Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-jbqgn Total loading time: 0 Render date: 2024-07-04T12:43:52.857Z Has data issue: false hasContentIssue false

13 - Heritable predispositions to childhood hematologic malignancies

from Part II - Cell biology and pathobiology

Published online by Cambridge University Press:  01 July 2010

Doan Le
Affiliation:
Clinical Assistant Professor, Alberta Children's Hospital, Calgary, Alberta, Canada
Kevin Shannon
Affiliation:
Roma and Marvin Auerback Distinguished Professor of Molecular Oncology, Department of Pediatrics, Program Leader, Hematopoietic Malignancies, UCSF Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
Beverly J. Lange
Affiliation:
Yetta Dietch Novotny Professor in Clinical Oncology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
Ching-Hon Pui
Affiliation:
St. Jude Children's Research Hospital, Memphis
Get access

Summary

Introduction

Inherited cancer syndromes were estimated to account for only 0.1% of all malignant neoplasms in 1990; however, a known genetic predisposition was observed in 4.2% of pediatric cases. As new genes and more complex patterns of inheritance and penetrance have been uncovered, the proportion of both childhood and adult cancers arising in patients with a known constitutional susceptibility has continued to rise. A survey performed by Draper and associates identified four clinical syndromes that accounted for approximately 90% of children who developed cancer in the context of an inherited predisposition. Two of these – familial Wilms tumor and retinoblastoma – are caused by high-penetrance germline mutations that are rare in the general population. By contrast, neurofibromatosis type 1 (NF1) and Down syndrome are common genetic disorders that are associated with a much lower overall risk of cancer. However, because each conditon is readily diagnosed on the basis of a constellation of clinical features, the elevated incidence of cancer relative to the general population is readily apparent.

Although uncommon, familial cancer syndromes have been extraordinarily informative for defining general mechanisms of tumorigenesis and for discovering the responsible genes. In addition, many of the genes that confer a genetic predisposition to childhood cancer play a central role in normal cellular growth control. Furthermore, because most human cancers carry multiple cooperating mutations, uncovering genetic lesions that are capable of initating tumorigenesis in vivo can be problematic.

Type
Chapter
Information
Childhood Leukemias , pp. 362 - 388
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Easton, D. & Peto, J.The contribution of inherited predisposition to cancer incidence. Cancer Surv, 1990; 9: 395–416.Google ScholarPubMed
Draper, G. J., Sanders, B. M., Lennox, E. L., & Brownbill, P. A.Patterns of childhood cancer among siblings. Br J Cancer, 1996; 74: 152–8.CrossRefGoogle ScholarPubMed
Luna-Fineman, S., Shannon, K. M., & Lange, B. J.Childhood monosomy 7: epidemiology, biology, and mechanistic implications. Blood, 1995; 85: 1985–99.Google ScholarPubMed
Lange, B. J.The management of neoplastic disorders of haematopoiesis in children with Down's syndrome. Br J Haematology, 2000; 110: 512–24.CrossRefGoogle ScholarPubMed
Shapiro, L. J. Signs and symptoms of inborn errors of metabolism. In , F. A. Oski, ed., Principles and Practice of Pediatrics, 2nd edition (J. B. Lippincott, Philadelphia, PA, 1992), pp. 2173–4.Google Scholar
Murphy, M. & Epstein, L. B.Down syndrome (DS) peripheral blood contains phenotypically mature CD3+TCR alpha, beta+ cells but abnormal proportions of TCR alpha, beta+, TCR gamma, delta+, and CD4+ CD45RA+ cells: evidence for an inefficient release of mature T cells by the DS thymus. Clin Immunol Immunopathol, 1992; 62: 245–51.CrossRefGoogle ScholarPubMed
Whittingham, S., Pitt, D. B., Sharma, D. L., & Mackay, I. R.Stress deficiency of the T-lymphocyte system exemplified by Down syndrome. Lancet, 1977; 1(8004): 163–6.CrossRefGoogle ScholarPubMed
Barkin, R. M., Weston, W. L., , Humbert J. R., & Marie, F.Phagocytic function in Down syndrome – I. Chemotaxis. J Ment Defic Res, 1980; 24: 243–9.Google ScholarPubMed
May, P. & Kawanishi, H.Chronic hepatitis B infection and autoimmune thyroiditis in Down syndrome. J Clin Gastroenterol, 1996; 23: 181–4.CrossRefGoogle ScholarPubMed
Levin, S. The immune system and susceptibility to infections in Down's Syndrome. In , E. E. McCoy & , C. J. Epstein, eds., Oncology and Immunology of Down Syndrome (New York: Alan Liss, 1987), pp. 143–62.Google Scholar
Csizmadia, C. G., Mearin, M. L., Oren, A., et al.Accuracy and cost-effectiveness of a new strategy to screen for celiac disease in children with Down syndrome. J Pediatr, 2000; 137: 756–61.CrossRefGoogle ScholarPubMed
Yang, Q., Rasmussen, S. A., & Friedman, J. M.Mortality associated with Down's syndrome in the U S A from 1983 to 1997: a population-based study. Lancet, 2002; 359: 1019–25.CrossRefGoogle ScholarPubMed
Zipursky, A., Poon, A., & Doyle, J. Hematologic and oncologic disorders in Down syndrome. In , I. T. Lott & , E. E. McCoy, eds., Down Syndrome: Advances in Medical Care (New York: Wiley-Liss, 1992), pp. 93–101.Google Scholar
Avet-Loiseau, H., Mechinaud, F., & Harousseau, J. L.Clonal hematologic disorders in Down syndrome. J Ped Hem/Onc, 1995; 17: 19–24.Google ScholarPubMed
Hasle, H.Pattern of malignant disorders in individuals with Down's syndrome. Lancet Oncol, 2001; 2: 429–36.CrossRefGoogle ScholarPubMed
Hassold, T., Sherman, S., & Hunt, P. A.The origin of trisomy 21 in humans: etiology and pathogenesis of Down syndrome. Prog Clin Biol Res, 1995; 393: 1–12.Google Scholar
Fong, C.& Brodeur, G. M.Down's syndrome and leukemia: epidemiology, genetics, cytogenetics and mechanisms of leukemogenesis. Cancer Genet Cytogenet, 1987; 28: 55–76.CrossRefGoogle ScholarPubMed
