubMed
Utting, JF, Thomas, DL, Gadian, DG, Ordidge, RJ.Velocity-driven adiabatic fast passage for arterial spin labeling: results from a computer model. Magn Reson Med 2003; 49: 398–401.CrossRefGoogle ScholarPubMed
Trampel, R, Jochimsen, TH, Mildner, T, Norris, DG, Moller, HA.Efficiency of flow-driven adiabatic spin inversion under realistic conditions: a computer simulation. Magn Reson Med 2004; 51: 1187–1193.CrossRefGoogle ScholarPubMed
O’Gorman, RL, Summers, PE, Zelaya, FO, et al. In vivo estimation of the flow-driven adiabatic inversion efficiency for continuous arterial spin labeling: a method using phase contrast magnetic resonance angiography. Magn Reson Med 2006; 55: 1291–1297.CrossRefGoogle ScholarPubMed
Pekar, J, Jezzard, P, Roberts, DA, et al. Perfusion imaging with compensation for asymmetric magnetization transfer effects. Magn Reson Med 1996; 35: 70–79.CrossRefGoogle ScholarPubMed
Alsop, DC, Detre, JA.Reduced transit-time sensitivity in noninvasive magnetic resonance imaging of human cerebral blood flow. J Cereb Blood Flow Metab 1996; 16: 1236–1249.CrossRefGoogle ScholarPubMed
Alsop, DC, Detre, JA.Multisection cerebral blood flow MR imaging with continuous arterial spin labeling. Radiology 1998; 208: 410–416.CrossRefGoogle ScholarPubMed
Talagala, SL, Barbier, EL, Williams, DS, et al. Multi-slice perfusion MRI using continuous arterial water labeling controlling for MT effects with simultaneous proximal and distal RF irradiation. In Proceedings of the Sixth Scientific Meeting of the International Society for Magnetic Resonance in Medicine, Sydney, 1998; p. 381.Google Scholar
Silva, AC, Zhang, W, Williams, DS, Koretsky, AP.Multi-slice MRI of rat brain perfusion during amphetamine stimulation using arterial spin labeling. Magn Reson Med 1995; 33: 209–214.CrossRefGoogle ScholarPubMed
Zhang, W, Silva, AC, Williams, DS, Koretsky, AP.NMR measurement of perfusion using arterial spin labeling without saturation of macromolecular spins. Magn Reson Med 1995; 33: 370–376.CrossRefGoogle ScholarPubMed
Zaharchuk, G, Ledden, PJ, Kwong, KK, et al. Multislice perfusion and perfusion territory imaging in humans with separate label and image coils. Magn Reson Med 1999; 41: 1093–1098.3.0.CO;2-0>CrossRefGoogle ScholarPubMed
Mildner, T, Trampel, R, Moller, HE, et al. Functional perfusion imaging using continuous arterial spin labeling with separate labeling and imaging coils at 3 T. Magn Reson Med 2003; 49: 791–795.CrossRefGoogle ScholarPubMed
Hernandez-Garcia, L, Lee, GR, Vazquez, AL, Noll, DC.Fast pseudo-continuous arterial spin labeling for functional imaging using a two-coil system. Magn Reson Med 2004; 51: 577–585.CrossRefGoogle ScholarPubMed
Talagala, SL, Ye, FQ, Ledden, PJ, Chesnick, S.Whole brain 3D perfusion MRI at 3.0 T using CASL with a separate labeling coil. Magn Reson Med 2004; 52: 131–140.CrossRefGoogle Scholar
Zhang, X, Nagaoka, T, Aurebach, EJ, et al. Quantitative basal CBF and CBF fMRI of rhesus monkeys using three-coil continuous arterial spin labeling. Neuroimage 2007; 34: 1074–1083.CrossRefGoogle ScholarPubMed
Silva, AC, Williams, DS, Koretsky, AP.Evidence for the exchange of arterial spin-labeled water with tissue water in rat brain from diffusion-sensitized measurements of perfusion. Magn Reson Med 1997; 38: 232–237.CrossRefGoogle ScholarPubMed
Wong, EC.Vessel-encoded arterial spin-labeling using pseudocontinuous tagging. Magn Reson Med 2007; 58, 1086–1091.CrossRefGoogle ScholarPubMed
Wu, WC, Fernandez-Seara, M, Detre, JA, Wehrli, FW, Wang, J.A theoretical and experimental investigation of the tagging efficiency of pseudocontinuous arterial spin labeling. Magn Reson Med 2007; 58, 1020–1027.CrossRefGoogle ScholarPubMed
Garcia, DM, de Bazelaire, C, Alsop, DC.Pseudo-continuous flow driven adiabatic inversion for arterial spin inversion. In Proceedings of the Thirteenth Scientific Meeting of the International Society for Magnetic Resonance in Medicine, Sydney, 2005, abst 37.Google Scholar
