Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-26T11:05:27.716Z Has data issue: false hasContentIssue false

Chapter 3 - Artifacts and pitfalls in MR spectroscopy

from Section 1 - Physiological MR techniques

Published online by Cambridge University Press:  05 March 2013

Jonathan H. Gillard
Affiliation:
University of Cambridge
Adam D. Waldman
Affiliation:
Imperial College London
Peter B. Barker
Affiliation:
The Johns Hopkins University School of Medicine
Get access

Summary

Introduction

In general, proton MRS, as implemented on modern clinical MR machines, provides a reliable adjunct to the growing cadre of imaging methods. Pitfalls can be minimized using automation and standard protocols.[1] Given that the spectral patterns are well known, minor artifacts are relatively easy to identify and read through, at least for the large signals in the spectrum, such as choline (Cho), creatine (Cr) and N-acetyl aspartate (NAA). However, the current trend is toward the incorporation of second tier markers, such as lactate (Lac), glutamate (Glu), glutamine (Gln) and myo-inositol (mI), as well as a demand for longitudinal studies with narrow repeatability requirements. These applications require an understanding of potential artifacts, and the limits of the existing remedies. To achieve repeatability at the limit of biological variation may, in fact, require the development of new artifact reduction algorithms. This chapter details artifacts, remedies, and trade-offs that impact the quantitative use of in vivo MRS. The focus is on proton spectroscopy and spectroscopic imaging (SI) of cerebral metabolites, but the basic principles can be applied to other nuclei, and other parts of the body. With a few notable exceptions, most of the advances in MRS artifact reduction were developed for proton neurological applications at 1.5 T using orthogonal-slice localization methods, most notably stimulated echo acquisition mode (STEAM) and double spin echo (SE) point resolved spectroscopy (PRESS).

Pre-scan

Pre-scan operations, including prescription, sequence, variable selection, shimming, transmit gain and water suppression, all impact the limits of detection and repeatability of the examination. Even with automation and reproducible, predefined protocols, attention to the details of the pre-scan may improve repeatability. Some applications still benefit from manual pre-scan operations. Routine maintenance and quality-control checks using a standard MRS phantom will also reduce the chance for system contributions to variance.