Niebuhr, E.Down's syndrome: the possibility of a pathogenetic segment of chromosome 21. Humangenetik, 1974; 21: 99–101.Google Scholar
Yamakawa, K., Huo, Y.-K., Haendel, M. A., et al.DSCAM: a novel member of the immunoglobulin superfamily maps in a Down syndrome region and is involved in the development of the nervous system. Human Mol Genet, 1998; 7: 227–37.CrossRefGoogle Scholar
Druzhyna, N., Nair, R. G., LeDoux, S. P., & Wilson, G. L.Defective repair of oxidative damage in mitochondrial DNA in Down's syndrome [meeting abstract]. Proc Annu Meet Am Assoc Cancer Res, 1997; 38: A880.Google Scholar
Kempski, H. M., Chessells, J. M., & Reeves, B. R.Deletions of chromosome 21 restricted to the leukemic cells of children with Down syndrome and leukemia. Leukemia, 1997; 11: 1973–7.CrossRefGoogle ScholarPubMed
Cavani, S., Perfumo, C., Argusti, A., et al.Cytogenetic and molecular study of 32 Down syndrome families: potential leukaemia predisposing role of the most proximal segment of chromosome 21q. Br J Haematol, 1998; 103: 213–6.CrossRefGoogle ScholarPubMed
Seghezzi, L., Dellavecchia, C., Maserati, E., et al.Ph-positive CML in blastic phase with monosomy 7 in a Down syndrome patient. Monitoring by interphase cytogenetics and demonstration of maternal allelic loss. Cancer Genet Cytogene, 1997; 99: 77–80.CrossRefGoogle Scholar
Downing, J. R.The AML1-ETO chimaeric transcription factor in acute myeloid leukaemia: biology and clinical significance. Br J Haematol, 1999; 106: 296–308.CrossRefGoogle ScholarPubMed
Legare, R. D., Lu, D., Gallagher, M., et al.CBFA21, frequently rearranged in leukemia is not responsible for a familial leukemia syndrome. Leukemia, 1997; 11: 2111–19.CrossRefGoogle Scholar
Song, W. J., Sullivan, M. G., Legare, R. D., et al.Haploinsufficiency of CBFA2 causes familial thrombocytopenia with propensity to develop acute myelogenous leukemia. Nat Genet, 1999; 23: 166–74.CrossRefGoogle Scholar
Wechsler, J., Greene, M., McDevitt, M. A., et al.Acquired mutations in GATA1 in the megakaryoblastic leukemia of Down syndrome. Nat Genet, 2002; 32: 148–52.CrossRefGoogle ScholarPubMed
Mundschau, G., Gurbuxani, S., Gamis, A. S., et al.Mutagenesis of GATA1 in an initiating event in Down syndrome leukemogenesis. Blood, 2003; 101: 4298–300.CrossRefGoogle Scholar
Hitzler, J. K., Cheung, J., Li, Y., Scherer, S. W., & Zipursky, A.GATA1 mutations in transient leukemia and acute megakaryoblastic leukemia of Down syndrome. Blood, 2003; 101: 4301–4.CrossRefGoogle ScholarPubMed
Ahmed, M., Sternberg, A., Hall, G., et al.Natural history of GATA1 mutations in Down syndrome. Blood, 2004; 103: 2480–9.CrossRefGoogle ScholarPubMed
Alimena, G., Billstrom, R., Casalone, R., et al.Cytogenetic pattern in leukemic cells of patients with constitutional chromosome anomalies. Cancer Genet Cytogenet, 1985; 16: 207–18.CrossRefGoogle ScholarPubMed
Hecht, F., Hecht, B. K., Morgan, R., Sandberg, A. A., & Link, M. P.Chromosome clues to acute leukemia in Down's syndrome. Cancer Genet Cytogenet, 1986; 21: 93–8.CrossRefGoogle ScholarPubMed
Français, GroupeHématologique, Cytogénétique. Cytogenetic findings in leukemic cells of 56 patients with constitutional chromosome abnormalities. A cooperative study. Can Genet Cytogenet, 1988; 35: 243–52.Google Scholar
Kalwinsky, D. K., Raimondi, S. C., Bunin, N. J., et al.Clinical and biological characteristics of acute lymphocytic leukemia in children with Down syndrome. Am J Med Genet Suppl, 1990; 7: 267–71.Google ScholarPubMed
Pui, C., Raimondi, S. C., Borowitz, M. J., et al.Immunophenotypes and karyotypes of leukemic cells in children with Down syndrome and acute lymphoblastic leukemia. J Clin Oncol, 1993; 11: 1361–7.CrossRefGoogle ScholarPubMed
Watson, M. S., Carroll, A. J., Shuster, J. J., et al.Trisomy 21 in children with acute lymphoblastic leukemia: a Pediatric Oncology Group study (8062). Blood, 1993; 82: 3098–102.Google Scholar
Lanza, C., Volpe, G., Basso, G., et al.The common TEL/AML 1 rearrangement does not represent a frequent event in acute lymphoblastic leukaemia occuring in children with Down syndrome. Leukemia, 1997; 11: 820–1.CrossRefGoogle Scholar
Robison, L. L., Nesbit, M. E., Sather, H. N., et al.Down syndrome and acute leukemia in children: a 10-year retrospective survey from Children's Cancer Study Group. J Pediatr, 1984; 105: 235–42.CrossRefGoogle Scholar
Belkov, V. M., Krynetski, E. Y., Scheutz, J. D., et al.Reduced folate carrier expression in acute lymphoblastic leukemia: a mechanism for ploidy but not lineage differences in methotrexate accumulation. Blood, 1999; 93: 1643–50.Google Scholar
Kojima, S., Matsuyama, T., Sato, T., et al.Down syndrome and acute leukemia in children: an analysis of phenotype by use of monoclonal antibodies and electron miroscopic platelet peroxidase. Blood, 1990; 76: 2348.Google Scholar
Ravindranath, Y., Abella, E., Krischer, J., et al.Acute myeloid leukemia (AML) in Down's syndrome is highly responsive to chemotherapy: experience of Pediatric Oncology Group AML Study 8498. Blood, 1992; 80: 2210–4.Google ScholarPubMed
Lie, S. O., Jonmundsson, G., Mellander, L., et al.A population-based study of 272 children with acute myeloid leukaemia treated on two consecutive protocols with different intensity: best outcome in girls, infants, and children with Down's syndrome. Br J Haematol, 1996; 94: 82–8.CrossRefGoogle ScholarPubMed
Wells, R. J., Woods, W. G., Buckley, J. D., et al.Treatment of newly diagnosed children and adolescents with acute myeloid leukemia: a Children's Cancer Group study. J Clin Oncol, 1994; 12: 2367–77.CrossRefGoogle Scholar
Lange, B. J., Kobrinsky, N., Barnard, D. R., et al.Distinctive demography, biology, and outcome of acute myeloid leukemia and myelodysplastic syndrome in children with Down syndrome: Children's Cancer Group studies 2861 and 2891. Blood, 1998; 91: 608–15.Google ScholarPubMed