Kwong, KK, Belliveau, JW, Chesler, DA, et al. Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proc Natl Acad Sci USA 1992; 89: 5675–5679.CrossRefGoogle ScholarPubMed
Kim, SG.Quantification of relative cerebral blood flow change by flow-sensitive alternating inversion recovery (FAIR) technique: application to functional mapping. Magn Reson Med 1995; 34: 293–301.CrossRefGoogle ScholarPubMed
Kwong, KK, Chesler, DA, Weisskoff, RM, et al. MR perfusion studies with T1-weighted echo planar imaging. Magn Reson Med 1995; 34: 878–887.CrossRefGoogle ScholarPubMed
Schwarzbauer, C, Morrissey, SP, Haase, A.Quantitative magnetic resonance imaging of perfusion using magnetic labeling of water proton spins within the detection slice. Magn Reson Med 1996; 35: 540–546.CrossRefGoogle ScholarPubMed
Wong, EC, Buxton, RB, Frank, LR.Implementation of quantitative perfusion imaging techniques for functional brain mapping using pulsed arterial spin labeling. NMR Biomed 1997; 10: 237–249.3.0.CO;2-X>CrossRefGoogle ScholarPubMed
Helpern, JA, Branch, CA, Yongbi, MN, Huang, NC.Perfusion imaging by un-inverted flow-sensitive alternating inversion recovery (UNFAIR). Magn Reson Imaging 1997; 15: 135–139.CrossRefGoogle Scholar
Jahng, G-H, Zhu X-, P, Matson, GB, Weiner, MW, Schuff, N.Improved perfusion-weighted MRI by a novel double inversion with proximal labeling of both tagged and control acquisitions. Magn Reson Med 2003; 49: 307–314.CrossRefGoogle ScholarPubMed
Golay, X, Stuber, M, Pruessmana, KP, Meier, D, Boesiger, P.Transfer insensitive labeling technique (TILT): application to multislice functional perfusion imaging. J Magn Reson Imaging 1999; 9: 454–461.3.0.CO;2-B>CrossRefGoogle ScholarPubMed
Golay, X, Petersen, ET, Hui, F.Pulsed star labeling of arterial regions (PULSAR): a robust regional perfusion technique for high field imaging. Magn Reson Med 2005; 53: 15–21.CrossRefGoogle ScholarPubMed
Buxton, RB, Frank, LR, Wong, EC, et al. A general kinetic model for quantitative perfusion imaging with arterial spin labeling. Magn Reson Med 1998; 40: 383–396.CrossRefGoogle ScholarPubMed
Hiller, KH, Bock, M, Wacker, CM, MR-perfusion measurements: basic methodology and current status. MAGMA 1998; 6: 98–99.CrossRefGoogle ScholarPubMed
St Lawrence, KS, Frank, JA, McLaughlin, AC.Effect of restricted water exchange on cerebral blood flow values calculated with arterial spin tagging: a theoretical investigation. Magn Reson Med 2000; 44: 440–449.3.0.CO;2-6>CrossRefGoogle ScholarPubMed
Zhou, J, Wilson, DA, Ulatowski, JA, Traystman, RJ, van Zijl, PC.Two-compartment exchange model for perfusion quantification using arterial spin tagging. J Cereb Blood Flow Metab 2001; 21: 440–455.CrossRefGoogle ScholarPubMed
Parkes, LM, Tofts, PS.Improved accuracy of human cerebral blood perfusion measurements using arterial spin labeling: accounting for capillary water permeability. Magn Reson Med 2002; 48: 27–41.CrossRefGoogle ScholarPubMed
Ewing, JR, Cao, Y, Fenstermacher, J.Single-coil arterial spin-tagging for estimating cerebral blood flow as viewed from the capillary: relative contributions of intra- and extravascular signal. Magn Reson Med 2001; 46: 465–475.CrossRefGoogle ScholarPubMed
Buxton, RB.Quantifying CBF with arterial spin labeling. J Magn Reson Imaging 2005; 22: 723–726.CrossRefGoogle ScholarPubMed
Parkes, LM.Quantification of cerebral perfusion using arterial spin labeling: two compartment models. J Magn Reson Imaging 2005; 22: 732–736.CrossRefGoogle ScholarPubMed
Wang, J, Zhang, Y, Wolf, RL, et al. Amplitude-modulated continuous arterial spin-labeling 3.0 T perfusion MR imaging with a single coil: feasibility study. Radiology 2005; 235: 218–228.CrossRefGoogle Scholar
