Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-28T11:36:31.021Z Has data issue: false hasContentIssue false

Section 1 - Introduction to Mitochondrial Medicine

Published online by Cambridge University Press:  28 April 2018

Patrick F. Chinnery
Affiliation:
University of Cambridge
Michael J. Keogh
Affiliation:
University of Newcastle upon Tyne
Get access
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Vafai, S. B., Mootha, V. K.. Mitochondrial disorders as windows into an ancient organelle, Nature 2012; 491: 374383.Google Scholar
Wallace, D. C.. A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine. Annual Review of Genetics 2005; 39: 359407.CrossRefGoogle ScholarPubMed
Genova, M. L., Lenaz, G.. Functional role of mitochondrial respiratory supercomplexes. Biochimica et Biophysica Acta 2014; 1837: 427443.Google Scholar
Hirst, J.. Mitochondrial complex. Annual Review of Biochemistry 2013; 82: 551575.CrossRefGoogle ScholarPubMed
Kim, H. J., Khalimonchuk, O., Smith, P. M., et al. Structure, function, and assembly of heme centers in mitochondrial respiratory complexes. Biochimica et Biophysica Acta 2012; 1823: 16041616.Google Scholar
Smith, P. M., Fox, J. L., Winge, D. R.. Biogenesis of the cytochrome bc(1) complex and role of assembly factors. Biochimica et Biophysica Acta 2012; 1817: 276286.Google Scholar
Mick, D. U., Fox, T. D., Rehling, P., Inventory control: cytochrome c oxidase assembly regulates mitochondrial translation. Nature Reviews. Molecular Cell Biology 2011; 12: 1420.CrossRefGoogle ScholarPubMed
Walker, J. E.. The ATP synthase: the understood, the uncertain and the unknown. Biochemical Society Transactions 2013; 41: 116.Google Scholar
Scarpulla, R. C.. Transcriptional paradigms in mammalian mitochondrial biogenesis and function. Physiological Reviews 2008; 88: 611638.Google Scholar
Mishra, P., Chan, D. C.. Mitochondrial dynamics and inheritance during cell division, development and disease. Nature Reviews. Molecular Cell Biology 2014; 15: 634646.Google Scholar
Youle, R. J., Narendra, D. P.. Mechanisms of mitophagy. Nature Reviews. Molecular Cell Biology 2011; 12: 914.CrossRefGoogle ScholarPubMed
Gomes, L. C., Scorrano, L.. Mitochondrial morphology in mitophagy and macroautophagy. Biochimica et Biophysica Acta 2013; 1833: 205212.CrossRefGoogle ScholarPubMed
Schon, E. A., DiMauro, S., Hirano, M.. Human mitochondrial DNA: roles of inherited and somatic mutations. Nature Reviews. Genetics 2012; 13: 878890.CrossRefGoogle ScholarPubMed
Calvo, S. E., Mootha, V. K.. The mitochondrial proteome and human disease. Annual Review of Genomics and Human Genetics 2010; 11: 2544.Google Scholar
Copeland, W. C.. Inherited mitochondrial diseases of DNA replication. Annual Review of Medicine 2008; 5: 131146.Google Scholar
Zeviani, M., Di Donato, S.. Mitochondrial disorders. Brain 2004; 127: 21532172.CrossRefGoogle ScholarPubMed
Koopman, W. J., Distelmaier, F., Smeitink, J. A., et al. OXPHOS mutations and neurodegeneration. The EMBO Journal 2013; 32: 929.CrossRefGoogle ScholarPubMed
Koopman, W. J., Willems, P. H., Smeitink, J. A.. Monogenic mitochondrial disorders. New England Journal of Medicine 2012; 366: 11321141.CrossRefGoogle ScholarPubMed
Chinnery, P., Majamaa, K., Turnbull, D., et al. Treatment for mitochondrial disorders. The Cochrane Database of Systematic Reviews 2006; CD004426.Google ScholarPubMed
Calvo, S. E., Compton, A. G., Hershman, S. G., et al. Molecular diagnosis of infantile mitochondrial disease with targeted next-generation sequencing. Science Translational Medicine 2012; 4: 118ra110.CrossRefGoogle ScholarPubMed

References

Rahman, S, Poulton, J. Diagnosis of mitochondrial DNA depletion syndromes. Arch Dis Child. 2009 Jan;94(1):35. doi: 10.1136/adc.2008.147983. PubMed PMID: 19103785.CrossRefGoogle ScholarPubMed