Taub, J. W., Matherly, L. H., Stout, M. L., et al.Enhanced metabolism of 1-B-D-arabinofuranosylcytosine in Down syndrome cells: a contributing factor to the superior event free survival of Down syndrome children with acute myeloid leukemia. Blood, 1996; 87: 3395–403.Google Scholar
Creutzig, U., Vormoor, R. J., Ludwig, W. D., et al.Myelodysplasia and acute myelogenous leukemia in Down's syndrome. A report of 40 children of the AML-BFM Study Group. Leukemia, 1996; 10: 1677–86.Google ScholarPubMed
Gamis, A. S., Woods, W. G., Alonzo, T. A., et al.Increasing age at diagnosis has a significantly negative impact upon outcome in children with Down syndrome and acute myeloid leukemia – a report from the Children's Cancer Group Study, CCG–2891. J Clin Oncol, 2003; 21: 3415–22.CrossRefGoogle Scholar
Ge, Y., Jensen, T. L., Matherly, L. H., & Taub, J. W.Transcriptional regulation of the cystathionine–synthase gene in Down syndrome and non-Down syndrome megakaryocytic leukemia cell lines. Blood, 2003; 101: 1551–7.CrossRefGoogle Scholar
Zipursky, A., Brown, E., Christensen, H., Sutherland, R., & Doyle, J.Leukemia and/or myeloproliferative syndrome in neonates with Down syndrome. Semin Perinatol, 1997; 21: 97–101.CrossRefGoogle ScholarPubMed
Zipursky, A., Brown, E. J., Christensen, H., & Doyle, J.Transient myeloproliferative disorder (transient leukemia) and hematologic manifestations of Down syndrome. Clin Lab Med, 1999; 19: 157–67.Google ScholarPubMed
Gamis, A. S., & Hilden, J. M.Transient myeloproliferative disorder, a disorder with too few data and many unanswered questions: does it contain an important piece of the puzzle to understanding hematopoiesis and acute myelogenous leukemia ?J Pediatric Hematol Oncol, 2002; 24: 2–5.CrossRefGoogle ScholarPubMed
Taub, J. W. & Ravindranath, Y.Down syndrome and the transient myeloproliferative disorder: why is it transient ?J Pediatric Hematol Oncol, 2002; 24: 6–8.CrossRefGoogle ScholarPubMed
Kurahashi, H., Hara, J., Yumura-Yagi, K., et al.Monoclonal nature of transient abnormal myelopoiesis in Down's syndrome. Blood, 1991; 77: 1161–3.Google ScholarPubMed
Miyashita, T., Asada, M., Fujimoto, J., et al.Clonal analysis of transient myeloproliferative disorder in Down's syndrome. Leukemia, 1991; 5: 56–9.Google ScholarPubMed
Rosner, F. & Lee, S. L. for Acute Leukemia Group B. Down's syndrome and acute leukemia: myeloblastic or lymphoblastic ?Am J Med, 1972; 53: 203–18.CrossRefGoogle ScholarPubMed
Homans, A., Verissimo, A. & Vlacha, V.Transient abnormal myelopoiesis of infancy associated with trisomy 21. Am J Pediatr Hematol Oncol, 1993; 15: 392–9.Google ScholarPubMed
Barnett, P. L. J., Clark, A. C. L., & Garson, O. M.Acute nonlymphocytic leukemia after transient myeloproliferative disorder in a patient with Down syndrome. Med Pediat Onc, 1990; 18: 347–53.CrossRefGoogle Scholar
Becroft, D. M. O. & Zwi, L. J.Perinatal visceral fibrosis accompanying the megakaryoblastic leukemoid reaction of Down syndrome. Ped Pathol, 1990; 10: 397–406.CrossRefGoogle ScholarPubMed
Ruchelli, E. D., Uri, A., Dimmick, J. E., et al.Severe perinatal liver disease and Down syndrome: an apparent relationship. Hum Pathol, 1991; 22: 1274–80.CrossRefGoogle Scholar
Miyauchi, J., Ito, Y., Kawano, T., Tsunematsu, Y., & Shimizu, K.Usual diffuse liver fibrosis accompanying transient myeloproliferative disorder in Down's syndrome: a report of four autopsy cases and proposal of a hypothesis. Blood, 1992; 80: 1521–7.Google Scholar
Al-Kasim, F., Doyle, J. J., Massey, G. V., Weinstein, H. J., & Zipursky, A., Pediatric Oncology Group. Incidence and treatment of potentially lethal diseases in transient leukemia of Down syndrome: Pediatric Oncology Group Study. J Pediatr Hematol Oncol, 2002; 24: 9–13.CrossRefGoogle ScholarPubMed
Rizzari, C., Malberti, R., Dell'Orto, M., et al.Transient myeloproliferative disorder associated with trisomy 21: is a short course of chemotherapy indicated in patients with liver impairment and severe clinical problems ?Med Pediatr Oncol, 1999; 32: 453–4.3.0.CO;2-X>CrossRefGoogle ScholarPubMed
Side, L. E. & Shannon, K. M. The NF1 gene as a tumor suppressor. In , M. Upashyaya & , D. N. Cooper, eds., Neurofibromatosis Type 1. (Oxford, UK: Bios Scientific Publishers, 1998), pp. 133–52.Google Scholar
Bader, J. L. & Miller, R. W.Neurofibromatosis and childhood leukemia. J Pediatr, 1978; 92: 925–9.CrossRefGoogle ScholarPubMed
Shannon, K. M., Turhan, A. G., Rogers, P. C., & Kan, Y. W.Evidence implicating heterozygous deletion of chromosome 7 in the pathogenesis of familial leukemia associated with monosomy 7. Genomics, 1992; 14: 121–5.CrossRefGoogle ScholarPubMed
Stiller, C. A., Chessells, J. M., & Fitchett, M.Neurofibromatosis and childhood leukemia/lymphoma: a population-based UKCCSG study. Br J Cancer, 1994; 70: 969–72.CrossRefGoogle Scholar
Maris, J. M., Wiersma, S. R., Mahgoub, N., et al.Monosomy 7 myelodysplastic syndrome and other second malignant neoplasms in children with neurofibromatosis type 1. Cancer, 1997; 79: 1438–46.3.0.CO;2-#>CrossRefGoogle ScholarPubMed
Boguski, M. & McCormick, F.Proteins regulating Ras and its relatives. Nature, 1993; 366: 643–53.CrossRefGoogle ScholarPubMed
Donovan, S., See, W., Bonifas, J., Stokoe, D., & Shannon, K. M.Hyperactivation of protein kinase B and ERK have discrete effects on survival, proliferation, and cytokine expression in Nf1-deficient myeloid cells. Cancer Cell, 2002; 2: 507–14.CrossRefGoogle ScholarPubMed
Bos, J. L.ras oncogenes in human cancer: a review. Cancer Res, 1989; 49: 4682–9.Google ScholarPubMed
Shannon, K. M., O'Connell, P., Martin, G. A., et al.Loss of the normal NF1 allele from the bonemarrow of children with type 1 neurofibromatosis and malignant myeloid disorders. N Engl J Med, 1994; 330: 597–601.CrossRefGoogle Scholar