Yongbi, MN, Yang, Y, Frank, JA, Duyn, JH.Multislice perfusion imaging in human brain using the C-FOCI inversion pulse: comparison with hyperbolic secant. Magn Reson Med 1999; 42: 1098–1105.3.0.CO;2-1>CrossRefGoogle ScholarPubMed
Schepers, J, Garwood, M, van der Sanden, B, Nicolay, K.Improved subtraction by adiabatic FAIR perfusion imaging. Magn Reson Med 2002; 47: 330–336.CrossRefGoogle ScholarPubMed
Wong, EC, Buxton, RB, Frank, LR.A theoretical and experimental comparison of continuous and pulsed arterial spin labeling techniques for quantitative perfusion imaging. Magn Reson Med 1998; 40: 348–355.CrossRefGoogle ScholarPubMed
Alsop, DC, Detre, JA.Background suppressed 3D RARE arterial spin labeling perfusion MRI. In Proceedings of the Seventh Scientific Meeting of the International Society of Magnetic Resonance in Medicine, Philadelphia, 1999, p. 601.Google Scholar
Ye, FQ, Frank, JA, Weinberger, DR, McLaughlin, AC.Noise reduction in 3D perfusion imaging by attenuating the static signal in arterial spin tagging (ASSIST). Magn Reson Med 2000; 44: 92–100.3.0.CO;2-M>CrossRefGoogle Scholar
Duyn, JH, Tan, CX, van Gelderen, P, Yongbi, MN.High-sensitivity single-shot perfusion-weighted fMRI. Magn Reson Med 2001; 46: 88–94.CrossRefGoogle ScholarPubMed
Garcia, DM, Duhamel, G, Alsop, DC.Efficiency of inversion pulses for background suppressed arterial spin labeling. Magn Reson Med 2005; 54: 366–372.CrossRefGoogle ScholarPubMed
Zhang, W, Williams, DS, Detre, JA, Koretsky, AP.Measurement of brain perfusion by volume-localized NMR spectroscopy using inversion of arterial water spins: accounting for transit time and cross-relaxation. Magn Reson Med 1992; 25: 362–371.CrossRefGoogle ScholarPubMed
Walsh, EG, Minematsu, K, Leppo, J, Moore, SC.Radioactive microsphere validation of a volume localized continuous saturation perfusion measurement. Magn Reson Med 1994; 31: 147–153.CrossRefGoogle ScholarPubMed
Tsekos, NV, Zhang, F, Merkle, H, et al. Quantitative measurements of cerebral blood flow in rats using the FAIR technique: correlation with previous iodoantipyrine autoradiographic studies. Magn Reson Med 1998; 39: 564–573.CrossRefGoogle ScholarPubMed
Ewing, JR, Wei, L, Knight, RA, et al. Direct comparison of local cerebral blood flow rates measured by MRI arterial spin-tagging and quantitative autoradiography in a rat model of experimental cerebral ischemia. J Cereb Blood Flow Metab 2003; 23: 198–209.CrossRefGoogle Scholar
Ye, FQ, Berman, KF, Ellmore, T, et al. H(2)(15)O PET validation of steady-state arterial spin tagging cerebral blood flow measurements in humans. Magn Reson Med 2000; 44: 450–456.3.0.CO;2-0>CrossRefGoogle ScholarPubMed
Zaini, MR, Strother, SC, Anderson, JR, et al. Comparison of matched BOLD and FAIR 4.0 T-fMRI with [15O] water PET brain volumes. Med Phys 1999; 26: 1559–1567.CrossRefGoogle Scholar
Pell, GS, King, MD, Proctor, E, et al. Comparative study of the FAIR technique of perfusion quantification with the hydrogen clearance method. J Cereb Blood Flow Metab 2003; 23: 689–699.CrossRefGoogle ScholarPubMed
Koziak, AM, Winter, J, Lee T-, Y, Thompson, RT, St. Lawrence, KS.Validation study of pulsed arterial spin labeling technique by comparison to perfusion computed tomography. Magn Reson Imaging 2008; 26: 543–553.CrossRefGoogle ScholarPubMed
Parkes, LM, Rashid, W, Chard, DT, Tofts, PS.Normal cerebral perfusion measurements using arterial spin labeling: reproducibility, stability, and age and gender effects. Magn Reson Med 2004; 51: 736–743.CrossRefGoogle ScholarPubMed
Floyd, TF, Ratcliffe, SJ, Wang, J, Resch, B, Detre, JA.Precision of the CASL-perfusion MRI technique for the measurement of cerebral blood flow in whole brain and vascular territories. J Magn Reson Imaging 2003; 18: 649–655.CrossRefGoogle ScholarPubMed
Hermes, M, Hagemann, D, Britz, P, et al. Reproducibility of continuous arterial spin labeling perfusion MRI after 7 weeks. Magn Reson Mater Phy 2007; 20: 103–115.Google ScholarPubMed