Type
Chapter
Information
Clinical MR Neuroimaging
Physiological and Functional Techniques
, pp. 30 - 43
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Webb, PG, Sailasuta, N, Kohler, SJ, et al. Automated single-voxel proton MRS: technical development and multisite verification. Magn Reson Med 1994; 31: 365–373.CrossRefGoogle ScholarPubMed
Brooks, WM, Friedman, SD, Stidley, CA.Reproducibility of 1H-MRS in vivo. Magn Reson Med 1999; 41: 193–197.3.0.CO;2-P>CrossRefGoogle ScholarPubMed
Ratai, EM, Hancu, I, Blezek, DJ, et al. Automatic repositioning of MRSI voxels in longitudinal studies: impact on reproducibility of metabolite concentration measurements. J Magn Reson Imaging 2008; 27: 1188–1193.CrossRefGoogle ScholarPubMed
Ernst, T, Hennig, J, Ott, D, Friedburg, H.The importance of the voxel size in clinical 1H spectroscopy of the human brain. NMR Biomed 1989; 2: 216–224.CrossRefGoogle ScholarPubMed
Spielman, DM, Adalsteinsson, E, Lim, KO.Quantitative assessment of improved homogeneity using higher-order shims for spectroscopic imaging of the brain. Magn Reson Med 1998; 40: 376–382.CrossRefGoogle Scholar
Hanson, LG, Adalsteinsson, E, Pfefferbaum, A, Spielman, DJ.Optimal voxel size for measuring global gray and white matter proton metabolite concentrations using chemical shift imaging. Magn Reson Med 2000; 44: 10–18.3.0.CO;2-8>CrossRefGoogle ScholarPubMed
Webb, P, Macovski, A.Rapid, fully automatic, arbitrary-volume in vivo shimming. Magn Reson Med 1991; 20: 113–122.CrossRefGoogle ScholarPubMed
Gruetter, R, Weisdorf, SA, Rajanayagan, V, et al. Resolution improvements in in vivo 1H NMR spectra with increased magnetic field strength. J Magn Reson 1998; 135: 260–264.CrossRefGoogle ScholarPubMed
Kim, DH, Adalsteinsson, E, Glover, GH, Spielman, DM.Regularized higher-order in vivo shimming. Magn Reson Med 2002; 48: 715–722.CrossRefGoogle ScholarPubMed
Cavassila, S, Deval, S, Huegen, C, van Ormondt, D, Graveron-Demilly, D.Cramer–Rao bound expressions for parametric estimation of overlapping peaks: influence of prior knowledge. J Magn Reson 2000; 143: 311–320.CrossRefGoogle ScholarPubMed
Nelson, SJ, Vigneron, DB, Star-Lack, J, Kurhanewicz, J.High spatial resolution and speed in MRSI. NMR Biomed 1997; 10: 411–422.3.0.CO;2-8>CrossRefGoogle ScholarPubMed
Schaffter, T, Bornert, P, Leussler, C, Carlsen, IC, Leibfritz, D.Fast 1H spectroscopic imaging using a multi-element head-coil array. Magn Reson Med 1998; 40: 185–193.CrossRefGoogle ScholarPubMed
Noworolski, SM, Nelson, SJ, Henry, RG. High spatial resolution 1H-MRSI and segmented MRI of cortical gray matter and subcortical white matter in three regions of the human brain. Magn Reson Med 1999; 41: 21–29.3.0.CO;2-V>CrossRefGoogle ScholarPubMed
Ryner, LN, Ke, Y, Thomas, MA.Flip angle effects in STEAM and PRESS-optimized versus sinc RF pulses. J Magn Reson 1998; 131: 118–125.CrossRefGoogle ScholarPubMed
Ernst, T, Hennig, J. Improved water suppression for localized in vivo 1H spectroscopy. J Magn Reson B 1995; 106: 181–186.CrossRefGoogle ScholarPubMed
Pauly, J, Le Roux, P, Nishimura, D, Macovski, A.Parameter relations for the Shinnar Le-Roux RF design algorithm. IEEE Trans Med Imaging 1991; 10: 53–65.CrossRefGoogle Scholar
Raidy, T, Sailasuta, N, Hurd, RE.Application of reduced flip angle: 180-degree RF pulses in PRESS. In Proceedings of the Third Annual Meeting of the International Society for Magnetic Resonance in Medicine, Nice, France, 1995, p. 1020.Google Scholar
Schricker, AA, Pauly, JM, Kurhanewicz, J, Swanson, MG, Vigneron, DB.Dualband spectral–spatial RF pulses for prostate MR spectroscopic imaging. Magn Reson Med 2001; 46: 1079–1087.CrossRefGoogle ScholarPubMed
Cunningham, C, Vigneron, D, Chen, AP, et al. Design of symmetric-sweep spectral-spatial RF pulses for spectral editing. Magn Reson Med 2004; 52: 147–153.CrossRefGoogle ScholarPubMed
