Skip to main content Accessibility help
×
Hostname: page-component-84b7d79bbc-4hvwz Total loading time: 0 Render date: 2024-07-27T20:11:11.351Z Has data issue: false hasContentIssue false

21 - Function and Expression of the uPA/uPAR System in Cancer Metastasis

from SYSTEMIC FACTORS

Published online by Cambridge University Press:  05 June 2012

Julio A. Aguirre-Ghiso
Affiliation:
Mount Sinai School of Medicine, United States
Daniel F. Alonso
Affiliation:
National University of Quilmes, Argentina
Eduardo F. Farias
Affiliation:
Mount Sinai School of Medicine, United States
David Lyden
Affiliation:
Weill Cornell Medical College, New York
Danny R. Welch
Affiliation:
Weill Cornell Medical College, New York
Bethan Psaila
Affiliation:
Imperial College of Medicine, London
Get access

Summary

Metastatic disease is responsible for most cancer lethality; therefore, understanding the intricate interplay among tumor cells, soluble factors, extracellular matrix (ECM), and host cells during cancer progression to metastasis is crucial to designing successful therapies [1]. Metastasis is formed when a cell, or a group of cells, leaves the original site of the primary tumor and establishes a new colony of tumor cells in a distant, anatomically separate, site in the body [1]. To form an overt metastasis, the cells must overcome the regulatory and physical constraints imposed by the tissue milieu and initiate proliferation and invasive growth. Proteases and their inhibitors and receptors, such as those that comprise the urokinase-type plasminogen activator (uPA) system, play a crucial role in determining the ability of tumor cells to metastasize (Figure 21.1). Interestingly, dissemination of tumor cells and metastatic growth promoted by uPA and its receptor (uPAR) may be caused not only by proteolysis but also by novel functions related to cell signaling necessary for tumor cells to migrate, survive, and proliferate in target organs [1, 2]. The role of uPAR in regulating cell motility, which appears to operate similarly in normal and tumor cells, has been covered recently in extensive reviews [3]. This chapter focuses on recent advances that focus on how the uPA system coordinates proteolysis and signal transduction for invasion, dissemination, survival, and mitogenesis during tumor progression.

Type
Chapter
Information
Cancer Metastasis
Biologic Basis and Therapeutics
, pp. 223 - 236
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Pantel, K. & Brakenhoff, R. H.. Dissecting the metastatic cascade. Nat Rev Cancer, 4 (2004), 448–456.CrossRefGoogle ScholarPubMed
Chambers, A. F., Naumov, G. N., Varghese, H. J., Nadkarni, K. V., MacDonald, I. C. & Groom, A. C.. Critical steps in hematogenous metastasis: an overview. Surg Oncol Clin North Am, 10 (2001), 243–255, vii.Google ScholarPubMed
Tang, C. H. & Wei, Y.. The urokinase receptor and integrins in cancer progression. Cell Mol Life Sci, 65 (2008), 1916–1932.CrossRefGoogle ScholarPubMed
Astrup, T. & Permin, P. M.. Fibrinolysis in the animal organism. Nature, 159 (1947), 681.CrossRefGoogle ScholarPubMed
Collen, D.. On the regulation and control of fibrinolysis. Edward Kowalski Memorial Lecture. Thromb Haemost, 43 (1980), 77–89.Google Scholar
Collen, D.. Natural inhibitors of fibrinolysis. J Clin Pathol Suppl (R Coll Pathol), 14 (1980), 24–30.CrossRefGoogle ScholarPubMed