Jahng, G-H, Song, E, Zhu X-, P, et al. Human brain: reliability and reproducibility of pulsed arterial spin-labeling perfusion MR imaging. Radiology 2005; 234: 909–916.CrossRefGoogle ScholarPubMed
Yen, Y-F, Field, AS, Martin, EM, et al. Test–retest reproducibility of quantitative CBF measurements using FAIR perfusion MRI and acetazolamide challenge. Magn Reson Med 2002; 47: 921–928.CrossRefGoogle ScholarPubMed
Luh, WM, Wong, EC, Bandettini, PA, Hyde, JS.QUIPSS II with thin-slice TI1 periodic saturation: a method for improving accuracy of quantitative perfusion imaging using pulsed arterial spin labeling. Magn Reson Med 1999; 41: 1246–1254.3.0.CO;2-N>CrossRefGoogle ScholarPubMed
Wang, J, Alsop, DC, Song, HK, et al. Arterial transit time imaging with flow encoding arterial spin tagging (FEAST). Magn Reson Med 2003; 50: 599–607.CrossRefGoogle Scholar
Barbier, EL, Silva, AC, Kim, HJ, Williams, DS, Koretsky, AP.Perfusion analysis using dynamic arterial spin labeling (DASL). Magn Reson Med 1999; 41: 299–308.3.0.CO;2-R>CrossRefGoogle Scholar
Gonzalez-At, JB, Alsop, DC, Detre, JA.Cerebral perfusion and arterial transit time changes during task activation determined with continuous arterial spin labeling. Magn Reson Med 2000; 43: 739–746.3.0.CO;2-2>CrossRefGoogle ScholarPubMed
Barbier, EL, Silva, AC, Kim, SG, Koretsky, AP.Perfusion imaging using dynamic arterial spin labeling (DASL). Magn Reson Med 2001; 45: 1021–1029.CrossRefGoogle Scholar
Wolff, SD, Balaban, RS.Magnetization transfer contrast (MT) and tissue water proton relaxation in vivo. Magn Reson Med 1989; 10: 135–144.CrossRefGoogle ScholarPubMed
Zhang, W, Williams, DS, Koretsky, AP.Measurement of rat brain perfusion by NMR using spin labeling of arterial water: in vivo determination of the degree of spin labeling. Magn Reson Med 1993; 29: 416–421.CrossRefGoogle ScholarPubMed
Garraux, G, Hallett, M, Talagala, SL.CASL fMRI of subcortico-cortical perfusion changes during memory guided finger-sequences. Neuroimage 2005; 25: 122–132.CrossRefGoogle ScholarPubMed
Talagala, SL, Slavin, GS, Ostuni, J, Chesnick, S.CASL perfusion MRI with non-segmented low flip angle 3D EPI. In Proceedings of the 14th Scientific Meeting of the International Society for Magnetic Resonance in Medicine, Seattle, 2006, p. 3422.Google Scholar
Gunther, M, Oshio, K, Feinberg, DA.Single-shot 3D imaging techniques improve arterial spin labeling perfusion measurements. Magn Reson Med 2005; 54, 491–498.CrossRefGoogle ScholarPubMed
Fernandez-Seara, MA, Wang, Z, Wang, J, et al. Continuous arterial spin labeling perfusion measurements using single shot 3D GRASE at 3 T. Magn Reson Med 2005; 54, 1241–1247.CrossRefGoogle ScholarPubMed
Duhamel, G, Alsop, DC.Single-shot susceptibility insensitive whole brain 3DfMRI with ASL. In Proceedings of the Twelfth Scientific Meeting of the International Society for Magnetic Resonance in Medicine, Kyoto, Japan, 2004, abst 518.Google Scholar
Paiva, FF, Tannus, A, Silva, AC. Measurement of cerebral perfusion territories using arterial spin labelling. NMR Biomed 2007; 20: 633–642.CrossRefGoogle ScholarPubMed
Paiva, FF, Tannus, A, Talagala, SL, Silva, AC. Arterial spin labeling of cerebral perfusion territories using a separate labeling coil. J Magn Reson Imaging 2008; 27: 970–977.CrossRefGoogle ScholarPubMed
Zimine, I, Petersen, ET, Golay, XDual vessel arterial spin labeling scheme for regional perfusion imaging. Magn Reson Med 2006; 56: 1140–1144.CrossRefGoogle ScholarPubMed
Trampel, R, Mildner, T, Goerke, U, et al. Continuous arterial spin labeling using a local magnetic field gradient coil. Magn Reson Med 2002; 48: 543–546.CrossRefGoogle ScholarPubMed
van Laar, PJ, Hendrikse, J, Golay, X, et al. In vivo flow territory mapping of major brain feeding arteries. Neuroimage 2006; 29: 136–144.CrossRefGoogle ScholarPubMed