Rahman, S, Blok, RB, Dahl, HH, Danks, DM, Kirby, DM, Chow, CW, Christodoulou, J, Thorburn DR. Leigh syndrome: Clinical features and biochemical and DNA abnormalities. Ann Neurol. 1996 Mar;39(3):343351. PubMed PMID: 8602753.Google Scholar
Kaufmann, P, Engelstad, K, Wei, Y, Kulikova, R, Oskoui, M, Sproule, DM, Battista, V, Koenigsberger, DY, Pascual, JM, Shanske, S, Sano, M, Mao, X, Hirano, M, Shungu, DC, Dimauro, S, De Vivo, DC. Natural history of MELAS associated with mitochondrial DNA m.3243A>G genotype. Neurology. 2011 Nov 29;77(22):1965–1971. doi: 10.1212/WNL.0b013e31823a0c7f. Epub 2011 Nov 16. PubMed PMID: 22094475; PubMed Central PMCID: PMC3235358.Google Scholar
Emmanuele, V, López, LC, Berardo, A, Naini, A, Tadesse, S, Wen, B, D’Agostino, E, Solomon, M, DiMauro, S, Quinzii, C, Hirano, M. Heterogeneity of coenzyme Q10 deficiency: Patient study and literature review. Arch Neurol. 2012 Aug;69(8):978983. doi: 10.1001/archneurol.2012.206. Review. Erratum in: Arch Neurol. 2012 Jul;69(7):886. López, Luis [corrected to López, Luis C]. PubMed PMID: 22490322; PubMed Central PMCID: PMC3639472.Google Scholar
Horvath, R, Kemp, JP, Tuppen, HA, Hudson, G, Oldfors, A, Marie, SK, Moslemi, AR, Servidei, S, Holme, E, Shanske, S, Kollberg, G, Jayakar, P, Pyle, A, Marks, HM, Holinski-Feder, E, Scavina, M, Walter, MC, Coku, J, Günther-Scholz, A, Smith, PM, McFarland, R, Chrzanowska-Lightowlers, ZM, Lightowlers, RN, Hirano, M, Lochmüller, H, Taylor, RW, Chinnery, PF, Tulinius, M, DiMauro, S. Molecular basis of infantile reversible cytochrome c oxidase deficiency myopathy. Brain. 2009 Nov;132\(Pt 11):31653174. doi: 10.1093/brain/awp221. Epub 2009 Aug 31. PubMed PMID: 19720722; PubMed Central PMCID: PMC2768660.Google Scholar
Patel, KP, O’Brien, TW, Subramony, SH, Shuster, J, Stacpoole, PW. The spectrum of pyruvate dehydrogenase complex deficiency: Clinical, biochemical and genetic features in 371 patients. Mol Genet Metab. 2012 Jan;105(1):3443. doi: 10.1016/j.ymgme.2011.09.032. Epub 2011 Oct 7. Review. Erratum in: Mol Genet Metab. 2012 Jul;106(3):384. Corrected and republished in: Mol Genet Metab. 2012 Jul;106(3):385–94. PubMed PMID: 22079328; PubMed Central PMCID: PMC3754811.Google Scholar
Rahman, J, Noronha, A, Thiele, I, Rahman, S. Leigh map: A novel computational diagnostic resource for mitochondrial disease. Ann Neurol. 2017 Jan;81(1):916. doi: 10.1002/ana.24835. PubMed PMID: 27977873; PubMed Central PMCID: PMC5347854.Google Scholar
Wortmann, SB, Vaz, FM, Gardeitchik, T, Vissers, LE, Renkema, GH, Schuurs-Hoeijmakers, JH, Kulik, W, Lammens, M, Christin, C, Kluijtmans, LA, Rodenburg, RJ, Nijtmans, LG, Grünewald, A, Klein, C, Gerhold, JM, Kozicz, T, Van Hasselt, PM, Harakalova, M, Kloosterman, W, Barić, I, Pronicka, E, Ucar, SK, Naess, K, Singhal, KK, Krumina, Z, Gilissen, C, Van Bokhoven, H, Veltman, JA, Smeitink, JA, Lefeber, DJ, Spelbrink, JN, Wevers, RA, Morava, E, de Brouwer, AP. Mutations in the phospholipid remodeling gene SERAC1 impair mitochondrial function and intracellular cholesterol trafficking and cause dystonia and deafness. Nat Genet. 2012 Jun 10;44(7):797802. doi: 10.1038/ng.2325. PubMed PMID: 22683713.Google Scholar
Viscomi, C, Zeviani, M. MtDNA-maintenance defects: Syndromes and genes. J Inherit Metab Dis. 2017 Jul;40(4):587599. doi: 10.1007/s10545-017-0027-5. Epub 2017 Mar 21. PubMed PMID: 28324239; PubMed Central PMCID: PMC5500664.Google Scholar
Hikmat, O, Tzoulis, C, Chong, WK, Chentouf, L, Klingenberg, C, Fratter, C, Carr, LJ, Prabhakar, P, Kumaraguru, N, Gissen, P, Cross, JH, Jacques, TS, Taanman, JW, Bindoff, LA, Rahman, S. The clinical spectrum and natural history of early-onset diseases due to DNA polymerase gamma mutations. Genet Med. 2017 May 4. doi: 10.1038/gim.2017.35. [Epub ahead of print] PubMed PMID: 28471437.CrossRefGoogle ScholarPubMed