Ossowski, L., Quigley, J. P., Kellerman, G. M. & Reich, E.. Fibrinolysis associated with oncogenic transformation. Requirement of plasminogen for correlated changes in cellular morphology, colony formation in agar, and cell migration. J Exp Med, 138 (1973), 1056–1064.CrossRefGoogle ScholarPubMed
Ossowski, L., Unkeless, J. C., Tobia, A., Quigley, J. P., Rifkin, D. B. & Reich, E.. An enzymatic function associated with transformation of fibroblasts by oncogenic viruses. II. Mammalian fibroblast cultures transformed by DNA and RNA tumor viruses. J Exp Med, 137 (1973), 112–126.CrossRefGoogle ScholarPubMed
Ossowski, L., Quigley, J. P. & Reich, E.. Fibrinolysis associated with oncogenic transformation. Morphological correlates. J Biol Chem, 249 (1974), 4312–4320.Google ScholarPubMed
Unkeless, J., Dano, K., Kellerman, G. M. & Reich, E.. Fibrinolysis associated with oncogenic transformation. Partial purification and characterization of the cell factor, a plasminogen activator. J Biol Chem, 249 (1974), 4295–4305.Google ScholarPubMed
Jacovina, A. T., Zhong, F., Khazanova, E., Lev, E., Deora, A. B. & Hajjar, K. A.. Neuritogenesis and the nerve growth factor-induced differentiation of PC-12 cells requires annexin II-mediated plasmin generation. J Biol Chem, 276 (2001), 49350–49358.CrossRefGoogle ScholarPubMed
Brownstein, C., Deora, A. B., Jacovina, A. T., Weintraub, R., Gertler, M., Khan, K. M., Falcone, D. J. & Hajjar, K. A.. Annexin II mediates plasminogen-dependent matrix invasion by human monocytes: enhanced expression by macrophages. Blood, 103 (2004), 317–324.CrossRefGoogle ScholarPubMed
Collen, D. & Gold, H. K.. New developments in thrombolytic therapy. Adv Exp Med Biol, 281 (1990), 333–354.CrossRefGoogle ScholarPubMed
Blasi, F. & Carmeliet, P.. uPAR: a versatile signalling orchestrator. Nat Rev Mol Cell Biol, 3 (2002), 932–943.CrossRefGoogle ScholarPubMed
Andreasen, P. A., Egelund, R. & Petersen, H. H.. The plasminogen activation system in tumor growth, invasion, and metastasis. Cell Mol Life Sci, 57 (2000), 25–40.CrossRefGoogle Scholar
Niedbala, M. J. & Sartorelli, A. C.. Regulation by epidermal growth factor of human squamous cell carcinoma plasminogen activator-mediated proteolysis of extracellular matrix. Cancer Res, 49 (1989), 3302–3309.Google ScholarPubMed
Thorgeirsson, U. P., Lindsay, C. K., Cottam, D. W. & Gomez, D. E.. Tumor invasion, proteolysis, and angiogenesis. J Neurooncol, 18 (1994), 89–103.CrossRefGoogle ScholarPubMed
Beers, W. H., Strickland, S. & Reich, E.. Ovarian plasminogen activator: relationship to ovulation and hormonal regulation. Cell, 6 (1975), 387–394.CrossRefGoogle ScholarPubMed
Strickland, S., Reich, E. & Sherman, M. I.. Plasminogen activator in early embryogenesis: enzyme production by trophoblast and parietal endoderm. Cell, 9 (1976), 231–240.CrossRefGoogle ScholarPubMed
Ossowski, L., Biegel, D. & Reich, E.. Mammary plasminogen activator: correlation with involution, hormonal modulation and comparison between normal and neoplastic tissue. Cell, 16 (1979), 929–940.CrossRefGoogle ScholarPubMed
Dano, K. & Reich, E.. Serine enzymes released by cultured neoplastic cells. J Exp Med, 147 (1978), 745–757.CrossRefGoogle ScholarPubMed
Rifkin, D. B., Moscatelli, D., Gross, J. & Jaffe, E.. Proteases, angiogenesis, and invasion. Symp Fundam Cancer Res, 36 (1983), 187–200.Google ScholarPubMed
Krystosek, A. & Seeds, N. W.. Plasminogen activator release at the neuronal growth cone. Science, 213 (1981), 1532–1534.CrossRefGoogle ScholarPubMed