Werner, R, Alfke, K, Schaeffter, T, et al. Brain perfusion territory imaging applying oblique-plane arterial spin labeling with a standard send/receive head coil. Magn Reson Med 2004; 52: 1443–1447.CrossRefGoogle ScholarPubMed
Werner, R, Norris, DG, Alfke, K, Mehdorn, HM, Jansen, O.Continuous artery-selective spin labeling (CASSL). Magn Reson Med 2005; 53: 1006–1012.CrossRefGoogle Scholar
Taoka, T, Iwasaki, S, Nakagawa, H, et al. Distinguishing between anterior cerebral artery and middle cerebral artery perfusion by color-coded perfusion direction mapping with arterial spin labeling. AJNR Am J Neuroradiol 2004; 25: 248–251.Google ScholarPubMed
Eastwood, JD, Holder, CA, Hudgins, PA, Song, AW.Magnetic resonance imaging with lateralized arterial spin labeling. Magn Reson Imaging 2002; 20: 583–586.CrossRefGoogle ScholarPubMed
Hendrikse, J, van der Grond, J, Lu, H, van Zijl, PC, Golay, X.Flow territory mapping of the cerebral arteries with regional perfusion MRI. Stroke 2004; 35: 882–887.CrossRefGoogle ScholarPubMed
Gunther, M.Efficient visualization of vascular territories in the human brain by cycled arterial spin labeling MRI. Magn Reson Med 2006; 56: 671–675.CrossRefGoogle ScholarPubMed
Davies, NP, Jezzard, P.Selective arterial spin labeling (SASL): perfusion territory mapping of selected feeding arteries tagged using two-dimensional radiofrequency pulses. Magn Reson Med 2003; 49: 1133–1142.CrossRefGoogle ScholarPubMed
van Laar, PJ, van der Grond, J, Mali, WP, Hendrikse, J.Magnetic resonance evaluation of the cerebral circulation in obstructive arterial disease. Cerebrovasc Dis 2006; 21: 297–306.CrossRefGoogle ScholarPubMed
van Laar, PJ, Hendrikse, J, Klijn, CJ, et al. Symptomatic carotid artery occlusion: flow territories of major brain-feeding arteries. Radiology 2007; 242: 526–534.CrossRefGoogle ScholarPubMed
Alfke, K, Werner, R, Helle, M, et al. Magnetic resonance imaging of individual cerebral perfusion territories improves the diagnosis of embolic stroke. J Comput Assist Tomogr 2007; 31: 894–895.CrossRefGoogle Scholar
Hendrikse, J, van der Zwan, A, Ramos, LM, et al. Altered flow territories after extracranial-intracranial bypass surgery. Neurosurgery 2005; 57: 486–494.CrossRefGoogle ScholarPubMed
Talagala, SL, Noll, DC.Functional MRI using steady-state arterial water labeling. Magn Reson Med 1998; 39: 179–183.CrossRefGoogle ScholarPubMed
Lu, H, Golay, X, Pekar, JJ, van Zijl, PC.Functional magnetic resonance imaging based on changes in vascular space occupancy. Magn Reson Med 2003; 50: 263–274.CrossRefGoogle ScholarPubMed
Scouten, A, Constable, RT.Applications and limitations of whole-brain MAGIC VASO functional imaging. Magn Reson Med 2007; 58: 306–315.CrossRefGoogle ScholarPubMed
Wu, CW, Chuang, K-H, Wai, Y-Y, et al. Vascular space occupancy-dependent functional MRI by tissue suppression. J Magn Reson Imaging 2008; 28: 219–226.CrossRefGoogle ScholarPubMed
Lu, H, Pollack, E, Young, R, et al. Predicting grade of cerebral glioma using vascular-space occupancy MR imaging. AJNR Am J Neuroradiol 2008; 29: 373–378.CrossRefGoogle ScholarPubMed
Donahue, MJ, Blakeley, JO, Zhou, J, et al. Evaluation of human brain tumor heterogeneity using multiple T1-based MRI signal weighting approaches. Magn Reson Med 2008; 59: 336–344.CrossRefGoogle ScholarPubMed
Kim, T, Kim, SG.Quantification of cerebral arterial blood volume and cerebral blood flow using MRI with modulation of tissue and vessel (MOTIVE) signals. Magn Reson Med 2005; 54: 333–342.CrossRefGoogle ScholarPubMed
Kim, T, Kim, SG.Quantification of cerebral arterial blood volume using arterial spin labeling with intravoxel incoherent motion-sensitive gradients. Magn Reson Med 2006; 55: 1047–1057.CrossRefGoogle ScholarPubMed