Wolf, NI, Rahman, S, Schmitt, B, Taanman, JW, Duncan, AJ, Harting, I, Wohlrab, G, Ebinger, F, Rating, D, Bast, T. Status epilepticus in children with Alpers’ disease caused by POLG1 mutations: EEG and MRI features. Epilepsia. 2009 Jun;50(6):15961607. doi: 10.1111/j.1528-1167.2008.01877.x. Epub 2008 Nov 19. PubMed PMID: 19054397.CrossRefGoogle ScholarPubMed
Hirano, M, Nishigaki, Y, Martí, R. Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE): A disease of two genomes. Neurologist. 2004 Jan;10(1):817. Review. PubMed PMID: 14720311.Google Scholar
Clarke, SL, Bowron, A, Gonzalez, IL, Groves, SJ, Newbury-Ecob, R, Clayton, N, Martin, RP, Tsai-Goodman, B, Garratt, V, Ashworth, M, Bowen, VM, McCurdy, KR, Damin, MK, Spencer, CT, Toth, MJ, Kelley, RI, Steward, CG. Barth syndrome. Orphanet J Rare Dis. 2013 Feb 12;8:23. doi: 10.1186/1750-1172-8-23. Review. PubMed PMID: 23398819; PubMed Central PMCID: PMC3583704.Google Scholar
Haghighi, A, Haack, TB, Atiq, M, Mottaghi, H, Haghighi-Kakhki, H, Bashir, RA, Ahting, U, Feichtinger, RG, Mayr, JA, Rötig, A, Lebre, AS, Klopstock, T, Dworschak, A, Pulido, N, Saeed, MA, Saleh-Gohari, N, Holzerova, E, Chinnery, PF, Taylor, RW, Prokisch, H. Sengers syndrome: Six novel AGK mutations in seven new families and review of the phenotypic and mutational spectrum of 29 patients. Orphanet J Rare Dis. 2014 Aug 20;9:119. doi: 10.1186/s13023-014-0119-3. Review. PubMed PMID: 25208612; PubMed Central PMCID: PMC4167147.Google Scholar
Broomfield, A, Sweeney, MG, Woodward, CE, Fratter, C, Morris, AM, Leonard, JV, Abulhoul, L, Grunewald, S, Clayton, PT, Hanna, MG, Poulton, J, Rahman, S. Paediatric single mitochondrial DNA deletion disorders: An overlapping spectrum of disease. J Inherit Metab Dis. 2015 May;38(3):445-457. doi: 10.1007/s10545-014-9778-4. Epub 2014 Oct 29. PubMed PMID: 25352051; PubMed Central PMCID: PMC4432108.Google Scholar
Pitceathly, RD, Fassone, E, Taanman, JW, Sadowski, M, Fratter, C, Mudanohwo, EE, Woodward, CE, Sweeney, MG, Holton, JL, Hanna, MG, Rahman, S. Kearns-Sayre syndrome caused by defective R1/p53R2 assembly. J Med Genet. 2011 Sep;48(9):610617. doi: 10.1136/jmg.2010.088328. Epub 2011 Mar 4. PubMed PMID: 21378381.Google Scholar
DiMauro, S, Hirano, M. MERRF. 2003 Jun 3 [updated 2015 Jan 29]. In: Pagon, RA, Adam, MP, Ardinger, HH, Wallace, SE, Amemiya, A, Bean, LJH, Bird, TD, Dolan, CR, Fong, CT, Smith, RJH, Stephens, K, editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2015. Available from www.ncbi.nlm.nih.gov/books/NBK1520/ PubMed PMID: 20301693.Google Scholar

References

Chinnery, PF. Inheritance of mitochondrial disorders. Mitochondrion 2002; 2(1–2): 149155.Google Scholar
Cree, LM, Samuels, DC, Chinnery, PF. The inheritance of pathogenic mitochondrial DNA mutations. Biochimica et biophysica acta 2009; 1792(12): 10971102.Google Scholar
McFarland, R, Taylor, RW, Turnbull, DM. The neurology of mitochondrial DNA disease. The Lancet Neurology 2002; 1(6): 343351.CrossRefGoogle ScholarPubMed
Kullar, PJ, Quail, J, Lindsey, P, et al. Both mitochondrial DNA and mitonuclear gene mutations cause hearing loss through cochlear dysfunction. Brain: A Journal of Neurology 2016; 139(Pt. 6): e33.Google Scholar
Schaefer, AM, Walker, M, Turnbull, DM, Taylor, RW. Endocrine disorders in mitochondrial disease. Molecular and Cellular Endocrinology 2013; 379(1–2): 211.Google Scholar
DiMauro, S, Hirano, M. Mitochondrial DNA deletion syndromes. In Pagon, RA, Adam, MP, Ardinger, HH, et al., eds. GeneReviews(R). Seattle (WA); 2011.Google Scholar
Taylor, RW, Schaefer, AM, Barron, MJ, McFarland, R, Turnbull, DM. The diagnosis of mitochondrial muscle disease. Neuromuscular Disorders: NMD 2004; 14(4): 237245.CrossRefGoogle ScholarPubMed

References

McFarland, R., Taylor, R.W. and Turnbull, D. M. A neurological perspective on mitochondrial disease. The Lancet Neurology 2010; 9: 829840.Google Scholar
Parikh, S., Goldstein, A., Koenig, M. K., et al. Diagnosis and management of mitochondrial disease: A consensus statement from the Mitochondrial Medicine Society. Genet Med 2015; 17: 689701.Google Scholar