Andreasen, P. A., Kjoller, L., Christensen, L. & Duffy, M. J.. The urokinase-type plasminogen activator system in cancer metastasis: a review. Int J Cancer, 72 (1997), 1–22.3.0.CO;2-Z>CrossRefGoogle ScholarPubMed
Sun, Z. & Liu, J. N.. Mutagenesis at Pro309 of single-chain urokinase-type plasminogen activator alters its catalytic properties. Proteins, 61 (2005), 870–877.CrossRefGoogle ScholarPubMed
Moran, P., Li, W., Fan, B., Vij, R., Eigenbrot, C. & Kirchhofer, D.. Pro-urokinase-type plasminogen activator is a substrate for hepsin. J Biol Chem, 281 (2006), 30439–30446.CrossRefGoogle ScholarPubMed
List, K., Jensen, O. N., Bugge, T. H., Lund, L. R., Ploug, M., Dano, K. & Behrendt, N.. Plasminogen-independent initiation of the pro-urokinase activation cascade in vivo. Activation of pro-urokinase by glandular kallikrein (mGK-6) in plasminogen-deficient mice. Biochemistry, 39 (2000), 508–515.CrossRefGoogle Scholar
Laiho, M. & Keski-Oja, J.. Growth factors in the regulation of pericellular proteolysis: a review. Cancer Res, 49 (1989), 2533–2553.Google ScholarPubMed
Moller, L. B.. Structure and function of the urokinase receptor. Blood Coagul Fibrinolysis, 4 (1993), 293–303.CrossRefGoogle ScholarPubMed
Rabbani, S. A., Mazar, A. P., Bernier, S. M., Haq, M., Bolivar, I., Henkin, J. & Goltzman, D.. Structural requirements for the growth factor activity of the amino-terminal domain of urokinase. J Biol Chem, 267 (1992), 14151–14156.Google ScholarPubMed
Cajot, J. F., Kruithof, E. K., Schleuning, W. D., Sordat, B. & Bachmann, F.. Plasminogen activators, plasminogen activator inhibitors and procoagulant analyzed in twenty human tumor cell lines. Int J Cancer, 38 (1986), 719–727.CrossRefGoogle ScholarPubMed
Croucher, D. R., Saunders, D. N., Lobov, S. & Ranson, M.. Revisiting the biological roles of PAI2 (SERPINB2) in cancer. Nat Rev Cancer, 8 (2008), 535–545.CrossRefGoogle Scholar
Zhou, H. M., Bolon, I., Nichols, A., Wohlwend, A. & Vassalli, J. D.. Overexpression of plasminogen activator inhibitor type 2 in basal keratinocytes enhances papilloma formation in transgenic mice. Cancer Res, 61 (2001), 970–976.Google ScholarPubMed
Andreasen, P. A., Nielsen, L. S., Kristensen, P., Grondahl-Hansen, J., Skriver, L. & Dano, K.. Plasminogen activator inhibitor from human fibrosarcoma cells binds urokinase-type plasminogen activator, but not its proenzyme. J Biol Chem, 261 (1986), 7644–7651.Google Scholar
Cubellis, M. V., Wun, T. C. & Blasi, F.. Receptor-mediated internalization and degradation of urokinase is caused by its specific inhibitor PAI-1. Embo J, 9 (1990), 1079–1085.Google ScholarPubMed
Conese, M., Nykjaer, A., Petersen, C. M., Cremona, O., Pardi, R., Andreasen, P. A., Gliemann, J., Christensen, E. I. & Blasi, F.. alpha-2 Macroglobulin receptor/Ldl receptor-related protein(Lrp)-dependent internalization of the urokinase receptor. J Cell Biol, 131 (1995), 1609–1622.CrossRefGoogle ScholarPubMed
Orth, K., Madison, E. L., Gething, M. J., Sambrook, J. F. & Herz, J.. Complexes of tissue-type plasminogen activator and its serpin inhibitor plasminogen-activator inhibitor type 1 are internalized by means of the low density lipoprotein receptor-related protein/alpha 2-macroglobulin receptor. Proc Natl Acad Sci U S A, 89 (1992), 7422–7426.CrossRefGoogle ScholarPubMed
Nykjaer, A., Conese, M., Christensen, E. I., Olson, D., Cremona, O., Gliemann, J. & Blasi, F.. Recycling of the urokinase receptor upon internalization of the uPA:serpin complexes. Embo J, 16 (1997), 2610–2620.CrossRefGoogle ScholarPubMed