Golay, X, Petersen, ET, Zimine, I, Lim, TC.Arterial spin labeling: a one-stop-shop for measurement of brain perfusion in the clinical settings. Conf Proc IEEE Eng Med Biol Soc 2007; 1: 4320–4323.Google Scholar
Belliveau, JW, Rosen, BR, Kantor, HL, Functional cerebral imaging by susceptibility-contrast NMR. Magn Reson Med 1990; 14: 538–546.CrossRefGoogle ScholarPubMed
Ogawa, S, Tank, DW, Menon, RS, et al. Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging. Proc Natl Acad Sci USA 1992; 89: 5951–5955.CrossRefGoogle ScholarPubMed
Luh, WM, Wong, EC, Bandettini, PA, Ward, BD, Hyde, JS.Comparison of simultaneously measured perfusion and BOLD signal increases during brain activation with T(1)-based tissue identification. Magn Reson Med 2000; 44: 137–143.3.0.CO;2-R>CrossRefGoogle Scholar
Menon, RS, Ogawa, S, Strupp, JP, Ugurbil, K.Ocular dominance in human V1 demonstrated by functional magnetic resonance imaging. J Neurophysiol 1997; 77: 2780–2787.CrossRefGoogle ScholarPubMed
Dechent, P, Frahm, J.Direct mapping of ocular dominance columns in human primary visual cortex. Neuroreport 2000; 11: 3247–3249.CrossRefGoogle ScholarPubMed
Cheng, K, Waggoner, RA, Tanaka, K.Human ocular dominance columns as revealed by high-field functional magnetic resonance imaging. Neuron 2001; 32: 359–374.CrossRefGoogle ScholarPubMed
Goodyear, BG, Menon, RS.Brief visual stimulation allows mapping of ocular dominance in visual cortex using fMRI. Hum Brain Mapp 2001; 14: 210–217.CrossRefGoogle ScholarPubMed
Yacoub, E, Shmuel, A, Logothetis, N, Uğurbil, K.Robust detection of ocular dominance columns in humans using Hahn spin echo BOLD functional MRI at 7 Tesla. Neuroimage 2007; 37: 1161–1177.CrossRefGoogle ScholarPubMed
Moon, C-H, Fukuda, M, Park S-, H, Kim S-, G.Neural interpretation of blood oxygenation level-dependent fMRI maps at submillimeter columnar resolution. J Neurosci 2007; 27: 6892–6902.CrossRefGoogle ScholarPubMed
Kim, DS, Duong, TQ, Kim, SG.High-resolution mapping of iso-orientation columns by fMRI. Nat Neurosci 2000; 3: 164–169.CrossRefGoogle ScholarPubMed
Duong, TQ, Kim, DS, Ugurbil, K, Kim, SG.Localized cerebral blood flow response at submillimeter columnar resolution. Proc Natl Acad Sci USA 2001; 98: 10904–10909.CrossRefGoogle ScholarPubMed
Yacoub, E, Harel, N, Ugurbil, K.High-field fMRI unveils orientation columns in humans. Proc Natl Acad Sci USA 2008; 105: 10607–10612.CrossRefGoogle ScholarPubMed
Yang, X, Hyder, F, Shulman, RG.Activation of single whisker barrel in rat brain localized by functional magnetic resonance imaging. Proc Natl Acad Sci USA 1996; 93: 475–478.CrossRefGoogle ScholarPubMed
Kida, I, Xu, F, Shulman, RG, Hyder, F.Mapping at glomerular resolution: fMRI of rat olfactory bulb. Magn Reson Med 2002; 48: 570–576.CrossRefGoogle ScholarPubMed
Malonek, D, Dirnagl, U, Lindauer, U, et al. Vascular imprints of neuronal activity: relationships between the dynamics of cortical blood flow, oxygenation, and volume changes following sensory stimulation. Proc Natl Acad Sci USA 1997; 94: 14826–14831.CrossRefGoogle ScholarPubMed
Belluscio, L, Lodovichi, C, Feinstein, P, Mombaerts, P, Katz, LC.Odorant receptors instruct functional circuitry in the mouse olfactory bulb. Nature 2002; 419: 296–300.CrossRefGoogle ScholarPubMed
Cox, SB, Woolsey, TA, Rovainen, CM.Localized dynamic changes in cortical blood flow with whisker stimulation corresponds to matched vascular and neuronal architecture of rat barrels. J Cereb Blood Flow Metab 1993; 13: 899–913.CrossRefGoogle ScholarPubMed
Chaigneau, E, Oheim, M, Audinat, E, Charpak, S.Two-photon imaging of capillary blood flow in olfactory bulb glomeruli. Proc Natl Acad Sci USA 2003; 100: 13081–13086.CrossRefGoogle ScholarPubMed
Silva, AC, Lee, SP, Iadecola, C, Kim, SG.Early temporal characteristics of cerebral blood flow and deoxyhemoglobin changes during somatosensory stimulation. J Cereb Blood Flow Metab 2000; 20: 201–206.CrossRefGoogle ScholarPubMed
