Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-x24gv Total loading time: 0 Render date: 2024-05-15T07:03:55.487Z Has data issue: false hasContentIssue false

Chapter 4 - Fundamentals of diffusion MR imaging

from Section 1 - Physiological MR techniques

Published online by Cambridge University Press:  05 March 2013

Jonathan H. Gillard
Affiliation:
University of Cambridge
Adam D. Waldman
Affiliation:
Imperial College London
Peter B. Barker
Affiliation:
The Johns Hopkins University School of Medicine
Get access

Summary

The basics of diffusion

Brownian motion and diffusion

In 1827, when looking through a microscope at pollen grains from Clarkia pulchella, Robert Brown (a botanist from Montrose in Scotland) observed tiny particles within the grains that appeared to move randomly.[1] Intrigued by these movements (and with “essence of life” investigations in vogue), he examined pollen – even dead pollen – from other species and found the same random motion. We now know that the motion that Brown observed was not, of course, arising from the “essence of life” but was caused by bombardment of the pollen grains by gas molecules. This random molecular motion, often known as Brownian motion, and more frequently as diffusion, is the topic of this chapter.

Diffusion is an essential physical process for the normal functioning of living systems. For example, the transport of metabolites into cells is facilitated by diffusion. As we will see in later chapters, studying diffusion has the potential to provide insights into both cell physiology and cell structure. Unlike other MR parameters, such as the longitudinal and transverse relaxation time constants (T1 and T2), that are affected by experimental MR parameters, diffusion is an intrinsic property that is independent of the MR procedure employed to measure it.

Type
Chapter
Information
Clinical MR Neuroimaging
Physiological and Functional Techniques
, pp. 44 - 67
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Brown, R. Abrief account of microscopical observations made in the months of June, July and August 1827 on the particles contained in the pollen of plants; and on the general existence of active molecules in organic and inorganic bodies. Philosoph Mag 1828; 4: 161.Google Scholar
Einstein, A.Über die von der molekularkinetischen Theorie der Wärme gefordete Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen. Ann Physik 1905 4: 549–590.CrossRefGoogle Scholar
Hahn, EL.Spin echoes. Phys Rev 1946; 70: 460–474.Google Scholar
Carr, HY, Purcell, EM.Effects of diffusion on free precession in nuclear magnetic resonance experiments. Phys Rev 1954; 94: 630–638.CrossRefGoogle Scholar
Stejskal, EO, Tanner, JE.Spin diffusion measurements: spin echoes in the presence of a time-dependent field gradient. J Chem Phys 1965; 42: 288–292.CrossRefGoogle Scholar
Norris, DG, Niendorf, T, Hoehn Berlage, M, et al. Incidence of apparent restricted diffusion in 3 different models of cerebral infarction. Magn Reson Imaging 1994; 12: 1175–1182.CrossRefGoogle Scholar
Wesbey, GE, Moseley, ME, Ehman, RI.Translational molecular self-diffusion in magnetic resonance imaging: effects and applications, Invest Radiol 1984; 19: 491–498.CrossRefGoogle Scholar
Le Bihan, D, Breton, E.Imagerie de diffusion in vivo par résonance magnétique nucléaire. CR Acad Sci Paris 1985; 301: 1109–1112.Google Scholar
Merboldt, KD, Hanicke, W, Frahm, J.Self-diffusion NMR imaging using stimulated echoes. J Magn Reson 1985; 64: 479–486.Google Scholar
Taylor, DG, Bushell, MC.The spatial mapping of translational diffusion coefficients by the NMR imaging technique. Phys Med Biol 1985; 42: 288–292.Google Scholar
Tanner, JE.Transient diffusion in a system partitioned by permeable barriers. Application to NMR measurements with a pulsed field gradient. J Chem Physiol 1978; 69: 1748–1754.CrossRefGoogle Scholar
Le Bihan, D, Breton, E, Lallemand, D, et al. MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders. Radiology 1986; 161: 401–407.CrossRefGoogle ScholarPubMed