Johnson, M. A., Turnbull, D. M., Dick, D. J., et al. A partial deficiency of cytochrome c oxidase in chronic progressive external ophthalmoplegia. J Neurol Sci 1983; 60: 3153.Google Scholar
Taylor, R.W., Giordano, C., Davidson, M. M., et al. A homoplasmic mitochondrial transfer ribonucleic acid mutation as a cause of maternally inherited hypertrophic cardiomyopathy. Journal of the American College of Cardiology 2003; 41: 17861796.Google Scholar
Zhu, Z., Yao, J., Johns, T., et al. SURF1, encoding a factor involved in the biogenesis of cytochrome c oxidase, is mutated in Leigh syndrome. Nat Genet 1998; 20: 337343.CrossRefGoogle ScholarPubMed
Tiranti, V., Hoertnagel, K., Carrozzo, R., et al. Mutations of SURF-1 in Leigh disease associated with cytochrome c oxidase deficiency. American Journal of Human Genetics 1998; 63: 16091621.CrossRefGoogle ScholarPubMed
Papadopoulou, L. C., Sue, C. M., Davidson, M. M., et al. Fatal infantile cardioencephalomyopathy with COX deficiency and mutations in SCO2, a COX assembly gene. Nat Genet 1999; 23: 333337.CrossRefGoogle ScholarPubMed
Bonilla, E., Sciacco, M., Tanji, K., et al. New morphological approaches to the study of mitochondrial encephalomyopathies. Brain Pathology (Zurich, Switzerland) 1992; 2: 113119.Google Scholar
Sciacco, M., Bonilla, E., Schon, E. A., et al. Distribution of wild-type and common deletion forms of mtDNA in normal and respiration-deficient muscle fibers from patients with mitochondrial myopathy. Hum Mol Genet 1994; 3: 1319.Google Scholar
Durham, S. E., Samuels, D. C., Cree, L. M., et al. Normal levels of wild-type mitochondrial DNA maintain cytochrome c oxidase activity for two pathogenic mitochondrial DNA mutations but not for m.3243A–>G. American Journal of Human Genetics 2007; 81: 189195.CrossRefGoogle Scholar
Muller-Hocker, J. Cytochrome-c-oxidase deficient cardiomyocytes in the human heart – an age related phenomenon. A histochemical ultracytochemical study. The American Journal of Pathology 1989; 134: 11671173.Google Scholar
Bender, A., Krishnan, K. J., Morris, C. M., et al. High levels of mitochondrial DNA deletions in substantia nigra neurons in aging and Parkinson disease. Nat Genet 2006; 38: 515517.Google Scholar
Rygiel, K. A., Tuppen, H. A., Grady, J. P., et al. Complex mitochondrial DNA rearrangements in individual cells from patients with sporadic inclusion body myositis. Nucleic Acids Res 2016; 44: 5313, 5329.Google Scholar
Taylor, R. W., Barron, M. J., Borthwick, G. M., et al. Mitochondrial DNA mutations in human colonic crypt stem cells. The Journal of Clinical Investigation 2003; 112: 13511360.Google Scholar
Tanji, K. and Bonilla, E. Optical imaging techniques (histochemical, immunohistochemical, and in situ hybridization staining methods) to visualize mitochondria. Methods in Cell Biology 2007; 80: 135, 154.Google ScholarPubMed
Rahman, S., Lake, B. D., Taanman, J. W., et al. Cytochrome oxidase immunohistochemistry: Clues for genetic mechanisms. Brain 2000; 123: Pt. 3, 591600.Google Scholar
Rocha, M. C., Grady, J. P., Grunewald, A., et al. A novel immunofluorescent assay to investigate oxidative phosphorylation deficiency in mitochondrial myopathy: Understanding mechanisms and improving diagnosis. Scientific Reports 2015; 5: 15037.Google Scholar
Luft, R., Ikkos, D., Palmieri, G., et al. A case of severe hypermetabolism of non-thyroid origin with a defect in the maintenance of mitochondrial respiratory control. A correlated clinical, biochemical and morphological study. J Clin Invest 1962; 41: 17761804.CrossRefGoogle Scholar
Mayr, J. A., Haack, T. B., Freisinger, P., et al. Spectrum of combined respiratory chain defects. Journal of Inherited Metabolic Disease 2015; 38: 629640.Google Scholar
Kirby, D. M., Thorburn, D. R., Turnbull, D. M., et al. Biochemical assays of respiratory chain complex activity. Methods in Cell Biology 2007; 80: 93119.Google Scholar