Duffy, M. J., McGowan, P. M. & Gallagher, W. M.. Cancer invasion and metastasis: changing views. J Pathol, 214 (2008), 283–293.CrossRefGoogle ScholarPubMed
Kjoller, L., Kanse, S. M., Kirkegaard, T., Rodenburg, K. W., Ronne, E., Goodman, S. L., Preissner, K. T., Ossowski, L. & Andreasen, P. A.. Plasminogen activator inhibitor-1 represses integrin- and vitronectin-mediated cell migration independently of its function as an inhibitor of plasminogen activation. Exp Cell Res, 232 (1997), 420–429.CrossRefGoogle ScholarPubMed
Czekay, R. P., Aertgeerts, K., Curriden, S. A. & Loskutoff, D. J.. Plasminogen activator inhibitor-1 detaches cells from extracellular matrices by inactivating integrins. J Cell Biol, 160 (2003), 781–791.CrossRefGoogle ScholarPubMed
Koong, A. C., Denko, N. C., Hudson, K. M., Schindler, C., Swiersz, L., Koch, C., Evans, S., Ibrahim, H., Le, Q. T., Terris, D. J. & Giaccia, A. J.. Candidate genes for the hypoxic tumor phenotype. Cancer Res, 60 (2000), 883–887.Google ScholarPubMed
Sprague, L. D., Mengele, K., Schilling, D., Geurts-Moespot, A., Sweep, F. C., Stadler, P., Schmitt, M. & Molls, M.. Effect of reoxygenation on the hypoxia-induced up-regulation of serine protease inhibitor PAI-1 in head and neck cancer cells. Oncology, 71 (2006), 282–291.CrossRefGoogle ScholarPubMed
Bajou, K., Masson, V., Gerard, R. D., Schmitt, P. M., Albert, V., Praus, M., Lund, L. R., Frandsen, T. L., Brunner, N., Dano, K., Fusenig, N. E., Weidle, U., Carmeliet, G., Loskutoff, D., Collen, D., Carmeliet, P., Foidart, J. M. & Noel, A.. The plasminogen activator inhibitor PAI-1 controls in vivo tumor vascularization by interaction with proteases, not vitronectin. Implications for antiangiogenic strategies. J Cell Biol, 152 (2001), 777–784.CrossRefGoogle Scholar
Bajou, K., Noel, A., Gerard, R. D., Masson, V., Brunner, N., Holst-Hansen, C., Skobe, M., Fusenig, N. E., Carmeliet, P., Collen, D. & Foidart, J. M.. Absence of host plasminogen activator inhibitor 1 prevents cancer invasion and vascularization. Nat Med, 4 (1998), 923–928.CrossRefGoogle ScholarPubMed
Bajou, K., Maillard, C., Jost, M., Lijnen, R. H., Gils, A., Declerck, P., Carmeliet, P., Foidart, J. M. & Noel, A.. Host-derived plasminogen activator inhibitor-1 (PAI-1) concentration is critical for in vivo tumoral angiogenesis and growth. Oncogene, 23 (2004), 6986–6990.CrossRefGoogle Scholar
Hansen, L. V., Laerum, O. D., Illemann, M., Nielsen, B. S. & Ploug, M.. Altered expression of the urokinase receptor homologue, C4.4A, in invasive areas of human esophageal squamous cell carcinoma. Int J Cancer, 122 (2008), 734–741.CrossRefGoogle ScholarPubMed
Hansen, L. V., Skov, B. G., Ploug, M. & Pappot, H.. Tumour cell expression of C4.4A, a structural homologue of the urokinase receptor, correlates with poor prognosis in non-small cell lung cancer. Lung Cancer, 58 (2007), 260–266.CrossRefGoogle ScholarPubMed
Madsen, C. D. & Sidenius, N.. The interaction between urokinase receptor and vitronectin in cell adhesion and signalling. Eur J Cell Biol, 87 (2008), 617–629.CrossRefGoogle ScholarPubMed
Ghiso, J. A. Aguirre, Alonso, D. F., Farias, E. F., Gomez, D. E. & Kier Joffe, E. B.. Deregulation of the signaling pathways controlling urokinase production. Its relationship with the invasive phenotype. Eur J Biochem, 263 (1999), 295–304.CrossRefGoogle Scholar