Shen, Q, Ren, H, Duong, TQ.BOLD, CBV, and CMRO2 fMRI signal temporal dynamics at 500-ms resolution. J Magn Reson Imaging 2008; 27: 599–606.CrossRefGoogle Scholar
Liu, TT, Wong, EC, Frank, LR, Buxton, RB.Analysis and design of perfusion-based event-related fMRI experiments. Neuroimage 2002; 16: 269–282.CrossRefGoogle ScholarPubMed
Kim, SG, Ugurbil, K.Comparison of blood oxygenation and cerebral blood flow effects in fMRI: estimation of relative oxygen consumption change. Magn Reson Med 1997; 38: 59–65.Google ScholarPubMed
Hoge, RD, Atkinson, J, Gill, B, et al. Linear coupling between cerebral blood flow and oxygen consumption in activated human cortex. Proc Natl Acad Sci USA 1999; 96: 9403–9408.CrossRefGoogle ScholarPubMed
Chiarelli, PA, Bulte, DP, Gallichan, D, et al. Flow metabolism coupling in human visual, motor and supplementary motor areas assessed by magnetic resonance imaging. Magn Reson Med 2007; 57: 538–547.CrossRefGoogle ScholarPubMed
Shmuel, A, Yacoub, E, Pfeuffer, J, et al. Sustained negative BOLD, blood flow and oxygen consumption response and its coupling to the positive response in the human brain. Neuron 2002; 36: 1195–1210.CrossRefGoogle ScholarPubMed
Obata, T, Liu, TT, Miller, KL, et al. Discrepancies between BOLD and flow dynamics in primary and supplementary motor areas: application of the balloon model to the interpretation of BOLD transients. Neuroimage 2004; 21: 144–153.CrossRefGoogle ScholarPubMed
Biswal, B, Yetkin, FZ, Huaghton, VM, Hyde, JS.Functional connectivity in the motor cortex of resting human brain using echo planar MRI. Magn Reson Med 1995; 34: 537–541.CrossRefGoogle ScholarPubMed
Greicius, MD, Krasnow, B, Reiss, AL, Mennon, V.Functional connectivity in the resting brain: a network analysis of default mode hypothesis. Proc Natl Acad Sci USA 2003; 100: 253–258.CrossRefGoogle ScholarPubMed
Fox, MD, Snyder, AZ, Vincent, JL, et al. The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc Natl Acad Sci USA 2005; 102: 9673–9678.CrossRefGoogle ScholarPubMed
Fransson, P.Spontaneous low-frequency BOLD signal fluctuations: an fMRI investigation of the resting-state default mode of brain function hypothesis. Hum Brain Mapp 2005; 26: 15–29.CrossRefGoogle ScholarPubMed
De Luca, M, Beckmann, CF, De Stefano, N, Matthews, PM, Smith, SM.fMRI resting state networks define distinct modes of long-distance interactions in the human brain. Neuroimage 2006; 29: 1359–1367.CrossRefGoogle ScholarPubMed
Salvador, R, Suckling, J, Coleman, MR, et al. Neurophysiological architecture of functional magnetic resonance images of human brain. Cereb Cortex 2005; 15: 1332–1342.CrossRefGoogle ScholarPubMed
Horovitz, SG, Fukunaga, M, de Zwart, JA, et al. Low frequency BOLD fluctuations during resting wakefulness and light sleep: a simultaneous EEG-fMRI study. Hum Brain Mapp 2008; 29: 671–682.CrossRefGoogle ScholarPubMed
Fukunaga, M, Horovitz, SG, van Gelderen, P, et al. Large amplitude, spatially correlated fluctuations in BOLD fMRI signals during extended rest and early sleep stages. Magn Reson Imaging 2006; 24: 979–992.CrossRefGoogle ScholarPubMed
Chuang, K-H, van Gelderen, P, Merkle, H, et al. Mapping resting-state functional connectivity using perfusion MRI. Neuroimage 2008; 40: 1595–1605.CrossRefGoogle ScholarPubMed
Fukunaga, M, Horovitz, SG, de Zwart, JA, et al. Metabolic origin of BOLD signal fluctuations in the absence of stimuli. J Cereb Blood Flow Metab 2008; 28: 1377–1387.CrossRefGoogle ScholarPubMed
Hopkins, SR, Levin, DL, Emami, K, et al. Advances in magnetic resonance imaging of lung physiology. J Appl Physiol 2007; 102: 1244–1254.CrossRefGoogle ScholarPubMed
Karger, N, Biederer, J, Lüsse, S, et al. Quantitation of renal perfusion using arterial spin labeling with FAIR-UFLARE. Magn Reson Imaging 2000; 18: 641–647.CrossRefGoogle ScholarPubMed