Ernst, T, Chang, L. Elimination of artifacts in short echo time 1H MR of the frontal lobe. Magn Reson Med 1996; 36: 462–468.CrossRefGoogle ScholarPubMed
Starck, G, Carlsson, A, Ljungberg, M, Forssell-Aronsson, E. k-Space analysis of point resolved spectroscopy (PRESS) with regard to spurious echoes in in vivo 1H MRS. NMR Biomed 2009; 22: 137–147.CrossRef
Hurd, R, Sailasuta, N. Elimination of artifacts in short echo proton spectroscopy. In Proceedings of the Fifth Annual Meeting of the International Society for Magnetic Resonance in Medicine, Vancouver, Canada, 1997,p. 1453.Google Scholar
Hurd, RE, Freeman, D. Proton editing and imaging of lactate. NMR Biomed 1991; 4: 73–80.CrossRefGoogle ScholarPubMed
Allen, PS, Thompson, RB, Wilman, AH.Metabolite-specific NMR spectroscopy in vivo. NMR Biomed 1997; 10: 435–444.3.0.CO;2-D>CrossRefGoogle ScholarPubMed
Thompson, RB, Allen, PS. Response of metabolites with coupled spins to the STEAM sequence. Magn Reson Med 2001; 45: 955–965.CrossRefGoogle ScholarPubMed
Thompson, RB, Allen, PS. Sources of variability in the response of coupled spins to the PRESS sequence and their potential impact on metabolite quantification. Magn Reson Med 1999; 41: 1162–1169.3.0.CO;2-N>CrossRefGoogle ScholarPubMed
Star-Lack, JM, Adalsteinsson, E, Adam, MF, et al. In vivo 1H MR spectroscopy of human head and neck lymph node metastasis and comparison with oxygen tension measurements. AJNR Am J Neuroradiol 2000; 21: 183–193.Google ScholarPubMed
Mescher, M, Merkle, H, Kirsch, J, Garwood, M, Gruetter, R.Simultaneous in vivo spectral editing and water suppression. NMR Biomed 1998; 11: 266–272.3.0.CO;2-J>CrossRefGoogle ScholarPubMed
Star-Lack, J, Vigneron, DB, Pauly, J, Kurhanewicz, J, Nelson, SJ.Improved solvent suppression and increased spatial excitation bandwidths for three-dimensional PRESS CSI using phase-compensating spectral/spatial spin-echo pulses. J Magn Reson Imaging 1997; 7: 745–757.CrossRefGoogle ScholarPubMed
Frahm, J, Merboldt, K, Hänicke, W.Localized proton spectroscopy using stimulated echoes. J Magn Reson 1987; 72: 502–508.Google Scholar
Ogg, RJ, Kingsley, PB, Taylor, JS.WET, a T1- and B1-insensitive water-suppression method for in vivo localized 1H NMR spectroscopy. J Magn Reson B 1994; 104: 1–10.CrossRefGoogle ScholarPubMed
Leibfritz, D, Dreher, W.Magnetization transfer MRS. NMR Biomed 2001; 14: 65–76.CrossRefGoogle ScholarPubMed
McLean, MA, Simister, RJ, Barker, GJ, Duncan, JS.Magnetization transfer effect on human brain metabolites and macromolecules. Magn Reson Med 2005; 54: 1281–1285.CrossRefGoogle ScholarPubMed
Estilaei, MR, Matson, GB, Meyerhoff, DJ. et al. Indirect imaging of ethanol via magnetization transfer at high and low magnetic fields. Magn Reson Med 2003; 49: 755–759.CrossRefGoogle ScholarPubMed
Zhou, J, Payen, JF, Wilson, DA, Traystman, RJ, van Zijl, PC.Using the amide proton signals of intracellular proteins and peptides to detect pH effects in MRI. Nat Med 2003; 9: 1085–1090.CrossRefGoogle ScholarPubMed
Klose, U. In vivo proton spectroscopy in presence of eddy currents. Magn Reson Med 1990; 14: 26–30.CrossRefGoogle ScholarPubMed
Felblinger, J, Kreis, R, Boesch, C.Effects of physiologic motion of the human brain upon quantitative 1H-MRS: analysis and correction by retro-gating. NMR Biomed 1998; 11: 107–114.3.0.CO;2-I>CrossRefGoogle ScholarPubMed
Henry, PG, van de Moortele, PF, Giacomini, E, Nauerth, A, Bloch, G.Field-frequency locked in vivo proton MRS on a whole-body spectrometer. Magn Reson Med 1999; 42: 636–642.3.0.CO;2-I>CrossRefGoogle ScholarPubMed
Gabr, RE, Sathyanarayana, S, Schär, M, Weiss, RG, Bottomley, PA.On restoring motion-induced signal loss in single-voxel magnetic resonance spectra. Magn Reson Med 2006; 56: 754–760.CrossRefGoogle ScholarPubMed