Fisher, J. L., Field, C. L., Zhou, H., Harris, T. L., Henderson, M. A. & Choong, P. F.. Urokinase plasminogen activator system gene expression is increased in human breast carcinoma and its bone metastases–a comparison of normal breast tissue, non-invasive and invasive carcinoma and osseous metastases. Breast Cancer Res Treat, 61 (2000), 1–12.CrossRefGoogle ScholarPubMed
Klein, C. A. & Hölzel, D.. Systemic cancer progression and tumor dormancy: mathematical models meet single cell genomics. Cell Cycle, 5 (2006), 1788–1798.CrossRefGoogle ScholarPubMed
Schardt, J. A., Meyer, M., Hartmann, C. H., Schubert, F., Schmidt-Kittler, O., Fuhrmann, C., Polzer, B., Petronio, M., Eils, R. & Klein, C. A.. Genomic analysis of single cytokeratin-positive cells from bone marrow reveals early mutational events in breast cancer. Cancer Cell, 8 (2005), 227–239.CrossRefGoogle ScholarPubMed
Schmitt, M., Harbeck, N., Thomssen, C., Wilhelm, O., Magdolen, V., Reuning, U., Ulm, K., Hofler, H., Janicke, F. & Graeff, H.. Clinical impact of the plasminogen activation system in tumor invasion and metastasis: prognostic relevance and target for therapy. Thromb Haemost, 78 (1997), 285–296.Google ScholarPubMed
Janicke, F., Prechtl, A., Thomssen, C., Harbeck, N., Meisner, C., Untch, M., Sweep, C. G., Selbmann, H. K., Graeff, H. & Schmitt, M.. Randomized adjuvant chemotherapy trial in high-risk, lymph node-negative breast cancer patients identified by urokinase-type plasminogen activator and plasminogen activator inhibitor type 1. J Natl Cancer Inst, 93 (2001), 913–920.CrossRefGoogle ScholarPubMed
Roldan, A. L., Cubellis, M. V., Masucci, M. T., Behrendt, N., Lund, L. R., Dano, K., Appella, E. & Blasi, F.. Cloning and expression of the receptor for human urokinase plasminogen activator, a central molecule in cell surface, plasmin dependent proteolysis. Embo J, 9 (1990), 467–474.Google ScholarPubMed
Ossowski, L. & Aguirre-Ghiso, J. A.. Urokinase receptor and integrin partnership: coordination of signaling for cell adhesion, migration and growth. Curr Opin Cell Biol, 12 (2000), 613–620.CrossRefGoogle Scholar
Busso, N., Masur, S. K., Lazega, D., Waxman, S. & Ossowski, L.. Induction of cell migration by pro-urokinase binding to its receptor: possible mechanism for signal transduction in human epithelial cells. J Cell Biol, 126 (1994), 259–270.CrossRefGoogle ScholarPubMed
Wei, Y., Yang, X., Liu, Q., Wilkins, J. A. & Chapman, H. A.. A role for caveolin and the urokinase receptor in integrin-mediated adhesion and signaling. J Cell Biol, 144 (1999), 1285–1294.CrossRefGoogle ScholarPubMed
Ghiso, J. A. Aguirre, Kovalski, K. & Ossowski, L.. Tumor dormancy induced by downregulation of urokinase receptor in human carcinoma involves integrin and MAPK signaling. J Cell Biol, 147 (1999), 89–104.CrossRefGoogle Scholar
Heiss, M. M., Allgayer, H., Gruetzner, K. U., Funke, I., Babic, R., Jauch, K. W. & Schildberg, F. W.. Individual development and uPA-receptor expression of disseminated tumour cells in bone marrow: a reference to early systemic disease in solid cancer. Nat Med, 1 (1995), 1035–1039.CrossRefGoogle ScholarPubMed
Tkachuk, N., Kiyan, J., Tkachuk, S., Kiyan, R., Shushakova, N., Haller, H. & Dumler, I.. Urokinase induces survival or pro-apoptotic signal in human mesangial cells depending on the apoptotic stimulus. Biochem J, 415 (2008), 265–273.CrossRefGoogle ScholarPubMed
Ploplis, V. A., Tipton, H., Menchen, H. & Castellino, F. J.. A urokinase-type plasminogen activator deficiency diminishes the frequency of intestinal adenomas in ApcMin/ +mice. J Pathol, 213 (2007), 266–274.CrossRefGoogle ScholarPubMed