Rodenburg, R. J., Schoonderwoerd, G. C., Tiranti, V., et al. A multi-center comparison of diagnostic methods for the biochemical evaluation of suspected mitochondrial disorders. Mitochondrion 2013; 13: 3643.Google Scholar
Medja, F., Allouche, S., Frachon, P., et al. Development and implementation of standardized respiratory chain spectrophotometric assays for clinical diagnosis. Mitochondrion 2009; 9: 331339.Google Scholar
Invernizzi, F., D’Amato, I., Jensen, P. B., et al. Microscale oxygraphy reveals OXPHOS impairment in MRC mutant cells. Mitochondrion 2012; 12: 328335.Google Scholar
Bonnen, P. E., Yarham, J. W., Besse, A., et al. Mutations in FBXL4 cause mitochondrial encephalopathy and a disorder of mitochondrial DNA maintenance. American Journal of Human Genetics 2013; 93: 471481.CrossRefGoogle Scholar
McKenzie, M., Lazarou, M., Thorburn, D. R., et al. Analysis of mitochondrial subunit assembly into respiratory chain complexes using Blue Native polyacrylamide gel electrophoresis. Anal Biochem 2007; 364: 128137.Google Scholar
Lim, S. C., Smith, K. R., Stroud, D. A., et al. A founder mutation in PET100 causes isolated complex IV deficiency in Lebanese individuals with Leigh syndrome. American Journal of Human Genetics 2014; 94: 209222.Google Scholar
Thompson Legault, J., Strittmatter, L., Tardif, J., et al. A metabolic signature of mitochondrial dysfunction revealed through a monogenic form of Leigh syndrome. Cell Rep 2015; 13: 981989.Google Scholar
Floyd, B. J., Wilkerson, E. M., Veling, M. T., et al. Mitochondrial protein interaction mapping identifies regulators of respiratory chain function. Mol Cell 2016; 63: 621632.Google Scholar
Frazier, A. E., Thorburn, D. R. and Compton, A. G. Mitochondrial energy generation disorders: genes, mechanisms and clues to pathology. Journal of Biological Chemistry 2018 doi: 10.1074/jbc.R117.809194. [Epub ahead of print].Google Scholar
Kirby, D. M. and Thorburn, D. R. Approaches to finding the molecular basis of mitochondrial oxidative phosphorylation disorders. Twin Res Hum Genet 2008; 11: 395411.Google Scholar
Carroll, C. J., Brilhante, V. and Suomalainen, A. Next-generation sequencing for mitochondrial disorders. British Journal of Pharmacology 2014; 171: 18371853.Google Scholar
Zhang, W., Cui, H. and Wong, L. J. Comprehensive one-step molecular analyses of mitochondrial genome by massively parallel sequencing. Clinical Chemistry 2012; 58: 13221331.Google Scholar
Kohda, M., Tokuzawa, Y., Kishita, Y., et al. A comprehensive genomic analysis reveals the genetic landscape of mitochondrial respiratory chain complex deficiencies. PLoS genetics 2016; 12: e1005679.Google Scholar
Rahman, S., Poulton, J., Marchington, D., et al. Decrease of 3243 A->G mtDNA mutation from blood in MELAS syndrome: A longitudinal study. American Journal of Human Genetics 2001; 68: 238240.Google Scholar
Whittaker, R. G., Blackwood, J. K., Alston, C. L., et al. Urine heteroplasmy is the best predictor of clinical outcome in the m.3243A>G mtDNA mutation. Neurology 2009; 72: 568569.Google Scholar
Broomfield, A., Sweeney, M. G., Woodward, C. E., et al. Paediatric single mitochondrial DNA deletion disorders: An overlapping spectrum of disease. Journal of Inherited Metabolic Disease 2015; 238: 445457.Google Scholar
He, L., Chinnery, P. F., Durham, S. E., et al. Detection and quantification of mitochondrial DNA deletions in individual cells by real-time PCR. Nucleic Acids Res 2002; 30: e68.CrossRefGoogle ScholarPubMed
Chinnery, P. F., DiMauro, S., Shanske, S., et al. Risk of developing a mitochondrial DNA deletion disorder. Lancet 2004; 364: 592596.Google Scholar
Dimmock, D., Tang, L. Y., Schmitt, E. S., et al. Quantitative evaluation of the mitochondrial DNA depletion syndrome. Clinical Chemistry 2010; 56: 11191127.Google Scholar