Bollag, G., Clapp, D. W., Shih, S., et al.Loss of NF1 results in activation of the Ras signaling pathway and leads to aberrant growth in murine and human hematopoietic cells. Nat Genet, 1996; 12: 144–8.CrossRefGoogle Scholar
Kalra, R., Paderanga, D., Olson, K., & Shannon, K. M.Genetic analysis is consistent with the hypothesis that NF1 limits myeloid cell growth through p21ras. Blood, 1994; 84: 3435–9.Google ScholarPubMed
Brannan, C. I., Perkins, A. S., Vogel, K. S., et al.Targeted disruption of the neurofibromatosis type 1 gene leads to developmental abnormalities in heart and various neural crest-derived tissues. Genes Develop, 1994; 8: 1019–29.CrossRefGoogle ScholarPubMed
Jacks, T., Shih, S., Schmitt, E. M., et al.Tumorigenic and developmental consequences of a targeted Nf1 mutation in the mouse. Nat Genet, 1994; 7: 353–61.CrossRefGoogle Scholar
Largaespada, D. A., Brannan, C. I., Jenkins, N. A., & Copeland, N. G.Nf1 deficiency causes Ras-mediated granulocyte-macrophage colony stimulating factor hypersensitivity and chronic myeloid leukemia. Nat Genet, 1996; 12: 137–43.CrossRefGoogle Scholar
Mahgoub, N., Taylor, B., LeBeau, M., et al.Myeloid malignancies induced by alkylating agents in NF1 mice. Blood, 1999; 93: 3617–23.Google ScholarPubMed
Tartaglia, M., Kalidas, K., Shaw, A., et al.PTPN11 mutations in Noonan syndrome: molecular spectrum, genotype-phenotype correlation, and phenotypic heterogeneity. Am J Hum Genet, 2002; 70: 1555–63.CrossRefGoogle ScholarPubMed
Tartaglia, M., Mehler, E. L., Goldberg, R., et al.Mutations in PTPN11, encoding the protein tyrosine phosphatase SHP-2, cause Noonan syndrome. Nat Genet, 2001; 29: 465–8.CrossRefGoogle ScholarPubMed
Bader-Meunier, B., Tchernia, G., Miélot, F., et al.Occurrence of myeloproliferative disorder in patients with the Noonan syndrome. J Pediatr, 1997; 130: 885–9.CrossRefGoogle ScholarPubMed
Choong, K., Freedman, M. H., Chitayat, D., et al.Juvenile myelomonocytic leukemia and Noonan syndrome. J Pediatr Hematol Oncol, 1999; 21: 523–7.CrossRefGoogle ScholarPubMed
Barford, D. & Neel, B. G.Revealing mechanisms for SH2 domain mediated regulation of the protein tyrosine phosphatase SHP-2. Structure, 1998; 6: 249–54.CrossRefGoogle ScholarPubMed
Neel, B. G., Gu, H., & Pao, L.The ‘Shp'ing news: SH2 domain-containing tyrosine phosphatases in cell signaling. Trends Biochem Sci, 2003; 28: 284–93.CrossRefGoogle ScholarPubMed
Feng, G. S.Shp-2 tyrosine phosphatase: signaling one cell or many. Exp Cell Res, 1999; 253: 47–54.CrossRefGoogle ScholarPubMed
Vactor, D. van, , O'Reilly, A. M., & Neel, B. G.Genetic analysis of protein tyrosine phosphatases. Curr Opin Genet Dev, 1998; 8: 112–26.CrossRefGoogle Scholar
Chen, B., Bronson, R. T., Klaman, L. D., et al.Mice mutant for Egfr and Shp2 have defective cardiac semilunar valvulogenesis. Nat Genet, 2000; 24: 296–9.CrossRefGoogle ScholarPubMed
Loh, M. L., Vattikuti, S., Schubbert, S., et al.Mutations in PTPN11 implicate the SHP-2 phosphatase in leukemogenesis. Blood, 2004; 103: 2325–31.CrossRefGoogle ScholarPubMed
Tartaglia, M., Niemeyer, C. M., Fragale, A., et al.Somatic mutations in PTPN11 in juvenile myelomonocytic leukemia, myelodysplastic syndromes and acute myeloid leukemia. Nat Genet, 2003; 34: 148–50.CrossRefGoogle ScholarPubMed
Shwachman, H., Diamond, L. K., Oski, F. A., & Khaw, K. T.The syndrome of pancreatic insufficiency and bone marrow dysfunction. J Pediatr, 1964; 65: 645–63.CrossRefGoogle ScholarPubMed
Bodian, M., Sheldon, W., & Lightwood, R.Congenital hypoplasia of the exocrine pancreas. Acta Paediatr, 1964; 53: 282–93.CrossRefGoogle ScholarPubMed
Aggett, P. J., Cavanaugh, N. P., Matthew, D. J., et al.Shwachman's syndrome. A review of 21 cases. Arch Dis Child, 1980; 55: 331–47.CrossRefGoogle ScholarPubMed
Rothbaum, R., Perrault, J., Vlachos, A., et al.Shwachman-Diamond syndrome: report from an international conference. J Pediatrics, 2002; 141: 266–70.CrossRefGoogle ScholarPubMed
Mack, D. R.Shwachman-Diamond syndrome. J Pediatr, 2002; 141: 164–5.CrossRefGoogle ScholarPubMed
Ip, W. F., Dupuis, A., Ellis, L., et al.Serum pancreatic enzymes define the pancreatic phenotype in patients with Shwachman–Diamond syndrome. J Pediatr, 2002; 141: 259–65.CrossRefGoogle ScholarPubMed
Mack, D. R., Forstner, G. G., Wilschanski, M., et al.Shwachman syndrome: exocrine pancreatic dysfunction and variable phenotypic expression. Gastroenterology, 1996; 111: 1593–602.CrossRefGoogle ScholarPubMed
Ginzberg, H., Shin, J., Ellis, L., et al.Shwachman syndrome: phenotypic manifestations of sibling sets and isolated cases in a large patient cohort are similar. J Pediatr, 1999; 135: 81–8.CrossRefGoogle Scholar
Smith, O. P., Hann, I. M., Chessells, J. M., Reeves, B. R., & Milla, P.Haematological abnormalities in Shwachman–Diamond syndrome. Br J Haematol, 1996; 94: 279–84.CrossRefGoogle ScholarPubMed
Dror, Y. & Freedman, M. H.Shwachman–Diamond syndrome marrow cells show abnormally increased apoptosis mediated through the Fas pathway. Blood, 2001; 97: 3011–16.CrossRefGoogle ScholarPubMed
Dror, Y., Durie, P., Ginzberg, H., et al.Clonal evolution in marrows of patients with Shwachman–Diamond syndrome: a prospective 5-year follow-up study. Exp Hematol, 2002; 30: 659–69.CrossRefGoogle ScholarPubMed
Woods, W. G., Krivit, W., Lubin, B. H., & Ramsay, N. K.Aplastic anemia associated with the Shwachman syndrome: in vivo and in vitro observations. Am J Pediatr Hematol Oncol, 1981; 3: 347–51.Google ScholarPubMed
Smith, O. P., Hann, I. M., Chessells, J. M., Reeves, B. R., & Milla, P.Haematological abnormalities in Shwachman–Diamond syndrome. Br J Haematol, 1996; 94: 279–84.CrossRefGoogle ScholarPubMed
Dokal, I., Rule, S., Chen, F., Potter, M., & Goldman, J.Adult onset of acute myeloid leukaemia (M6) in patients with Shwachman–Diamond syndrome. Br J Haematol, 1997; 99: 171–3.CrossRefGoogle ScholarPubMed