Lester, R. D., Jo, M., Montel, V., Takimoto, S. & Gonias, S. L.. uPAR induces epithelial-mesenchymal transition in hypoxic breast cancer cells. J Cell Biol, 178 (2007), 425–436.CrossRefGoogle ScholarPubMed
Alfano, D., Iaccarino, I. & Stoppelli, M. P.. Urokinase signaling through its receptor protects against anoikis by increasing BCL-xL expression levels. J Biol Chem, 281 (2006), 17758–17767.CrossRefGoogle ScholarPubMed
Chandrasekar, N., Mohanam, S., Gujrati, M., Olivero, W. C., Dinh, D. H. & Rao, J. S.. Downregulation of uPA inhibits migration and PI3k/Akt signaling in glioblastoma cells. Oncogene, 22 (2003), 392–400.CrossRefGoogle ScholarPubMed
Rao, J. S.. Molecular mechanisms of glioma invasiveness: the role of proteases. Nat Rev Cancer, 3 (2003), 489–501.CrossRefGoogle ScholarPubMed
Kook, Y. H., Adamski, J., Zelent, A. & Ossowski, L.. The effect of antisense inhibition of urokinase receptor in human squamous cell carcinoma on malignancy. Embo J, 13 (1994), 3983–3991.Google ScholarPubMed
Yu, W., Kim, J. & Ossowski, L.. Reduction in surface urokinase receptor forces malignant cells into a protracted state of dormancy. J Cell Biol, 137 (1997), 767–777.CrossRefGoogle ScholarPubMed
Yang, L., Avila, H., Wang, H., Trevino, J., Gallick, G. E., Kitadai, Y., Sasaki, T. & Boyd, D. D.. Plasticity in urokinase-type plasminogen activator receptor (uPAR) display in colon cancer yields metastable subpopulations oscillating in cell surface uPAR density–implications in tumor progression. Cancer Res, 66 (2006), 7957–7967.CrossRefGoogle ScholarPubMed
Aguirre-Ghiso, J. A., Estrada, Y., Liu, D. & Ossowski, L.. ERK(MAPK) activity as a determinant of tumor growth and dormancy; regulation by p38(SAPK). Cancer Res, 63 (2003), 1684–1695.Google Scholar
Jo, M., Thomas, K. S., Takimoto, S., Gaultier, A., Hsieh, E. H., Lester, R. D. & Gonias, S. L.. Urokinase receptor primes cells to proliferate in response to epidermal growth factor. Oncogene, 26 (2007), 2585–2594.CrossRefGoogle ScholarPubMed
Rao, J. S., Gondi, C., Chetty, C., Chittivelu, S., Joseph, P. A. & Lakka, S. S.. Inhibition of invasion, angiogenesis, tumor growth, and metastasis by adenovirus-mediated transfer of antisense uPAR and MMP-9 in non-small cell lung cancer cells. Mol Cancer Ther, 4 (2005), 1399–1408.CrossRefGoogle ScholarPubMed
Setyono-Han, B., Sturzebecher, J., Schmalix, W. A., Muehlenweg, B., Sieuwerts, A. M., Timmermans, M., Magdolen, V., Schmitt, M., Klijn, J. G. & Foekens, J. A.. Suppression of rat breast cancer metastasis and reduction of primary tumour growth by the small synthetic urokinase inhibitor WX-UK1. Thromb Haemost, 93 (2005), 779–786.Google ScholarPubMed
Margheri, F., D'Alessio, S., Serrati, S., Pucci, M., Annunziato, F., Cosmi, L., Liotta, F., Angeli, R., Angelucci, A., Gravina, G. L., Rucci, N., Bologna, M., Teti, A., Monia, B., Fibbi, G. & Rosso, M. Del. Effects of blocking urokinase receptor signaling by antisense oligonucleotides in a mouse model of experimental prostate cancer bone metastases. Gene Ther, 12 (2005), 702–714.CrossRefGoogle Scholar
Guerrero, J., Santibanez, J. F., Gonzalez, A. & Martinez, J.. EGF receptor transactivation by urokinase receptor stimulus through a mechanism involving Src and matrix metalloproteinases. Exp Cell Res, 292 (2004), 201–208.CrossRefGoogle ScholarPubMed
Ghiso, J. A. Aguirre. Inhibition of FAK signaling activated by urokinase receptor induces dormancy in human carcinoma cells in vivo. Oncogene, 21 (2002), 2513–2524.CrossRefGoogle Scholar