Hurd, RE, Gurr, D, Sailasuta, N.Proton spectroscopy without water suppression: the oversampled J-resolved experiment. Magn Reson Med 1998; 40: 343–347.CrossRefGoogle ScholarPubMed
Bolan, PJ, DelaBarre, L, Baker, EH, et al. Eliminating spurious lipid sidebands in 1H MRS of breast lesions. Magn Reson Med 2002; 48: 215–222.CrossRefGoogle ScholarPubMed
Hurd, R, Sailasuta, N, Srinivasan, R, et al. Measurement of brain glutamate at 3 T using TE-averaged PRESS. Magn Reson Med 2004; 51: 435–440.CrossRefGoogle Scholar
Tran, TK, Vigneron, DB, Sailasuta, N, et al. Very selective suppression pulses for clinical MRSI studies of brain and prostate cancer. Magn Reson Med 2000; 43: 23–33.3.0.CO;2-E>CrossRefGoogle ScholarPubMed
Edden, RA, Schar, M, Hillis, AE, Barker, PB.Optimized detection of lactate at high fields using inner volume saturation. Magn Reson Med 2006; 56: 912–917.CrossRefGoogle ScholarPubMed
Edden, RA and Barker, PB.Spatial effects in the detection of γ-aminobutyric acid: improved sensitivity at high fields using inner volume saturation. Magn Reson Med 2007; 58: 1276–1282.CrossRefGoogle ScholarPubMed
Brief, EE, Whittall, KP, Li, DK, MacKay, A.Proton T1 relaxation times of cerebral metabolites differ within and between regions of normal brain. NMR Biomed, 2003; 16: 503–509. [Erratum NMR Biomed. 2004; 17: 222.]CrossRefGoogle Scholar
Kamada, K, Houkin, K, Hida, K, et al. Localized proton spectroscopy of focal brain pathology in humans: significant effects of edema on spin–spin relaxation time. Magn Reson Med 1994; 31: 537–540.CrossRefGoogle ScholarPubMed
Ke, Y, Coyle, N, Simpson, NS, et al. Brain NAA T2 values are significantly lower in schizophrenia. In Proceedings of the 10th Annual Meeting of the International Society for Magnetic Resonance in Medicine, Honolulu, 2002, p. 976.Google Scholar
Hennig, J, Thiel, T, Speck, O.Improved sensitivity to overlapping multiplet signals in in vivo proton spectroscopy using a multiecho volume selective (CPRESS) experiment. Magn Reson Med 1997; 37: 816–820.CrossRefGoogle ScholarPubMed
van Zijl, PC, Moonen, CT, von Kienlin, M.Homonuclear J refocusing in echo spectroscopy. J Magn Reson 1990; 89: 28–37.Google Scholar
Lee, HK, Yaman, A, Nalcioglu, O.Homonuclear J-refocused spectral editing technique for quantification of glutamine and glutamate by 1H NMR spectroscopy. Magn Reson Med 1995; 34: 253–259.CrossRefGoogle ScholarPubMed
Murphy, PS, Leach, MO, Rowland, IJ.Signal modulation in (1)H magnetic resonance spectroscopy using contrast agents: proton relaxivities of choline, creatine, and N-acetylaspartate. Magn Reson Med 1999; 42: 1155–1158.3.0.CO;2-N>CrossRefGoogle ScholarPubMed
Lin, AP, Ross, BD. Short-echo time proton MR spectroscopy in the presence of gadolinium. J Comput Assist Tomogr 2001; 25: 705–712.CrossRefGoogle ScholarPubMed
Sijens, PE, Oudkerk, M, van Dijk, P, Levendag, PC, Vecht, CJ.1H MR spectroscopy monitoring of changes in choline peak area and line shape after Gd-contrast administration. Magn Reson Imaging 1998; 16: 1273–1280.CrossRefGoogle ScholarPubMed
Hancu, I, Zimmerman, EA, Sailasuta, N, Hurd, RE.1H MR spectroscopy using TE averaged PRESS: a more sensitive technique to detect neurodegeneration associated with Alzheimer’s disease. Magn Reson Med 2005; 53: 777–782.CrossRefGoogle ScholarPubMed
Prescot, AP, Frederick, B, Wang, L, et al. In vivo detection of brain glycine with echo-time-averaged 1H magnetic resonance spectroscopy at 4.0 T. Magn Reson Med 2006; 55: 681–686.CrossRefGoogle Scholar
Schulte, RF and Boesiger, P.ProFit: two-dimensional prior-knowledge fitting of J-resolved spectra. NMR Biomed 2006; 19: 255–263.CrossRefGoogle ScholarPubMed