Dror, Y., Squire, J., Durie, P., & Freedman, M. H.Malignant myeloid transformation with isochromosome 7q in Shwachman–Diamond syndrome. Leukemia, 1998; 12: 1591–5.CrossRefGoogle ScholarPubMed
Freedman, M. H. & Alter, B. P.Risk of myelodysplastic syndrome and acute myeloid leukemia in congenital neutropenias. Semin Hematol, 2002; 39: 128–33.CrossRefGoogle ScholarPubMed
Popovic, M., Goobie, S., Morrison, J., et al.Fine mapping of the locus for Shwachman–Diamond syndrome at 7q11, identification of shared disease haplotypes, and exclusion of TPST1 as a candidate gene. Eur J Human Genet, 2002; 10: 250–8.CrossRefGoogle ScholarPubMed
Boocock, G. R. B., Morrison, J. A., Popovic, M., et al.Mutations in SBDS are associated with Shwachman-Diamond syndrome. Nat Genet, 2003; 33: 97–101.CrossRefGoogle ScholarPubMed
Tada, H., Ri, T., Yasheda, H., et al.A case of Shwachman syndrome with increased spontaneous chromosome breakage. Hum Genet, 1987; 77: 289–91.CrossRefGoogle ScholarPubMed
Smith, A., Shaw, P. J., Webster, B., et al.Intermittent 20q- and consistent i(7q) in a patient with Shwachman–Diamond syndrome. Pediatr Hematol Oncol, 2002; 19: 525–8.CrossRefGoogle Scholar
Imashuku, S., Hibi, S., Nakajima, F., et al.A review of 125 cases to determine the risk of myelodysplasia and leukemia in pediatric neutropenic patients after treatment with recombinant human granulocyte colony-stimulating factor. Blood, 1994; 84: 2380–1.Google ScholarPubMed
Park, S. Y., Chase, M. B., Kwack, Y. G., et al.Allogeneic bone marrow transplantation in Shwachman–Diamond syndrome with malignant myeloid transformation. A case report. Korean J Intern Med, 2002; 17: 204–6.CrossRefGoogle ScholarPubMed
Lindor, N. M., & Greene, M. H.The concise handbook of family cancer syndromes. Mayo Familial Cancer Program. J. Natl Cancer Inst, 1998; 90: 1039–71.CrossRefGoogle ScholarPubMed
Alter, B. P.Fanconi's anemia and malignancies. Am J Hematol, 1996; 53: 99–110.3.0.CO;2-Z>CrossRefGoogle ScholarPubMed
Auerbach, A. D. & Allen, R. G.Leukemia and preleukemia in Fanconi anemia patients. A review of the literature and report of the International Fanconi Anemia Registry. Cancer Genet Cytogenet, 1991; 51: 1–12.CrossRefGoogle ScholarPubMed
Gyger, M., Perreault, C., Belanger, R., et al.Unsuspected Fanconi's anemia and bone marrow transplantation in cases of acute myelomonocytic leukemia. N Engl J Med, 1989; 321: 120–1.Google ScholarPubMed
Kutler, D. I., Singh, B., Satagopan, J., et al.A 20-year perspective on the International Fanconi Anemia Registry (IFAR). Blood, 2003; 101: 1249–56.CrossRefGoogle Scholar
Taniguchi, T. & Dandrea, A. D.Molecular pathogenesis of Fanconi anemia. Int J Hematol, 2002; 75: 123–8.CrossRefGoogle ScholarPubMed
Stewart, G. & Elledge, S. J.The two faces of BRCA2, a FANCtastic discovery. Mol Cell, 2002; 10: 2–4.CrossRefGoogle ScholarPubMed
Garcia-Higuera, I., Taniguchi, T., Ganesan, S., et al.Interaction of the Fanconi anemia proteins and BRCA1 in a common pathway. Mol Cell, 2001; 7: 249–62.CrossRefGoogle Scholar
Howlett, N. G., Taniguchi, T., Olson, S., et al.Biallelic inactivation of BRCA2 in Fanconi anemia. Science, 2002; 297: 606–9.CrossRefGoogle ScholarPubMed
Davies, S. M., Khan, S., Wagner, J. E., et al.Unrelated donor bone marrow transplantation for Fanconi anemia. Bone Marrow Transplant, 1996; 17: 43–7.Google ScholarPubMed
Guardiola, P., Pasquini, R., Dokal, I., et al.Outcome of 69 allogeneic stem cell transplantations for Fanconi anemia using HLA-matched unrelated donors: a study on behalf of the European Group for Blood and Marrow Transplantation. Blood, 2000; 95: 422–9.Google Scholar
MacMillan, M. L., Auerbach, A. D., Davies, S. M., et al.Haematopoietic cell transplantation in patients with Fanconi anaemia using alternate donors: results of a total body irradiation dose escalation trial. Br J Haematol, 2000; 109: 121–9.CrossRefGoogle ScholarPubMed
D'Andrea, A. D., Dahl, N., Guinan, E. C., & Shimamura, A.Marrow failure. Hematology (Am Soc Hematol Educ Program), 2002: 58–72.Google ScholarPubMed
Zeidler, C. & Welte, K.Kostmann syndrome and severe congenital neutropenia. Semin Hematol, 2002; 39: 82–8.CrossRefGoogle ScholarPubMed
Banerjee, A. & Shannon, K. M.Leukemic transformation in patients with severe congenital neutropenia. J Pediatr Hematol Oncol, 2001; 23: 487–95.CrossRefGoogle ScholarPubMed
Aprikyan, A. A., Liles, W. C., & Dale, D. C.Emerging role of apoptosis in the pathogenesis of severe neutropenia. Curr Opin Hematol, 2000; 7: 131–2.CrossRefGoogle ScholarPubMed
Kobayashi, M., Yumiba, C., Kawaguchi, Y., et al.Abnormal responses of myeloid progenitor cells to recombinant human colony-stimulating factors in congenital neutropenia. Blood, 1990; 75: 2143–9.Google ScholarPubMed
Hestdal, K., Welte, K., Lie, S. O., et al.Severe congenital neutropenia: abnormal growth and differentiation of myeloid progenitors to granulocyte colony-stimulating factor (G-CSF) but normal response to G-CSF plus stem cell factor. Blood, 1993; 82: 2991–7.Google ScholarPubMed
Bernhardt, T. M., Burchardt, E. R., & Welte, K.Assessment of G-CSF and GM-CSF mRNA expression in peripheral blood mononuclear cells from patients with severe congenital neutropenia and in human myeloid leukemic cell lines. Exp Hematol, 1993; 21: 163–8.Google ScholarPubMed
Guba, S. C., Sartor, C. A., Hutchinson, R., Boxer, L. A., & Emerson, S. G.Granulocyte colony-stimulating factor (G-CSF) production and G-CSF receptor structure in patients with congenital neutropenia. Blood, 1994; 83: 1486–92.Google ScholarPubMed
Mempel, K., Pietsch, T., Menzel, T., Zeidler, C., & Welte, K.Increased serum levels of granulocyte colony-stimulating factor in patients with severe congenital neutropenia. Blood, 1991; 77: 1919–22.Google ScholarPubMed
Horwitz, M., Benson, K. F., Person, R. E., Aprikyan, A. G., & Dale, D. C.Mutations in ELA2, encoding neutrophil elastase, define a 21-day biological clock in cyclic haematopoiesis. Nat Genet, 1999; 23: 433–6.CrossRefGoogle ScholarPubMed