Burdette, JH, Elster, AD, Ricci, PE.Acute cerebral infarction: quantification of spin-density and T2 shine-through phenomena on diffusion-weighted MR images. Radiology 1999; 212: 333–339.CrossRefGoogle ScholarPubMed
Provenzale, JM, Sorenson, AG.Diffusion-weighted MR imaging in acute stroke: theoretic considerations and clinical applications. Am J Roentgenol. 1999; 173: 1459–1467.CrossRefGoogle ScholarPubMed
Moseley, ME, Cohen, Y, Mintorovitch, J, et al. Early detection of regional brain ischemia in cats: comparison of diffusion- and T2-weighted MRI and spectroscopy. Magn Reson Med 1990; 14: 330–346.CrossRefGoogle ScholarPubMed
Moseley, ME, Cohen, Y, Kucharczyk, J.Diffusion weighted MR imaging of anisotropic water diffusion in cat central nervous system. Radiology 1990; 187: 439–446.CrossRefGoogle Scholar
Hansen, JR.Pulsed NMR study of water mobility in muscle and brain tissue. Biochim Biophys Acta 1971; 230: 482–486.CrossRefGoogle ScholarPubMed
Cleveland, GG, Chang, DC, Hazelwood, CF, Rorschach, HE.Nuclear magnetic resonance measurement of skeletal muscle. Anisotropy of the diffusion coefficient of the intracellular water. Biophys J 1976; 16: 1043–1053.CrossRefGoogle ScholarPubMed
Doran, M, Hajnal, J, van Bruggen, N, et al. Normal and abnormal white matter tracts shown by MR imaging using directional diffusion weighted sequences. J Comput Assist Tomogr 1990; 14: 865–873.CrossRefGoogle ScholarPubMed
Chenevert, TL, Brunberg, JA, Pipe, JG.Anisotropic diffusion within human white matter: demonstration with NMR techniques in vivo. Radiology 1990; 177: 401–405.CrossRefGoogle ScholarPubMed
Dejerine, J.Anatomie des Centres Nerveux, Vol 1, Paris: Rueff et Cie, 1895.Google Scholar
Crosby, EC, Humphrey, T, Lauer, EW.Correlative Anatomy of the Nervous System. New York: Macmillian, 1962.Google Scholar
Thomsen, C, Henriksen, O, Ring, P.In vivo measurement of water self diffusion in the human brain by magnetic resonance imaging. Acta Radiol 1987; 28: 353–361.CrossRefGoogle ScholarPubMed
Hong, X, Dixon, WT.Measuring diffusion in inhomogeneous systems in imaging mode using antisymmetric sensitizing gradients. J Magn Reson 1992; 99: 561–570.Google Scholar
Lian, J, Williams, DS, Lowe, IJ.Magnetic resonance imaging in the presence of background gradients and imaging of background gradients. J Magn Reson A 1994; 106: 65–74.CrossRefGoogle Scholar
Wimberger, DM, Roberts, TP, Barkovich, AJ, et al. Identification of “premyelination” by diffusion-weighted MRI. J Comput Assist Tomogr 1995; 19: 28–33.CrossRefGoogle ScholarPubMed
Prayer, D, Roberts, T, Barkovich, AJ, et al. Diffusion-weighted MRI of myelination in the rat brain following treatment with gonadal hormones. Neuroradiology 1997; 39: 320–325.CrossRefGoogle ScholarPubMed
Gulani, V, Webb, AG, Duncan, ID, Lauterbur, PC.Apparent diffusion tensor measurements in myelin-deficient rat spinal cords. Magn Reson Med 2001; 45: 191–195.3.0.CO;2-9>CrossRefGoogle ScholarPubMed
Beaulieu, C, Allen, PS.Determinants of anisotropic water diffusion in nerves. Magn Reson Med 1994; 31: 394–400.CrossRefGoogle ScholarPubMed
Beaulieu, C, Allen, PS.Water diffusion in the giant axon of the squid: implications for diffusion-weighted MRI of the nervous system. Magn Reson Med 1994; 32: 579–583.CrossRefGoogle Scholar
Beaulieu, C, Allen, PS.An in vitro evaluation of the effects of local magnetic-susceptibility-induced gradients on anisotropic diffusion in nerve. Magn Reson Med 1996; 36: 39–44.CrossRefGoogle Scholar
Beaulieu, C.The basis of anisotropic water diffusion in the nervous system: a technical review. NMR Biomed 2002; 15: 435–455.CrossRefGoogle ScholarPubMed
Crank, J.The Mathematics of Diffusion. Oxford: Oxford University Press, 1956.Google Scholar
Bloch, F.Nuclear induction. Phys Rev 1946; 70: 460–474.CrossRefGoogle Scholar
Basser, PJ, Le Bihan, D. Fiber orientation mapping in an anisotropic medium with NMR diffusion spectroscopy. In Proceedings of the 11th Annual Meeting of the Society of Magnetic Resonance in Medicine, 1992, p. 1221.