DiMauro, S. Mitochondrial encephalomyopathies – fifty years on: The Robert Wartenberg Lecture. Neurology 2013; 81: 281291.Google Scholar
Ye, F., Samuels, D. C., Clark, T., et al. High-throughput sequencing in mitochondrial DNA research. Mitochondrion 2014; 17: 157163.Google Scholar
Griffin, H. R., Pyle, A., Blakely, E. L., et al. Accurate mitochondrial DNA sequencing using off target reads provides a single test to identify pathogenic point mutations. Genet Med 2014; 16: 962, 971.Google Scholar
Saneto, R. P. and Sedensky, M. M. Mitochondrial disease in childhood: mtDNA encoded. Neurotherapeutics 2013; 10: 199211.Google Scholar
Kirby, D. M., Boneh, A., Chow, C. W., et al. Low mutant load of mitochondrial DNA G13513A mutation can cause Leigh disease. Ann Neurol 2003; 54: 473478.Google Scholar
Gorman, G. S., Schaefer, A. M., Ng, Y., et al. Prevalence of nuclear and mtDNA mutations related to adult mitochondrial disease. Annals of Neurology. 2015; May; 77(5):753759.Google Scholar
Sallevelt, S. C., de Die-Smulders, C. E., Hendrickx, A. T., et al. De novo mtDNA point mutations are common and have a low recurrence risk. Journal of Medical Genetics. 2017 Feb; 54(2):7383.Google Scholar
Neveling, K., Feenstra, I., Gilissen, C., et al. A post-hoc comparison of the utility of sanger sequencing and exome sequencing for the diagnosis of heterogeneous diseases. Hum Mutat 2013; 34: 17211726.Google Scholar
Calvo, S. E., Tucker, E. J., Compton, A. G., et al. High-throughput, pooled sequencing identifies mutations in NUBPL and FOXRED1 in human complex I deficiency. Nat Genet 2010; 42: 851858.Google Scholar
Platt, J., Cox, R. and Enns, G. M. Points to consider in the clinical use of NGS panels for mitochondrial disease: An analysis of gene inclusion and consent forms. Journal of Genetic Counseling 2014; 23: 594603.Google Scholar
Haack, T. B., Danhauser, K., Haberberger, , et al. Exome sequencing identifies ACAD9 mutations as a cause of complex I deficiency. Nat Genet 2010; 42: 11311134.Google Scholar
Ashley, E. A. Towards precision medicine. Nat Rev Genet 2016; 17: 507522.Google Scholar
Ding, J., Sidore, C., Butler, T. J., et al. Assessing mitochondrial DNA variation and copy number in lymphocytes of ~2,000 Sardinians using tailored sequencing analysis tools. PLoS genetics 2015; 11, e1005306.Google Scholar
MacArthur, D. G., Manolio, T. A., Dimmock, D. P., et al. Guidelines for investigating causality of sequence variants in human disease. Nature 2014; 508: 469476.Google Scholar
Richards, S., Aziz, N., Bale, S., et al. Standards and guidelines for the interpretation of sequence variants: A joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med 2015; 17: 405423.Google Scholar
Falk, M. J., Shen, L., Gonzalez, M. et al. Mitochondrial Disease Sequence Data Resource (MSeqDR): A global grass-roots consortium to facilitate deposition, curation, annotation, and integrated analysis of genomic data for the mitochondrial disease clinical and research communities. Molecular Genetics and Metabolism 2015; 114: 388396.Google Scholar
Lake, N. J., Compton, A. G., Rahman, S., et al. Leigh syndrome: One disorder, more than 75 monogenic causes. Annals of Neurology 2016; 79: 190203.Google Scholar
Hoefs, S. J., Rodenburg, R. J., Smeitink, J. A., et al. Molecular base of biochemical complex I deficiency. Mitochondrion 2012; 12: 520532.Google Scholar
Fassone, E. and Rahman, S. Complex I deficiency: Clinical features, biochemistry and molecular genetics. Journal of Medical Genetics 2012; 49: 578590.Google Scholar
Stroud, D. A., Surgenor, E. E., Formosa, L. E., et al. Accessory subunits are integral for assembly and function of human mitochondrial complex I. Nature 2016; Oct 6; 538(7623): 123126.Google Scholar
Lieber, D. S., Calvo, S. E., Shanahan, K., et al. Targeted exome sequencing of suspected mitochondrial disorders. Neurology 2013; 80: 17621770.Google Scholar