Dale, D. C., Person, R. E., Bolyard, A. A., et al.Mutations in the gene encoding neutrophil elastase in congenital and cyclic neutropenia. Blood, 2000; 96: 2317–22.Google ScholarPubMed
Aprikyan, A. A., Liles, W. C., Boxer, L. A., & Dale, D. C.Mutant elastase in pathogenesis of cyclic and severe congenital neutropenia. J Pediatr Hematol Oncol, 2002; 24: 784–6.CrossRefGoogle ScholarPubMed
Dong, F., Brynes, R., Tidow, N., et al.Mutations in the gene for the granulocyte colony stimulating factor receptor in patients with acute myeloid leukemia preceded by severe congenital neutropenia. N Engl J Med, 1995; 333: 487–93.CrossRefGoogle ScholarPubMed
Hunter, M. G. & Avalos, B. R.Granulocyte colony-stimulating factor receptor mutations in severe congenital neutropenia transforming to acute myelogenous leukemia confer resistance to apoptosis and enhance cell survival. Blood, 2000; 95: 2132–7.Google ScholarPubMed
Kalra, R., Dale, D., Freedman, M., et al.Monosomy 7 and activating RAS mutations accompany malignant transformation in patients with congential neutropenia. Blood, 1995; 86: 4579–86.Google Scholar
Grenda, D. S., Johnson, S. E., Mayer, J. R., et al.Mice expressing a neutrophil elastase mutation derived from patients with severe congenital neutropenia have normal granulopoiesis. Blood, 2002; 100: 3221–8.CrossRefGoogle ScholarPubMed
Dale, D., Bonilla, M. A., Davis, M., et al.A randomized controlled phase II trial of recombinant human granulocyte colony stimulating factor for treatment of severe chronic neutropenia. Blood, 1993; 81: 2496–502.Google Scholar
Zeidler, C., Welte, K., Barak, Y., et al.Stem cell transplantation in patients with severe congenital neutropenia without evidence of leukemic transformation. Blood, 2000; 95: 1195–8.Google ScholarPubMed
Ancliff, P. J., Gale, R. E., Liesner, R., Hann, I., & Linch, D. C.Long-term follow-up of granulocyte colony-stimulating factor receptor mutations in patients with severe congenital neutropenia: implications for leukaemogenesis and therapy. Br J Haematol, 2003; 120: 685–90.CrossRefGoogle ScholarPubMed
Carroll, W. L., Morgan, R., & Glader, B. E.Childhood monosomy 7 syndrome: a familial disorder. J Pediatr, 1985; 107: 578–80.CrossRefGoogle ScholarPubMed
Shannon, K. M., Turhan, A. G., Chang, S. S. Y., et al.Familial bone marrow monosomy 7: evidence that the predisposing locus is not on the long arm of chromosome 7. J Clin Invest, 1989; 84: 984–9.CrossRefGoogle ScholarPubMed
Kwong, Y. L., Ng, M. H., & Ma, S. K.Familial acute myeloid leukemia with monosomy 7: late onset and involvement of a multipotential progenitor cell. Cancer Genet Cytogenet, 2000; 116: 170–3.CrossRefGoogle ScholarPubMed
Daghistani, D., Curless, R., Toledano, S. R., & Ayyar, D. R.Ataxia-pancytopenia and monosomy 7 syndrome. J Pediatr, 1989; 115: 108–10.CrossRefGoogle ScholarPubMed
Li, F. P., Hecht, F., Kaiser-McCaw, B., Baranko, P. V., & Potter, N. U.Ataxia-pancytopenia: syndrome of cerebellar ataxia, hypoplastic anemia, monosomy 7, and acute myelogenous leukemia. Cancer Genet Cytogenet, 1981; 4: 189–96.CrossRefGoogle ScholarPubMed
Ho, C. Y., Otterud, B., Legare, R. D., et al.Linkage of a familial platelet disorder with a propensity to develop myeloid malignancies to human chromosome 21q22.1–22.2. Blood, 1996; 87: 5218–24.Google ScholarPubMed
Walker, L. C., Stevens, J., Campbell, H., et al.A novel inherited mutation of the transcription factor RUNX1 causes thrombocytopenia and may predispose to acute myeloid leukaemia. Br J Haematol, 2002; 117: 878–81.CrossRefGoogle ScholarPubMed
Michaud, J., Wu, F., Osato, M., et al.In vitro analyses of known and novel RUNX1/AML1 mutations in dominant familial platelet disorder with predisposition to acute myelogenous leukemia: implications for mechanisms of pathogenesis. Blood, 2002; 99: 1364–72.CrossRefGoogle ScholarPubMed
Buijs, A., Poddighe, P., Wijk, R., et al.A novel CBFA2 single-nucleotide mutation in familial platelet disorder with propensity to develop myeloid malignancies. Blood, 2001; 98: 2856–8.CrossRefGoogle ScholarPubMed
Swift, M., Morrell, D., Cromartie, E., et al.The incidence and gene frequency of ataxia-telangiectasia in the United States. Am J Hum Genet, 1986; 39: 573–83.Google ScholarPubMed
Telatar, M., Teraoka, S., Wang, Z., et al.Ataxia-telangiectasia: identification and detection of founder-effect mutations in the ATM gene in ethnic populations. Am J Hum Genet, 1998; 62: 86–97.CrossRefGoogle ScholarPubMed
Gatti, R. A. Ataxia-telangiectasia. Gene Reviews, 2002. http://geneclinics.org(10/28/2002).
Morrell, D., Cromartie, E., & Swift, M.Mortality and cancer incidence in 263 patients with ataxia-telangiectasia. J Natl Cancer Inst, 1986; 77: 89–92.Google ScholarPubMed
Swift, M., Morrell, D., Massey, R. B., & Chase, C. L.Incidence of cancer in 161 families affected by ataxia-telangiectasia. N Engl J Med, 1991; 25: 1831–6.CrossRefGoogle Scholar
Olsen, J. H., Hahnemann, J. M., Borresen-Dale, A. L., et al.Cancer in patients with ataxia-telangiectasia and in their relatives in the nordic countries. J Natl Cancer Inst, 2001; 93: 121–7.CrossRefGoogle ScholarPubMed
FitzGerald, M. G., Bean, J. M., Hegde, S. R., et al.Heterozygous ATM mutations do not contribute to early onset of breast cancer. Nat Genet, 1997; 15: 307–10.CrossRefGoogle Scholar
Khanna, K. K.Cancer risk and the ATM gene: a continuing debate. J Natl Cancer Inst, 2000; 92: 795–802.CrossRefGoogle ScholarPubMed
Spring, K., Ahangari, F., Scott, S. P., et al.Mice heterozygous for mutation in Atm, the gene involved in ataxia-telangiectasia have heightened susceptibility to cancer. Nat Genet, 2002; 31: 185–90.CrossRefGoogle Scholar
Boder, E. Ataxia-telangiectasia an overview. In , R. A. Gatti & , M. Swift, eds., Ataxia-Telangiectasia: Genetics, Neuropathy and Immunology of a Degenerative Disease of Childhood (New York: Alan Liss, 1985), pp. 1–63.Google Scholar