Lange, T, Schulte, RFBoesiger, P.Quantitative J-resolved prostate spectroscopy using two-dimensional prior-knowledge fitting. Magn Reson Med 2008; 59: 966–972.CrossRefGoogle ScholarPubMed
Spielman, DM, Pauly, JM, Macovski, A, Glover, GH, Enzmann, DR.Lipid-suppressed single- and multisection proton spectroscopic imaging of the human brain. J Magn Reson Imaging 1992; 2: 253–262.CrossRefGoogle ScholarPubMed
Duyn, JH, Gillen, J, Sobering, G, van Zijl, PC, Moonen, CT.Multisection proton MR spectroscopic imaging of the brain. Radiology 1993; 188: 277–282.CrossRefGoogle Scholar
Blamire, AM, Rothman, DL, Nixon, T.Dynamic shim updating: a new approach towards optimized whole brain shimming. Magn Reson Med 1996; 36: 159–165.CrossRefGoogle ScholarPubMed
Hurd, R. Interleaved MR spectroscopy and imaging with dynamically updated acquisition parameters. US patent 5,657,757, 1997.
Morrell, G, Spielman, D.Dynamic shimming for multi-slice magnetic resonance imaging. Magn Reson Med 1997; 38: 477–483.CrossRefGoogle ScholarPubMed
de Graaf, RA, Brown, PB, McIntyre, S, Rothman, DL, Nixon, TW.Dynamic shim updating (DSU) for multislice signal acquisition. Magn Reson Med 2003; 49: 409–416.CrossRefGoogle ScholarPubMed
Webb, P, Spielman, D, Macovski, A.A fast spectroscopic imaging method using a blipped phase encode gradient. Magn Reson Med 1989; 12: 306–315.CrossRefGoogle ScholarPubMed
Posse, S, DeCarli, C, Le Bihan, D.Three-dimensional echo-planar MR spectroscopic imaging at short echo times in the human brain. Radiology 1994; 192: 733–738.CrossRefGoogle ScholarPubMed
Adalsteinsson, E, Irarrazabal, P, Topp, S, et al. Volumetric spectroscopic imaging with spiral-based k-space trajectories. Magn Reson Med 1998; 39: 889–898.CrossRefGoogle ScholarPubMed
Ebel, A, Govindaraju, V, Maudsley, AA.Comparison of inversion recovery preparation schemes for lipid suppression in 1H MRSI of human brain. Magn Reson Med 2003; 49: 903–908.CrossRefGoogle ScholarPubMed
Adalsteinsson, E, Star-Lack, J, Meyer, CH, Spielman, DM.Reduced spatial side lobes in chemical-shift imaging. Magn Reson Med 1999; 42: 314–323.3.0.CO;2-X>CrossRefGoogle ScholarPubMed
Sarkar, S, Heberlein, K, Hu, X.Truncation artifact reduction in spectroscopic imaging using a dual-density spiral k-space trajectory. Magn Reson Imaging 2002; 20: 743–757.CrossRefGoogle ScholarPubMed
Ebel, A, Maudsley, AA.Comparison of methods for reduction of lipid contamination for in vivo proton MR spectroscopic imaging of the brain. Magn Reson Med 2001; 46: 706–712.CrossRefGoogle Scholar
Dydak, U, Pruessmann, KP, Weiger, M, et al. Parallel spectroscopic imaging with spin-echo trains. Magn Reson Med 2003; 50: 196–200.CrossRefGoogle ScholarPubMed
Banerjee, S, Ozturk-Isik, E, Nelson, SJ, Majumdar, S.Fast magnetic resonance spectroscopic imaging at 3 Tesla using autocalibrating parallel technique. Conf Proc IEEE Eng Med Biol Soc 2006; 1: 1866–1869.Google ScholarPubMed
Otazo, R, Tsai, SY, Lin, FH, Posse, S.Accelerated short-TE 3D proton echo-planar spectroscopic imaging using 2D-SENSE with a 32-channel array coil. Magn Reson Med 2007; 58: 1107–1116.CrossRefGoogle ScholarPubMed
Tsai, SY, Otazo, R, Posse, S, et al. Accelerated proton echo planar spectroscopic imaging (PEPSI) using GRAPPA with a 32-channel phased-array coil. Magn Reson Med 2008; 59: 989–998.CrossRefGoogle ScholarPubMed
Otazo, R, Lin, FH, Wiggins, G, et al. Superresolution parallel spectroscopic imaging. In Proceedings of the Annual Meeting of the International Society of Magnetic Resonance in Medicine, 2008, p. 598.Google Scholar
Ozturk-Isik, E, Crane, JC, Cha, S, et al. Unaliasing lipid contamination for MR spectroscopic imaging of gliomas at 3T using sensitivity encoding (SENSE). Magn Reson Med 2006; 55: 1164–1169.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×