Alston, C. L., He, L., Morris, A. A., et al. Maternally inherited mitochondrial DNA disease in consanguineous families. Eur J Hum Genet 2011; 19: 12261229.Google Scholar
Thompson, K., Majd, H., Dallabona, C., et al. Recurrent de novo dominant mutations in SLC25A4 cause severe early-onset mitochondrial disease and loss of mitochondrial DNA copy number. American Journal of Human Genetics 2016; Dec 1; 99(6): 1405.Google Scholar
Bernier, F. P., Boneh, A., Dennett, X., et al. Diagnostic criteria for respiratory chain disorders in adults and children. Neurology 2002; 59: 14061411.Google Scholar

References

Vento, J, Pappa, B. Genetic counselling in mitochondrial disease. Neurotherapeutics 2013; 10:243250.Google Scholar
Falk, M. Neurodevelopmental manifestations of mitochondrial disease. J Dev Behav Pediatr 2010; 31:610621.CrossRefGoogle ScholarPubMed
Hellebrekers, DMEI, Wolfe, R, Hendrickx, ATM, et al. PGD and heteroplasmic mitochondrial DNA point mutations: A systematic review estimating the chance of healthy offspring. Hum Reprod Update 2012; 18(4):341349.Google Scholar
Koopman, WJH, Willems, PHGM and Smeitink, JAM. Monogenic mitochondrial disorders. N Engl J Med 2012; 366:11321141.Google Scholar
Mitalipov, S, Amato, P, Parry, S and Falk, M. Limitations of preimplantation genetic diagnosis for mitochondrial DNA diseases. Cell Reports 2014; 7:935937.CrossRefGoogle ScholarPubMed
Bredenoord, AL, Pennings, G, Smeets, HJ, et al. Dealing with uncertainties: Ethics of prenatal diagnosis and preimplantation genetic diagnosis to prevent mitochondrial disorders. Human Reproduction Update 2008; 14:8394.Google Scholar
Bredenoord, A, Dondorp, W, Pennings, G, et al. Preimplantation genetic diagnosis for mitochondrial DNA disorders: Ethical guidance for clinical practice. European Journal of Human Genetics 2009; 17:15501559.Google Scholar
Sallevelt, SCEH, Dreesen, JCFM, Drüsedau, M, et al. Preimplantation genetic diagnosis in mitochondrial DNA disorders: Challenge and success. J Med Genet 2013; 50 (1):125132.Google Scholar
Buyx, AM, Strech, D and Schmidt, H. Ethical issues raised by direct-to-consumer personal genome analysis and whole body scans: Discussion and contextualisation of a report by the Nuffield Council on Bioethics. Z Evid Fortbild Qual Gesundhwes 2012; 106(1):2939.Google Scholar
Liao, GJ, Gronowski, AM and Zhao, Z. Non-invasive prenatal testing using cell-free fetal DNA in maternal circulation. Clin Chim Acta 2014; 428:4450.Google Scholar
Nesbitt, V, Alston, CL, Blakely, EL, et al. A national perspective on prenatal testing for mitochondrial disease. European Journal of Human Genetics 2014; 22:12551259.Google Scholar

References

Nightingale, H, Pfeffer, G, Bargiela, D, et al. Emerging therapies for mitochondrial disorders. Brain 2016;139(Pt 6):16331648.Google Scholar
Foley, AR, Menezes, MP, Pandraud, A, et al. Treatable childhood neuronopathy caused by mutations in riboflavin transporter RFVT2. Brain 2014;137(Pt 1):4456.CrossRefGoogle ScholarPubMed
Horvath, R. Update on clinical aspects and treatment of selected vitamin-responsive disorders II (riboflavin and CoQ 10). J Inherit Metab Dis. 2012;35(4):679687.Google Scholar
Olsen, RK, Koňaříková, E, Giancaspero, TA, et al. Riboflavin-responsive and non-responsive mutations in FAD synthase cause multiple Acyl-CoA Dehydrogenase and combined respiratory-chain deficiency. Am J Hum Genet 2016;98(6):11301145.Google Scholar
Schiff, M, Haberberger, B, Xia, C, et al. Complex I assembly function and fatty acid oxidation enzyme activity of ACAD9 both contribute to disease severity in ACAD9 deficiency. Hum Mol Genet 2015;24(11):32383247.Google Scholar
Alfadhel, M, Almuntashri, M, Jadah, RH, et al. Biotin-responsive basal ganglia disease should be renamed biotin-thiamine-responsive basal ganglia disease: A retrospective review of the clinical, radiological and molecular findings of 18 new cases. Orphanet J Rare Dis. 2013;8:83.Google Scholar