Basser, PJ, Matiello, J, Le Bihan, D.Estimation of the effective self-diffusion tensor from the NMR spin echo. J Magn Reson B 1994; 103: 247–254.CrossRefGoogle ScholarPubMed
Basser, PJ, Matiello, J, Le Bihan, D.MR diffusion tensor spectroscopy and imaging. Biophys J 1994; 66: 259–267.CrossRefGoogle Scholar
Mattiello, J, Basser, PJ, Le Bihan, D.The b matrix in diffusion tensor echo-planar imaging. Magn Reson Med 1997; 37: 292–300.CrossRefGoogle Scholar
Pierpaoli, C, Jezzard, P, Basser, PJ, Barnett, ASDiffusion tensor MR imaging of the human brain. Radiology 1996; 201: 637–648.CrossRefGoogle ScholarPubMed
Lythgoe, MF, Busza, AL, Calamante, F. Effects of diffusion anisotropy on lesion delineation in a rat model of cerebral ischemia. Magn Reson Med 1997; 38: 662–668.CrossRefGoogle Scholar
Pierpaoli, C, Basser, PJ.Toward a quantitative assessment of diffusion anisotropy. Magn Reson Med 1996; 36: 893–906.CrossRefGoogle Scholar
Basser, PJ, Pierpaoli, C.Microstructural and physiological features of tissue elucidated by quantitative-diffusion-tensor MRI. J Magn Reson B 1996; 111: 209–219.CrossRefGoogle ScholarPubMed
Shimony, JS, McKinstry, RC, Akbudak, E, et al. Quantitative diffusion-tensor anisotropy brain MR imaging: normative human data and anatomic analysis. Radiology 1999; 212: 770–784.CrossRefGoogle ScholarPubMed
Papadakis, NG, Xing, D, Houston, GC, et al. A study of rotationally invariant and symmetric indices of diffusion anisotropy. Magn Reson Imaging 1999; 17: 881–892.CrossRefGoogle ScholarPubMed
Douek, P, Turner, R, Pekar, J, Patronas, NJ, Le Bihan, D.MR color mapping of myelin fiber orientation. J Comput Assist Tomogr 1991; 15: 923–929.CrossRefGoogle ScholarPubMed
Nakada, T, Matsuwaza, H, Kwee, IL.Magnetic resonance axonography of the rat spinal-cord. Neuroreport 1994; 5: 2053–2056.CrossRefGoogle ScholarPubMed
Jones, DK, Williams, S, Horsfield, MA. Full representation of white-matter fibre direction on one map via diffusion tensor analysis. In Proceedings of the Fifth Annual Meeting of the International Society of Magnetic Resonance in Medicine, 1997, p. 1741.
Pierpaoli, C. Oh no! One more method for color mapping of fiber tract direction using diffusion MR imaging data. In Proceedings of the Fifth Annual Meeting of the International Society of Magnetic Resonance in Medicine, 1997, p. 1743.