Liu, D., Ghiso, J. Aguirre, Estrada, Y. & Ossowski, L.. EGFR is a transducer of the urokinase receptor initiated signal that is required for in vivo growth of a human carcinoma. Cancer Cell, 1 (2002), 445–457.CrossRefGoogle ScholarPubMed
Wei, Y., Lukashev, M., Simon, D. I., Bodary, S. C., Rosenberg, S., Doyle, M. V. & Chapman, H. A.. Regulation of integrin function by the urokinase receptor. Science, 273 (1996), 1551–1555.CrossRefGoogle ScholarPubMed
Tang, M. L., Vararattanavech, A. & Tan, S. M.. uPAR induces conformational changes in the integrin alphaMbeta2 headpiece and re-orientation of its transmembrane domains. J Biol Chem, 283 (2008), 25392–25403.CrossRefGoogle Scholar
Kjoller, L. & Hall, A.. Rac mediates cytoskeletal rearrangements and increased cell motility induced by urokinase-type plasminogen activator receptor binding to vitronectin. J Cell Biol, 152 (2001), 1145–1157.CrossRefGoogle ScholarPubMed
Hecker, T. P. & Gladson, C. L.. Focal adhesion kinase in cancer. Front Biosci, 8 (2003), s705–714.Google Scholar
Su, J. M., Gui, L., Zhou, Y. P. & Zha, X. L.. Expression of focal adhesion kinase and alpha5 and beta1 integrins in carcinomas and its clinical significance. World J Gastroenterol, 8 (2002), 613–618.CrossRefGoogle ScholarPubMed
Parsons, J. T.. Focal adhesion kinase: the first ten years. J Cell Sci, 116 (2003), 1409–1416.CrossRefGoogle ScholarPubMed
Hanks, S. K., Ryzhova, L., Shin, N. Y. & Brabek, J.. Focal adhesion kinase signaling activities and their implications in the control of cell survival and motility. Front Biosci, 8 (2003), d982–996.CrossRefGoogle ScholarPubMed
Hauck, C. R., Hsia, D. A., Puente, X. S., Cheresh, D. A. & Schlaepfer, D. D.. FRNK blocks v-Src-stimulated invasion and experimental metastases without effects on cell motility or growth. Embo J, 21 (2002), 6289–6302.CrossRefGoogle ScholarPubMed
Hauck, C. R., Hsia, D. A. & Schlaepfer, D. D.. The focal adhesion kinase–a regulator of cell migration and invasion. IUBMB Life, 53 (2002), 115–119.CrossRefGoogle ScholarPubMed
Hauck, C. R., Sieg, D. J., Hsia, D. A., Loftus, J. C., Gaarde, W. A., Monia, B. P. & Schlaepfer, D. D.. Inhibition of focal adhesion kinase expression or activity disrupts epidermal growth factor-stimulated signaling promoting the migration of invasive human carcinoma cells. Cancer Res, 61 (2001), 7079–7090.Google ScholarPubMed
Aguirre-Ghiso, J. A., Liu, D., Mignatti, A., Kovalski, K. & Ossowski, L.. Urokinase receptor and fibronectin regulate the ERK(MAPK) to p38(MAPK) activity ratios that determine carcinoma cell proliferation or dormancy in vivo. Mol Biol Cell, 12 (2001), 863–879.CrossRefGoogle ScholarPubMed
Aguirre-Ghiso, J. A., Ossowski, L. & Rosenbaum, S. K.. Green fluorescent protein tagging of extracellular signal-regulated kinase and p38 pathways reveals novel dynamics of pathway activation during primary and metastatic growth. Cancer Res, 64 (2004), 7336–7345.CrossRefGoogle ScholarPubMed
Ossowski, L. & Reich, E.. Antibodies to plasminogen activator inhibit human tumor metastasis. Cell, 35 (1983), 611–619.CrossRefGoogle ScholarPubMed
Ossowski, L. & Reich, E.. Experimental model for quantitative study of metastasis. Cancer Res, 40 (1980), 2300–2309.Google Scholar
Ossowski, L., Russo-Payne, H. & Wilson, E. L.. Inhibition of urokinase-type plasminogen activator by antibodies: the effect on dissemination of a human tumor in the nude mouse. Cancer Res, 51 (1991), 274–281.Google ScholarPubMed