Fenchel, M, Martirosian, P, Langanke, J, et al. Perfusion MR imaging with FAIR true FISP spin labeling in patients with and without renal artery stenosis: initial experience. Radiology 2006; 238: 1013–1021.CrossRefGoogle ScholarPubMed
McCommis, KS, Zhang, H, Herrero, P, Gropler, RJ, Zheng, J.Feasibility study of myocardial perfusion and oxygenation by noncontrast MRI: comparison with PET study in a canine model. Magn Reson Imaging 2008; 26: 11–19.CrossRefGoogle Scholar
Poncelet, BP, Koelling, TM, Schmidt, CJ, et al. Measurement of human myocardial perfusion by double-gated flow alternating inversion recovery EPI. Magn Reson Med 1999; 41: 510–519.3.0.CO;2-G>CrossRefGoogle ScholarPubMed
Raynaud, JS, Duteil, S, Vaughan, JT, et al. Determination of skeletal muscle perfusion using arterial spin labeling NMRI: validation by comparison with venous occlusion plethysmography. Magn Reson Med 2001; 46: 305–311.CrossRefGoogle ScholarPubMed
Marro, KI, Hyyti, OM, Vincent, MA, Kushmerick, MJ.Validation and advantages of FAWSETS perfusion measurements in skeletal muscle. NMR Biomed 2005; 18: 226–234.CrossRefGoogle ScholarPubMed
Wu, WC, Wang, J, Detre, JA, Ratcliffe, SJ, Floyd, TF.Transit delay and flow quantification in muscle with continuous arterial spin labeling perfusion-MRI. J Magn Reson Imaging 2008; 28: 445–452.CrossRefGoogle ScholarPubMed
Warmuth, C, Gunther, M, Zimmer, C. Quantification of blood flow in brain tumors: comparison of arterial spin labeling and dynamic susceptibility-weighted contrast-enhanced MR imaging. Radiology 2003; 228: 523–532.CrossRefGoogle ScholarPubMed
Tourdias, T, Rodrigo, S, Oppenheim, C, et al. Pulsed arterial spin labeling applications in brain tumors: practical review. J Neuroradiol 2008; 35: 79–89.CrossRefGoogle ScholarPubMed
Chawla, S, Wang, S, Wolf, RL, et al. Arterial spin-labeling and MR spectroscopy in the differentiation of gliomas. AJNR Am J Neuroradiol 2007; 28: 1683–1689.CrossRefGoogle Scholar
Tempel, C, Neeman, M.Perfusion of the rat ovary: application of pulsed arterial spin labeling MRI. Magn Reson Med 1999; 41: 113–123.3.0.CO;2-G>CrossRefGoogle ScholarPubMed
Zhu, DC, Buonocore, MH.Breast tissue differentiation using arterial spin tagging. Magn Reson Med 2003; 50: 966–967.CrossRefGoogle ScholarPubMed
Wong, EC.Cronin, M, Wu, WC, et al. Velocity selective arterial spin-labeling. Magn Reson Med 2006; 55, 1334–1341.CrossRefGoogle ScholarPubMed
Norris, DG, Schwarzbauer, C.Velocity selective radiofrequency pulse trains. J Magn Reson 1999; 137: 231–236.CrossRefGoogle ScholarPubMed
Duhamel, G, de Bazelaire, C, Alsop, DC.Evaluation of systematic quantification errors in velocity-selective arterial spin labeling of the brain. Magn Reson Med 2003; 50: 145–153.CrossRefGoogle Scholar
De Zwart, JA, Ledden, PJ, Kellman, P, van Gelderen, P, Duyn, JH.Design of a SENSE-optimized high-sensitivity MRI receive coil for brain imaging. Magn Reson Med 2002; 47: 1218–1227.CrossRefGoogle ScholarPubMed
Wang, J, Alsop, DC, Li, L, et al. Comparison of quantitative perfusion imaging using arterial spin labeling at 1.5 and 4.0 Tesla. Magn Reson Med 2002; 48: 242–254.CrossRefGoogle ScholarPubMed
Yongbi, MN, Fera, F, Mattay, VS, Frank, JA, Duyn, JH.Simultaneous BOLD/perfusion measurement using dual-echo FAIR and UNFAIR: sequence comparison at 1.5 T and 3.0 T. Magn Reson Imaging 2001; 19: 1159–1165.CrossRefGoogle Scholar
Talagala, SL, Li T-, Q, Merkle, H, et al. Comparison of continuous arterial spin labeling perfusion MRI at 3 T and 7 T. In Proceedings of the Sixteenth Scientific Meeting of the International Society for Magnetic Resonance in Medicine, Toronto, 2008; p. 1916.Google Scholar
Pfeuffer, J, Adriany, G, Shmuel, A, et al. Perfusion-based high-resolution functional imaging in the human brain at 7 Tesla. Magn Reson Med 2002; 47: 903–911.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×