Pajevic, S, Pierpaoli, C.Color schemes to represent the orientation of anisotropic tissues from diffusion tensor data: application to white matter fiber tract mapping in the human brain. Magn Reson Med 1999; 43: 526–540. [Erratum in Magn Reson Med 1999; 43: 921–921.]3.0.CO;2-J>CrossRefGoogle Scholar
Mori, S, Crain, BJ, Chacko, VP, van Zijl, PC.Three dimensional tracking of axonal projections in the brain by magnetic resonance imaging. Ann Neurol 1999; 45: 265–269.3.0.CO;2-3>CrossRefGoogle ScholarPubMed
Conturo, TE, Lori, NF, Cull, TS, et al. Tracking neuronal fiber pathways in the living human brain. Proc Natl Acad Sci USA 1999; 96: 10422–10427.CrossRefGoogle ScholarPubMed
Jones, DK, Simmons, A, Williams, SCR, Horsfield, MA.Non-invasive assessment of axonal fiber connectivity in the human brain via diffusion tensor MRI. Magn Reson Med 1999; 42: 37–41.3.0.CO;2-O>CrossRefGoogle Scholar
Poupon, C, Clark, CA, Frouin, V, et al. Regularization of diffusion-based direction maps for the tracking of brain white matter fasciculi. Neuroimage 2000; 12: 184–195.CrossRefGoogle Scholar
Parker, GJM. Tracing fiber tracts using fast marching. In Proceedings of the Eighth Annual Meeting of the International Society for Magnetic Resonance in Medicine, 2000, p. 85.
Parker, GJM, Barker, GJ, Buckley, DL. A probabilistic index of connectivity (PICo) determined using a Monte Carlo approach to streamlines. In ISMRM Workshop on Diffusion MRI: Biophysical Issues, St Malo, France, 2002.
Tuch, DS, Belliveau, JW, Wedeen, VJ. A path integral approach to white matter tracotgraphy. In Proceedings of the Eighth Annual Meeting of the International Society for Magnetic Resonance in Medicine, 2000, p. 791.
Basser, PJ, Pajevic, S, Pierpaoli, C, Duda, J, Aldroubi, A.In vivo tractography using DT-MRI data. Magn Reson Med 2000; 44: 625–632.3.0.CO;2-O>CrossRefGoogle ScholarPubMed
Koch, M, Glauche, V, Finsterbusch, J, et al. Estimation of anatomical connectivity from diffusion tensor data. Neuroimage 2001; 13: S176.CrossRefGoogle Scholar
Behrens, TEJ, Johansen-Berg, H, Woolrich, MW, et al. Non-invasive mapping of connections between human thalamus and cortex using diffusion imaging. Nat Neurosci 2003; 6: 750–757.CrossRefGoogle ScholarPubMed
Bito, Y, Hirata, S, Yamamoto, E. Optimal gradient factors for ADC measurements. In Proceedings of the Third Annual Meeting of the International Society for Magnetic Resonance in Medicine, 1995, p. 913.
Jones, DK, Horsfield, MA, Simmons, A. Optimal strategies for measuring diffusion in anisotropic systems by magnetic resonance imaging. Magn Reson Med 1999; 42: 515–525.3.0.CO;2-Q>CrossRefGoogle ScholarPubMed
Eis, M, Hoehn-Berlage, M.Correction of gradient cross-talk and optimisation of measurement parameters in diffusion MR imaging. J Magn Reson Ser B 1995; 107: 222–234.CrossRefGoogle Scholar
Davis, TL, Wedeen, VJ, Weisskoff, Rosen BR. White matter tract visualization by echo-planar MRI, In Proceedings of the 12th Annual Meeting of the Society of Magnetic Resonance in Medicine, 1993, p. 289.
Jones, DK.The effect of gradient sampling schemes on measures derived from diffusion tensor MRI: A Monte Carlo study. Magn Reson Med 2004; 51: 807–815.CrossRefGoogle ScholarPubMed
Skare, S, Hedehus, M, Moseley, ME, Li, TQ.Condition number as a measure of noise performance of diffusion tensor data acquisition schemes with MRI. J Magn Reson 2000; 147: 340–352.CrossRefGoogle ScholarPubMed
Batchelor, P. Optimisation of direction schemes for diffusion tensor imaging. In Proceedings of a Workshop on Diffusion MRI: Biophysical Issues, St Malo, France, 2002.