Oxelius, V. A., Laurell, A. B., Lindquist, B., et al.IgG subclasses in selective IgA deficiency: importance of IgG2-IgA deficiency. N Engl J Med, 1981; 304: 1476–7.CrossRefGoogle ScholarPubMed
Schubert, R., Reichenbach, J., & Zielen, S.Deficiencies in CD4+ and CD8+ T cell subsets in ataxia telangiectasia. Clin Exp Immunol, 2002; 129: 125–32.CrossRefGoogle ScholarPubMed
Waldmann, T. A., Misiti, J., Nelson, D. L., & Kraemer, K. H.Ataxia-telangiectasia: a multisystem hereditary disease with immunodeficiency, impaired organ maturation, X-ray hypersensitivity, and a high incidence of neoplasia. Ann Intern Med, 1983; 99: 367–79.CrossRefGoogle Scholar
Murphy, R. C., Berdon, W. E., Ruzal-Shapiro, C., et al.Malignancies in pediatric patients with ataxia telangiectasia. Pediatr Radiol, 1999; 29: 225–30.CrossRefGoogle ScholarPubMed
Sandoval, C., Schantz, S., Posey, D., & Swift, M.Parotid and thyroid gland cancers in patients with ataxia-telangiectasia. Pediatr Hematol Oncol, 2001; 18: 485–90.CrossRefGoogle ScholarPubMed
Viniou, N., Terpos, E., Rombos, J., Acute myeloid leukemia in a patient with ataxia-telangiectasia: a case report and review of the literataure. Leukemia, 2001; 15: 668–70.Google Scholar
Yalcin, B., Kutluk, M. T., Sanal, O., et al.Hodgkin's disease and ataxia telangiectasia with pulmonary cavities. Pediatr Pulmonol, 2002; 33: 399–403.CrossRefGoogle ScholarPubMed
Sun, X., Becker-Catania, S. G., Chun, H. H., Early diagnosis of ataxia-telangiectasia using radiosensitivity testing. J Pediatr, 2002; 140: 724–31.CrossRefGoogle ScholarPubMed
Telatar, M., Wang, Z., Udar, N., et al.Ataxia-telangiectasia: mutations in ATM cDNA detected by protein-truncation screening. Am J Hum Genet, 1996; 59: 40–4.Google ScholarPubMed
Loeb, D. M., Lederman, H. M., & Winkelstein, J. A.Lymphoid malignancy as a presenting sign of ataxia-telangiectasia. J Pediatr Hematol Oncol, 2000; 22: 464–7.CrossRefGoogle ScholarPubMed
Gatti, R. A., Berkel, I., Boder, E., et al.Localization of an ataxia-telangiectasia gene to chromsome 11q22–23. Nature, 1988; 336: 577–80.CrossRefGoogle Scholar
Savitsky, K., Bar-Shira, A., Gilad, S., et al.A single ataxia telangiectasia gene with a product similar to PI-3 kinase. Science, 1995; 268: 1749–53.CrossRefGoogle ScholarPubMed
Morgan, S. E. & Kastan, M. B.p53 and ATM: cell cycle, cell death, and cancer. Adv Cancer Res, 1997; 71: 1–25.CrossRefGoogle ScholarPubMed
Taylor, A. M. R., Metcalfe, J. A., Thick, J., & Mak, Y. F.Leukemia and lymphoma in ataxia telangiectasia. Blood, 1996; 87: 423–38.Google ScholarPubMed
Virgilio, L., Narducci, M. G., Isobe, M., et al.Identification of the TCL1 gene involved in T cell malignancies. Proc Natl Acad of Sci. U S A, 1994; 91: 12530–4.CrossRefGoogle ScholarPubMed
Thick, J., Sherrengla, P. D., Fisch, P., Taylor, A. M. R. & Rabbits, T. H.Molecular analysis of a new translocation t(×; 14)(q28; q11) in premalignancy and leukemia associated with ataxia-telangiectasia. Genes Chromosomes Cancer, 1992; 5: 321.CrossRefGoogle Scholar
Stilgenbauer, S., Schaffner, C., Litterst, A., et al.Biallelic mutations in the ATM gene in T-prolymphocytic leukemia. Nat Med, 1997; 3: 1155–9.CrossRefGoogle ScholarPubMed
Stoppa-Lyonnet, D., Soulier, J., Lauge, A., et al.Inactivation of the ATM gene in T-cell prolymphocytic leukemias. Blood, 1998; 91: 3920–6.Google ScholarPubMed
Luo, L., Lu, F. M., Hart, S., et al.Ataxia-telangiectasia and T-cell leukemias: no evidence for somatic ATM mutation in sporadic T-ALL or for hypermethylation of the ATM-NPAT/E14 bidirectional promoter in T-PLL. Cancer Res, 1998; 58: 2293–7.Google ScholarPubMed
Sandoval, C., & Swift, M.Treatment of lymphoid malignancies in patients with ataxia-telangiectasia. Med Pediatr Oncol, 1998; 31: 491–7.3.0.CO;2-B>CrossRefGoogle ScholarPubMed
Toledano, S. R. & Lange, B. J.Ataxia-telangiectasia and acute lymphoblastic leukemia. Cancer, 1980; 45: 1675–8.3.0.CO;2-D>CrossRefGoogle ScholarPubMed
Chen, R. L., Wang, P. J., Hsu, Y. H., Chang, P. Y., & Fang, J. S.Severe lung fibrosis after chemotherapy in a child with ataxia-telangiectasia. J Pediatr Hematol Oncol, 2002; 24: 77–9.CrossRefGoogle Scholar
Weyl Ben Arush, M., Rosenthal, J., Dale, J., et al.Ataxia telangiectasia and lymphoma: an indication for individualized chemotherapy dosing – report of treatment in a highly inbred Arab family. Pediatr Hematol Oncol, 1995; 12: 163–9.CrossRefGoogle Scholar
Yamada, Y., Inoue, R., Fukao, T., et al.Ataxia telangiectasia associated with B-cell lymphoma: the effect of a half-dose of the drugs administered according to the acute lymphoblastic leukemia standard risk protocol. Pediatr Hematol Oncol, 1998; 15: 425–9.CrossRefGoogle ScholarPubMed
Irsfeld, H., Korholz, D., Janssen, G., Wahn, V., & Schroten, H.Fatal outcome in two girls with Hodgkin disease complicating ataxia-telangiectasia (Louis-Bar syndrome) despite favorable response to modified-dose chemotherapy. Med Pediatr Oncol, 2000; 32: 62–4.3.0.CO;2-E>CrossRefGoogle Scholar
Tamminga, R. Y., Dolsma, W. V., Leeuw, J. A., & Kampinga, H. H.Chemo- and radiosensitivity testing in a patient with ataxia telangiectasia and Hodgkin disease. Pediatr Hematol Oncol, 2002; 19: 163–71.CrossRefGoogle Scholar
Overberg-Schmidt, U., Wegner, R. D., Baumgarten, E., et al.Low-grade non-Hodgkin's lymphoma after high-grade non-Hodgkin's lymphoma in a child with ataxia telangiectasia. Cancer, 1994; 73: 1522–5.3.0.CO;2-T>CrossRefGoogle Scholar
Drabek, J., Hajduch, M., Gojova, L., Weigl, E., & Mihal, V.Frequency of 657del(5) mutation of the NBS1 gene in the Czech population by polymerase chain reaction with sequence specific primers. Cancer Genet Cytogenet, 2002; 138: 157–9.CrossRefGoogle ScholarPubMed
Group, INBSS. Nijmegen breakage syndrome. Arch Dis Child, 2000; 84: 400–6.