Bergmann, AK, Sahai, I, Falcone, JF, et al. Thiamine-responsive megaloblastic anemia: Identification of novel compound heterozygotes and mutation update. J Pediatr 2009;155(6):888892.e1.Google Scholar
Emmanuele, V, López, LC, Berardo, A, et al. Heterogeneity of coenzyme Q10 deficiency: Patient study and literature review. Arch Neurol 2012;69(8):978983.Google Scholar
Brea-Calvo, G, Haack, TB, Karall, D, et al. COQ4 mutations cause a broad spectrum of mitochondrial disorders associated with CoQ10 deficiency. Am J Hum Genet 2015;96(2):309317.Google Scholar
Parikh, S, Goldstein, A, Koenig, MK, et al. Diagnosis and management of mitochondrial disease: A consensus statement from the Mitochondrial Medicine Society. Genet Med 2015;17(9):689701.Google Scholar
Ahola, S, Auranen, M, Isohanni, P, et al. Modified Atkins diet induces subacute selective ragged-red-fiber lysis in mitochondrial myopathy patients. EMBO Mol Med 2016;8(11):12341247.Google Scholar
Prasad, C, Rupar, T, Prasad, AN. Pyruvate dehydrogenase deficiency and epilepsy. Brain Dev 2011;33(10):856865.Google Scholar
Yu-Wai-Man, P, Votruba, M, Moore, AT, Chinnery, PF. Treatment strategies for inherited optic neuropathies: Past, present and future. Eye (Lond) 2014;28(5):521537.Google Scholar
Pfeffer, G, Majamaa, K, Turnbull, DM, et al. Treatment for mitochondrial disorders. Cochrane Database Syst Rev 2012;4:CD004426.Google Scholar
Bates, MG, Newman, JH, Jakovljevic, DG, et al. Defining cardiac adaptations and safety of endurance training in patients with m.3243A>G-related mitochondrial disease. Int J Cardiol. 2013;168(4):35993608.Google Scholar
Grabhorn, E, Tsiakas, K, Herden, U, et al. Long-term outcomes after liver transplantation for deoxyguanosine kinase deficiency: A single-center experience and a review of the literature. Liver Transpl 2014;20(4):464472.Google Scholar
Hynynen, J, Komulainen, T, Tukiainen, E, et al. Acute liver failure after valproate exposure in patients with POLG1 mutations and the prognosis after liver transplantation. Liver Transpl 2014;20(11):14021412.Google Scholar
De Giorgio, R, Pironi, L, Rinaldi, R, et al. Liver transplantation for mitochondrial neurogastrointestinal encephalomyopathy. Ann Neurol 2016;80(3):448455.Google Scholar
Dionisi-Vici, C, Diodato, D, Torre, G, et al. Liver transplant in ethylmalonic encephalopathy: A new treatment for an otherwise fatal disease. Brain 2016;139(Pt 4):10451051.Google Scholar
Halter, J, Schüpbach, WM, Casali, C, et al. Allogeneic hematopoietic SCT as treatment option for patients with mitochondrial neurogastrointestinal encephalomyopathy (MNGIE): A consensus conference proposal for a standardized approach. Bone Marrow Transplant 2011;46(3):330337.Google Scholar
Clarke, SL, Bowron, A, Gonzalez, IL, et al. Barth syndrome. Orphanet J Rare Dis 2013;8:23.Google Scholar
Gorman, GS, Grady, JP, Ng, Y, et al. Mitochondrial donation – how many women could benefit? N Engl J Med 2015;372(9):885887.Google Scholar
Herbert, M, Turnbull, D. Mitochondrial donation – clearing the final regulatory hurdle in the United Kingdom. N Engl J Med 2017;376(2):171173.Google Scholar
Torres-Torronteras, J, Viscomi, C, Cabrera-Pérez, R, et al. Gene therapy using a liver-targeted AAV vector restores nucleoside and nucleotide homeostasis in a murine model of MNGIE. Mol Ther 2014;22(5):901907.Google Scholar
Garone, C, Garcia-Diaz, B, Emmanuele, V, et al. Deoxypyrimidine monophosphate bypass therapy for thymidine kinase 2 deficiency. EMBO Mol Med 2014;6(8):10161027.Google Scholar
Kanabus, M, Heales, SJ, Rahman, S. Development of pharmacological strategies for mitochondrial disorders. Br J Pharmacol 2014;171(8):17981817.Google Scholar
Pfeffer, G, Horvath, R, Klopstock, T, et al. New treatments for mitochondrial disease – no time to drop our standards. Nat Rev Neurol 2013;9(8):474481.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×