Batchelor, PG, Atkinson, D, Hill, DLG, Calmante, F, Connelly, A.Anisotropic noise propagation in diffusion tensor MRI sampling schemes. Magn Reson Med 2003; 49: 1143–1151.CrossRefGoogle ScholarPubMed
Poncelet, BP, Wedeen, VJ, Weisskoff, RM, Cohen, MS.Brain parenchyma motion: measurement with cine echo-planar MR imaging. Radiology 1992; 185: 645–651.CrossRefGoogle ScholarPubMed
Enzmann, DR, Pelc, NJ.Brain motion: measurement with phase-contrast MR imaging. Radiology 1992; 185: 653–660.CrossRefGoogle ScholarPubMed
Chien, D, Buxton, RB, Kwong, KK, Brady, T, Rosen, BRMR diffusion imaging of the brain. J Comput Assist Tomogr 1990; 14: 514–520.CrossRefGoogle Scholar
Turner, R, Le Bihan, D, Maier, J, et al. Echo-planar imaging of intravoxel incoherent motions. Radiology 1990; 177: 407–414.CrossRefGoogle Scholar
Conturo, TE, McKinstry, RC, Akbudak, E, Robinson, BH.Encoding of anisotropic diffusion with tetrahedral gradients: a general mathematical formalism and experimental results. Magn Reson Med 1995; 35: 399–412.CrossRefGoogle Scholar
Wieshmann, UC, Symms, MR, Franconi, F, et al. The variability and accuracy of the apparent diffusion coefficient in diffusion weighted EPI. In Proceedings of the Sixth Annual Meeting of the International Society of Magnetic Resonance in Medicine, 1998, p. 1748.
Skare, S, Andersson, JLR.On the effects of gating in diffusion imaging of the brain using single shot EPI. Magn Reson Imaging 2001; 19: 1125–1128.CrossRefGoogle ScholarPubMed
Pierpaoli, C, Marenco, S, Rohde, G, Jones, DK, Barnett, AS. Analyzing the contribution of cardiac pulsation to the variability of quantities derived from the diffusion tensor. In Proceedings of the 11th Annual Meeting of the International Society of Magnetic Resonance in Medicine, 2003, p. 70.
Jones, DK, Pierpaoli, C. 2005. The contribution of cardiac pulsation to variability in tractography results. In Proceedings of the 13th Annual Meeting of the International Society of Magnetic Resonance in Medicine, 2005, p. 225.Google Scholar
Tanner, JEUse of the stimulated-echo in NMR diffusion studies. J Chem Physiol 1970; 52: 2523–2526.CrossRefGoogle Scholar
Gudbjartsson, H, Maier, SE, Mulkern, RV, et al. Line scan diffusion imaging. Magn Reson Med 1996; 34: 509–519.CrossRefGoogle Scholar
Gudbjartsson, H, Maier, SE, Jolesz, FA.Double line scan diffusion imaging. Magn Reson Med 1997; 38: 101–109.CrossRefGoogle ScholarPubMed
Bammer, R, Herneth, AM, Maier, SE, et al. Line scan diffusion imaging of the spine. AJNR Am J Neuroradiol 2003; 24: 5–12.Google ScholarPubMed
de Crespigny, AJ, Marks, MP, Enzmann, DR, Moseley, ME.Navigated diffusion imaging of normal and ischemic human brain. Magn Reson Med 1995; 33: 720–728.CrossRefGoogle ScholarPubMed
Butts, K, de Crespigny, A, Pauly, JM, Moseley, ME. Diffusion-weighted interleaved echo-planar imaging with a pair of orthogonal navigator echoes. Magn Reson Med 1996; 35: 763–770.CrossRefGoogle ScholarPubMed
Butts, K, Pauly, J, de Crespigny, A, Moseley, M.Isotropic diffusion-weighted and spiral-navigated interleaved EPI for routine imaging of acute stroke. Magn Reson Med 1997; 38: 741–749.CrossRefGoogle ScholarPubMed
Pruessmann, KP, Weiger, M, Scheidegger, MB, Boesiger, P. SENSE: sensitivity encoding for fast MRI. Magn Reson Med 1999; 42: 952–962.3.0.CO;2-S>CrossRefGoogle ScholarPubMed
Bammer, R, Keeling, SL, Augustin, M, et al. Improved diffusion-weighted single-shot echo-planar imaging (EPI) in stroke using sensitivity encoding (SENSE). Magn Reson Med 2001; 46: 548–552.CrossRefGoogle Scholar
Bammer, R, Auer, M, Keeling, SL, et al. Diffusion tensor imaging using single-shot SENSE-EPI. Magn Reson Med 2002; 48: 128–136.CrossRefGoogle ScholarPubMed
Glover, GH, Lai, S.Self-navigated spiral fMRI: interleaved versus single-shot. Magn Reson Med 1998; 39: 361–368.CrossRefGoogle ScholarPubMed
Li, TQ, Takahashi, AM, Hindmarsh, T, Moseley, ME.ADC mapping by means of a single-shot spiral MRI technique with application in acute cerebral ischemia. Magn Reson Med 1999; 41: 143–147.3.0.CO;2-O>CrossRefGoogle ScholarPubMed
Bammer, R, Glover, GH, Moseley, ME. Diffusion tensor spiral imaging. In Proceedings of the 10th Annual Meeting of the International Society for Magnetic Resonance in Medicine, 2002, p. 1111.