Resnick, I. B., Kondratenko, I., Togoev, O., et al.Nijmegen breakage syndrome: clinical characteristics and mutation analysis in eight unrelated Russian families. J Pediatr, 2002; 140: 355–61.CrossRefGoogle ScholarPubMed
Varon, R., Reis, A., Henze, G., et al.Mutations in the Nijmegen Breakage Syndrome gene (NBS1) in childhood acute lymphoblastic leukemia (ALL). Cancer Res, 2001; 61: 3570–2.Google Scholar
Shiloh, Y.Ataxia-telangiectasia and the Nijmegen breakage syndrome: related disorders but genes apart. Annu Rev Genet, 1997; 31: 635–62.CrossRefGoogle ScholarPubMed
Little, J. B., Nagasawa, H., Dahlberg, W. K., et al.Differing responses of Nijmegen breakage syndrome and ataxia telangiectasia cells to ionizing radiation. Radiat Res, 2002; 158: 319–26.CrossRefGoogle ScholarPubMed
Siwicki, J. D., Degerman, S., Chrzanowska, K. H., & Roos, G.Telomere maintenance and cell cycle regulation in spontaneously immortalized T-cell lines from Nijmegen breakage syndrome patients. Exp Cell Res, 2003; 287: 178–89.CrossRefGoogle ScholarPubMed
Seidmann, K., Henze, G., Beck, J. D., et al.Non-Hodgkin's lymphoma in pediatric patients with chromosomal breakage syndromes (AT and NBS): experience from the BFM trials. Ann Oncol, 2000; 11: 141–5.CrossRefGoogle Scholar
Bloom, D.Congenital telangiectatic erythema resembling lupus erythematosis in dwarfs. Am J Dis Child, 1954; 88: 754–8.Google ScholarPubMed
Li, L., Eng, C., Desnick, R. J., German, J., & Ellis, N. A.Carrier frequency of the Bloom syndrome blmAsh mutation in the Ashkenazi Jewish population. Mol Genet Metab, 1998; 64: 286–90.CrossRefGoogle ScholarPubMed
German, J.Bloom's syndrome. XX. The first 100 cancers. Cancer Genet Cytogenet, 1997; 93: 100–6.CrossRefGoogle ScholarPubMed
Hutterroth, T. H., Litwin, S. D., & German, J.Abnormal immune responses in Bloom syndrome lymphocytes in vitro. J Clin Invest, 1975; 56: 1–7.CrossRefGoogle Scholar
German, J.Bloom syndrome: a Mendelian prototype of somatic mutational disease. Medicine, 1993; 72: 393–406.CrossRefGoogle ScholarPubMed
Jain, D., Hui, P., McNamara, J., et al.Bloom syndrome in sibs: first reports of hepatocellular carcinoma and Wilms tumor with documented anaplasia and nephrogenic rests. Pediatr Dev Pathol, 2001; 4: 585–9.CrossRefGoogle ScholarPubMed
Poppe, B., Limbergen, H. van, , Roy, N. van, , et al.Chromosomal aberrations in Bloom syndrome patients with myeloid malignancies. Cancer Genet Cytogenet, 2001; 128: 39–42.CrossRefGoogle ScholarPubMed
Barakat, A., Ababou, M., Onclercq, R., et al.Identification of a novel BLM missense mutation (2706T>C) in a Moroccan patient with Bloom's syndrome. Hum Mutat, 2000; 15: 584–5.3.0.CO;2-I>CrossRefGoogle Scholar
Dutertre, S., Ababou, M., Onclercq, R., et al.Cell cycle regulation of the endogenous wild type Bloom's syndrome DNA helicase. Oncogene, 2000; 19: 2731–8.CrossRefGoogle ScholarPubMed
Cleary, S. P., Zhang, W., DiNicola, N., et al.Heterozygosity for the BLM(Ash) mutation and cancer risk. Cancer Res, 2003; 63: 1769–71.Google ScholarPubMed
Schonberg, S., Louie, E., Chagant, R. S. K., & German, J.Bloom syndrome IV. Sister chromatid exchanges in lymphocytes. Am J Hum Genet, 1977; 29: 248–55.Google Scholar
Straughen, J., Ciocci, S., Ye, T. Z., et al.Physical mapping of the Bloom syndrome region by the identification of YAC and PI clones from human chromosome 15 band q26.1. Genomics, 1996; 35: 118–28.CrossRefGoogle Scholar
Langlois, R. G., Bigbee, W. L., Jensen, R. H., & German, J.Evidence for increased in vivo mutation and somatic recombination in Bloom's syndrome. Proc Natl Acad Sci U S A, 1989; 86: 670–4.CrossRefGoogle ScholarPubMed
Ellis, N. A., Groden, J., Ye., T. Z., The Bloom's syndrome gene product in homologous to RecQ helicases. Cell, 1995; 83: 655–66.CrossRefGoogle ScholarPubMed
Festa, R. S., Meadows, A. T., & Boshes, R. A.Leukemia in a black child with Bloom's syndrome: somatic recombination as a possible mechanism for neoplasia. Cancer, 1979; 44: 335–8.3.0.CO;2-A>CrossRefGoogle Scholar
Goss, K. H., Risinger, M. A., Kordich, J. J., et al.Enhanced tumor formation in mice heterozygous for Blm mutation. Science, 2002; 297: 2051–6.CrossRefGoogle ScholarPubMed
German, J. Bloom's syndrome: incidence, age of onset, and types of leukemia in the Bloom's syndrome registry. In , C. S. Bartsocas & , D. Loukopoulos, eds., Genetics of Hematological Disorders (Washington, DC: Hemisphere, 1992), pp. 241–58.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Heritable predispositions to childhood hematologic malignancies
    • By Doan Le, Clinical Assistant Professor, Alberta Children's Hospital, Calgary, Alberta, Canada, Kevin Shannon, Roma and Marvin Auerback Distinguished Professor of Molecular Oncology, Department of Pediatrics, Program Leader, Hematopoietic Malignancies, UCSF Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA, Beverly J. Lange, Yetta Dietch Novotny Professor in Clinical Oncology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
  • Edited by Ching-Hon Pui
  • Book: Childhood Leukemias
  • Online publication: 01 July 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511471001.014
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Heritable predispositions to childhood hematologic malignancies
    • By Doan Le, Clinical Assistant Professor, Alberta Children's Hospital, Calgary, Alberta, Canada, Kevin Shannon, Roma and Marvin Auerback Distinguished Professor of Molecular Oncology, Department of Pediatrics, Program Leader, Hematopoietic Malignancies, UCSF Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA, Beverly J. Lange, Yetta Dietch Novotny Professor in Clinical Oncology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
  • Edited by Ching-Hon Pui
  • Book: Childhood Leukemias
  • Online publication: 01 July 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511471001.014
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Heritable predispositions to childhood hematologic malignancies
    • By Doan Le, Clinical Assistant Professor, Alberta Children's Hospital, Calgary, Alberta, Canada, Kevin Shannon, Roma and Marvin Auerback Distinguished Professor of Molecular Oncology, Department of Pediatrics, Program Leader, Hematopoietic Malignancies, UCSF Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA, Beverly J. Lange, Yetta Dietch Novotny Professor in Clinical Oncology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
  • Edited by Ching-Hon Pui
  • Book: Childhood Leukemias
  • Online publication: 01 July 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511471001.014
Available formats
×