Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-qxdb6 Total loading time: 0 Render date: 2024-04-26T23:29:11.048Z Has data issue: false hasContentIssue false

Chapter 11 - Cardiovascular Medicine

from Section 2 - Systems Involved in Mitochondrial Diseases

Published online by Cambridge University Press:  28 April 2018

Patrick F. Chinnery
Affiliation:
University of Cambridge
Michael J. Keogh
Affiliation:
University of Newcastle upon Tyne
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anan, R, Nakagawa, M, Miyata, M, et al. Cardiac involvement in mitochondrial diseases. A study on 17 patients with documented mitochondrial DNA defects. Circulation 1995; 91(4): 955961.CrossRefGoogle Scholar
Bates, MG, Bourke, JP, Giordano, C, d’Amati, G, Turnbull, DM, Taylor, RW. Cardiac involvement in mitochondrial DNA disease: Clinical spectrum, diagnosis, and management. European Heart Journal 2012; 33(24): 30233033.CrossRefGoogle ScholarPubMed
Limongelli, G, Tome-Esteban, M, Dejthevaporn, C, Rahman, S, Hanna, MG, Elliott, PM. Prevalence and natural history of heart disease in adults with primary mitochondrial respiratory chain disease. European Journal of Heart Failure 2010; 12(2): 114121.CrossRefGoogle ScholarPubMed
Florian, A, Ludwig, A, Stubbe-Drager, B, et al. Characteristic cardiac phenotypes are detected by cardiovascular magnetic resonance in patients with different clinical phenotypes and genotypes of mitochondrial myopathy. Journal of Cardiovascular Magnetic Resonance: Official Journal of the Society for Cardiovascular Magnetic Resonance 2015; 17: 40.CrossRefGoogle ScholarPubMed
Taylor, RW, Giordano, C, Davidson, MM, et al. A homoplasmic mitochondrial transfer ribonucleic acid mutation as a cause of maternally inherited hypertrophic cardiomyopathy. Journal of the American College of Cardiology 2003; 41(10): 17861796.Google Scholar
Hagen, CM, Aidt, FH, Havndrup, O, et al. Private mitochondrial DNA variants in Danish patients with hypertrophic cardiomyopathy. PloS One 2015; 10(4): e0124540.CrossRefGoogle ScholarPubMed
Vydt, TC, de Coo, RF, Soliman, OI, et al. Cardiac involvement in adults with m.3243A>G MELAS gene mutation. The American Journal of Cardiology 2007; 99(2): 264269.CrossRefGoogle ScholarPubMed
Okajima, Y, Tanabe, Y, Takayanagi, M, Aotsuka, H. A follow up study of myocardial involvement in patients with mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes (MELAS). Heart 1998; 80(3): 292295.Google Scholar
Tveskov, C, Angelo-Nielsen, K. Kearns-Sayre syndrome and dilated cardiomyopathy. Neurology 1990; 40(3 Pt. 1): 553–4.Google ScholarPubMed
Stalder, N, Yarol, N, Tozzi, P, et al. Mitochondrial A3243 G mutation with manifestation of acute dilated cardiomyopathy. Circulation Heart Failure 2012; 5(1): e13.CrossRefGoogle Scholar
Kohli, SK, Pantazis, AA, Shah, JS, et al. Diagnosis of left-ventricular non-compaction in patients with left-ventricular systolic dysfunction: Time for a reappraisal of diagnostic criteria? European Heart Journal 2008; 29(1): 8995.Google Scholar
Finsterer, J. Cardiogenetics, neurogenetics, and pathogenetics of left ventricular hypertrabeculation/noncompaction. Pediatric Cardiology 2009; 30(5): 659681.Google Scholar
Tang, S, Batra, A, Zhang, Y, Ebenroth, ES, Huang, T. Left ventricular noncompaction is associated with mutations in the mitochondrial genome. Mitochondrion 2010; 10(4): 350357.Google Scholar
Di Leo, R, Musumeci, O, de Gregorio, C, et al. Evidence of cardiovascular autonomic impairment in mitochondrial disorders. Journal of Neurology 2007; 254(11): 14981503.CrossRefGoogle ScholarPubMed
Young, TJ, Shah, AK, Lee, MH, Hayes, DL. Kearns-Sayre syndrome: A case report and review of cardiovascular complications. Pacing and Clinical Electrophysiology: PACE 2005; 28(5): 454457.Google Scholar
Muller-Hocker, J, Jacob, U, Seibel, P. The common 4977 base pair deletion of mitochondrial DNA preferentially accumulates in the cardiac conduction system of patients with Kearns-Sayre syndrome. Modern Pathology: An Official Journal of the United States and Canadian Academy of Pathology, Inc. 1998; 11(3): 295301.Google ScholarPubMed
Majamaa-Voltti, K, Peuhkurinen, K, Kortelainen, ML, Hassinen, IE, Majamaa, K. Cardiac abnormalities in patients with mitochondrial DNA mutation 3243A>G. BMC Cardiovascular Disorders 2002; 2: 12.CrossRefGoogle ScholarPubMed
Wahbi, K, Larue, S, Jardel, C, et al. Cardiac involvement is frequent in patients with the m.8344A>G mutation of mitochondrial DNA. Neurology 2010; 74(8): 674677.CrossRefGoogle ScholarPubMed
Sproule, DM, Kaufmann, P, Engelstad, K, Starc, TJ, Hordof, AJ, De Vivo, DC. Wolff-Parkinson-White syndrome in patients with MELAS. Archives of Neurology 2007; 64(11): 16251627.CrossRefGoogle ScholarPubMed