Pipe, JG, Farthing, VG, Forbes, KP.Multishot diffusion-weighted FSE using PROPELLER MRI. Magn Reson Med 2002; 47: 42–52.CrossRefGoogle ScholarPubMed
Bastin, ME.On the use of the FLAIR technique to improve the correction of eddy current induced artifacts in MR diffusion tensor imaging. Magn Reson Imaging 2001; 19: 937–950.CrossRefGoogle ScholarPubMed
Papadakis, NG, Martin, KM, Mustafa, MH, et al. Study of the effect of CSF suppression on white matter diffusion anisotropy mapping of healthy human brain. Magn Reson Med 2002; 48: 394–398.CrossRefGoogle ScholarPubMed
Tuch, DS, Reese, TG, Wiegell, MR, et al. High angular resolution diffusion imaging reveals intravoxel white matter fiber heterogeneity. Magn Reson Med 2002; 48: 577–582.CrossRefGoogle ScholarPubMed
Tuch, DS.Q-ball imaging. Magn Reson Med 2004; 48: 577–582.CrossRefGoogle Scholar
Wedeen, VJ, Hagmann, P, Tseng, WY, Reese, TG, Weisskoff, RM.Mapping complex tissue architecture with diffusion spectrum magnetic resonance imaging. Magn Reson Med 2005; 54: 1377–1386.CrossRefGoogle ScholarPubMed
Anderson, AW, Ding, Z. Sub-voxel measurement of fiber orientation using high angular resolution diffusion tensor imaging. In Proceedings of the 10th Annual Meeting of the International Society for Magnetic Resonance in Medicine, 2002, p. 440.
Jansons, KM, Alexander, DC.Persistent angular structure: new insights from diffusion MRI data. Inf Process Med Imaging 2003; 18: 672–683.CrossRefGoogle ScholarPubMed
Frank, LR.Anisotropy in high angular resolution diffusion-weighted MRI. Magn Reson Med 2001; 45: 935–939.CrossRefGoogle ScholarPubMed
Frank, LR.Characterization of anisotropy in high angular resolution diffusion-weighted MRI. Magn Reson Med 2002; 47: 1083–1089.CrossRefGoogle ScholarPubMed
Alexander, AL, Hasan, KM, Lazar, M, Tsuruda, JS, Parker, DL.Analysis of partial volume effects in diffusion-tensor MRI. Magn Reson Med 2001; 45: 770–780.CrossRefGoogle ScholarPubMed
Callaghan, PT, Eccles, CD, Xia Y. NMR microscopy of dynamic displacements: k-space and q-space imaging. J Phys E: Sci Instrum 1988; 21: 820–822.CrossRefGoogle Scholar
Callaghan, PT.Principles of Nuclear Magnetic Resonance Microscopy. Oxford: Oxford University Press, 1991.Google Scholar
Basser, PJ.Relationships between diffusion tensor and q-space MRI. Magn Reson Med 2002; 47: 392–397.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×