Nikoskelainen, EK, Savontaus, ML, Huoponen, K, Antila, K, Hartiala, J. Pre-excitation syndrome in Leber’s hereditary optic neuropathy. Lancet 1994; 344(8926): 857858.CrossRefGoogle ScholarPubMed
Kirkman, MA, Yu-Wai-Man, P, Korsten, A, et al. Gene-environment interactions in Leber hereditary optic neuropathy. Brain: A Journal of Neurology 2009; 132(Pt 9): 23172326.Google Scholar
Khambatta, S, Nguyen, DL, Beckman, TJ, Wittich, CM. Kearns-Sayre syndrome: A case series of 35 adults and children. International Journal of General Medicine 2014; 7: 325332.Google ScholarPubMed
Subbiah, RN, Kuchar, D, Baron, D. Torsades de pointes in a patient with Kearns-Sayre syndrome: A fortunate finding. Pacing and Clinical Electrophysiology: PACE 2007; 30(1): 137139.CrossRefGoogle Scholar
DiMauro, S, Hirano, M. Merrf. In Pagon, RA, Adam, MP, Ardinger, HH, et al., eds. GeneReviews(R). Seattle (WA); 1993.Google Scholar
Thorburn, DR, Rahman, S. Mitochondrial DNA-associated Leigh Syndrome and NARP. In Pagon, RA, Adam, MP, Ardinger, HH, et al., eds. GeneReviews(R). Seattle (WA); 1993.Google Scholar
Thorburn, DR, Chow, CW, Kirby, DM. Respiratory chain enzyme analysis in muscle and liver. Mitochondrion 2004; 4(5–6): 363375.CrossRefGoogle ScholarPubMed
Rawle, MJ, Larner, AJ. NARP Syndrome: A 20-Year Follow-Up. Case Reports in Neurology 2013; 5(3): 204207.Google Scholar
Sorajja, P, Sweeney, MG, Chalmers, R, et al. Cardiac abnormalities in patients with Leber’s hereditary optic neuropathy. Heart 2003; 89(7): 791792.Google Scholar
Dudek, J, Maack, C. Barth syndrome cardiomyopathy. Cardiovascular Research 2017.CrossRefGoogle ScholarPubMed
Roberts, AE, Nixon, C, Steward, CG, et al. The Barth Syndrome Registry: Distinguishing disease characteristics and growth data from a longitudinal study. American Journal of Medical Genetics Part A 2012; 158A(11): 27262732.CrossRefGoogle ScholarPubMed
Clarke, SL, Bowron, A, Gonzalez, IL, et al. Barth syndrome. Orphanet J Rare Dis 2013; 8: 23.CrossRefGoogle ScholarPubMed
Kulik, W, Van Lenthe, H, Stet, FS, et al. Bloodspot assay using HPLC-tandem mass spectrometry for detection of Barth syndrome. Clin Chem 2008; 54(2): 371378.Google Scholar
Spencer, CT, Bryant, RM, Day, J, et al. Cardiac and clinical phenotype in Barth syndrome. Pediatrics 2006; 118(2): e33746.CrossRefGoogle ScholarPubMed
Mangat, J, Lunnon-Wood, T, Rees, P, Elliott, M, Burch, M. Successful cardiac transplantation in Barth syndrome – single-centre experience of four patients. Pediatr Transplant 2007; 11(3): 327331.CrossRefGoogle ScholarPubMed
Mayr, JA, Haack, TB, Graf, E, et al. Lack of the mitochondrial protein acylglycerol kinase causes Sengers syndrome. American Journal of Human Genetics 2012; 90(2): 314320.CrossRefGoogle ScholarPubMed
Haghighi, A, Haack, TB, Atiq, M, et al. Sengers syndrome: Six novel AGK mutations in seven new families and review of the phenotypic and mutational spectrum of 29 patients. Orphanet J Rare Dis 2014; 9: 119.Google Scholar
Hollingsworth, KG, Gorman, GS, Trenell, MI, et al. Cardiomyopathy is common in patients with the mitochondrial DNA m.3243A>G mutation and correlates with mutation load. Neuromuscular Disorders: NMD 2012; 22(7): 592596.CrossRefGoogle ScholarPubMed
Lodi, R, Rajagopalan, B, Blamire, AM, Crilley, JG, Styles, P, Chinnery, PF. Abnormal cardiac energetics in patients carrying the A3243 G mtDNA mutation measured in vivo using phosphorus MR spectroscopy. Biochim Biophys Acta 2004; 1657(2–3): 146150.Google Scholar
Bates, MG, Hollingsworth, KG, Newman, JH, et al. Concentric hypertrophic remodelling and subendocardial dysfunction in mitochondrial DNA point mutation carriers. Eur Heart J Cardiovasc Imaging 2013; 14(7): 650658.Google Scholar
Partington, SL, Givertz, MM, Gupta, S, Kwong, RY. Cardiac magnetic resonance aids in the diagnosis of mitochondrial cardiomyopathy. Circulation 2011; 123(6): e2279.Google Scholar
Authors/Task Force m, Elliott, PM, Anastasakis, A, et al. 2014 ESC guidelines on diagnosis and management of hypertrophic cardiomyopathy: The Task Force for the Diagnosis and Management of Hypertrophic Cardiomyopathy of the European Society of Cardiology (ESC). European Heart Journal 2014; 35(39): 27332779.Google Scholar
Brignole, M, Auricchio, A, Baron-Esquivias, G, et al. 2013 ESC guidelines on cardiac pacing and cardiac resynchronization therapy: The Task Force on Cardiac Pacing and Resynchronization Therapy of the European Society of Cardiology (ESC). Developed in collaboration with the European Heart Rhythm Association (EHRA). European Heart Journal 2013; 34(29): 22812329.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×