Zucker, S., Lysik, R. M., Ramamurthy, N. S., Golub, L. M., Wieman, J. M. & Wilkie, D. P.. Diversity of melanoma plasma membrane proteinases: inhibition of collagenolytic and cytolytic activities by minocycline. J Natl Cancer Inst, 75 (1985), 517–525.Google ScholarPubMed
Meissauer, A., Kramer, M. D., Hofmann, M., Erkell, L. J., Jacob, E., Schirrmacher, V. & Brunner, G.. Urokinase-type and tissue-type plasminogen activators are essential for in vitro invasion of human melanoma cells. Exp Cell Res, 192 (1991), 453–459.CrossRefGoogle ScholarPubMed
Vassalli, J. D. & Belin, D.. Amiloride selectively inhibits the urokinase-type plasminogen activator. FEBS Lett, 214 (1987), 187–191.CrossRefGoogle ScholarPubMed
Towle, M. J., Lee, A., Maduakor, E. C., Schwartz, C. E., Bridges, A. J. & Littlefield, B. A.. Inhibition of urokinase by 4-substituted benzo[b]thiophene-2-carboxamidines: an important new class of selective synthetic urokinase inhibitor. Cancer Res, 53 (1993), 2553–2559.Google Scholar
Bridges, A. J., Lee, A., Schwartz, C. E., Towle, M. J. & Littlefield, B. A.. The synthesis of three 4-substituted benzo[b]thiophene-2-carboxamidines as potent and selective inhibitors of urokinase. Bioorg Med Chem, 1 (1993), 403–410.CrossRefGoogle Scholar
Alonso, D. F., Farias, E. F., Ladeda, V., Davel, L., Puricelli, L. & Joffe, E. Bal de Kier. Effects of synthetic urokinase inhibitors on local invasion and metastasis in a murine mammary tumor model. Breast Cancer Res Treat, 40 (1996), 209–223.CrossRefGoogle Scholar
Li, X. Y., Ota, I., Yana, I., Sabeh, F. & Weiss, S. J.. Molecular dissection of the structural machinery underlying the tissue-invasive activity of MT1-MMP. Mol Biol Cell, 185 (2008), 3221–3233.CrossRefGoogle Scholar
Lafleur, M. A., Handsley, M. M., Knauper, V., Murphy, G. & Edwards, D. R.. Endothelial tubulogenesis within fibrin gels specifically requires the activity of membrane-type-matrix metalloproteinases (MT-MMPs). J Cell Sci, 115 (2002), 3427–3438.Google Scholar
Evans, D. M. & Sloan-Stakleff, K. D.. Maximum effect of urokinase plasminogen activator inhibitors in the control of invasion and metastasis of rat mammary cancer. Invasion Metastasis, 18 (1998), 252–260.CrossRefGoogle ScholarPubMed
Klinghofer, V., Stewart, K., McGonigal, T., Smith, R., Sarthy, A., Nienaber, V., Butler, C., Dorwin, S., Richardson, P., Weitzberg, M., Wendt, M., Rockway, T., Zhao, X., Hulkower, K. I. & Giranda, V. L.. Species specificity of amidine-based urokinase inhibitors. Biochemistry, 40 (2001), 9125–9131.CrossRefGoogle ScholarPubMed
Xing, R. H., Mazar, A., Henkin, J. & Rabbani, S. A.. Prevention of breast cancer growth, invasion, and metastasis by antiestrogen tamoxifen alone or in combination with urokinase inhibitor B-428. Cancer Res, 57 (1997), 3585–3593.Google ScholarPubMed
Todaro, L. B., Ladeda, V., Joffe, E. Bal de Kier & Farias, E. F.. Combined treatment with verapamil, a calcium channel blocker, and B428, a synthetic uPA inhibitor, impairs the metastatic ability of a murine mammary carcinoma. Oncol Rep, 10 (2003), 725–732.Google ScholarPubMed
Evans, D. M. & Stakleff, K. D. Sloan. Control of pulmonary metastases of rat mammary cancer by inhibition of uPA and COX-2, singly and in combination. Clin Exp Metastasis, 21 (2004), 339–346.CrossRefGoogle ScholarPubMed
Zacharski, L. R.. Anticoagulants in cancer treatment: malignancy as a solid phase coagulopathy. Cancer Lett, 186 (2002), 1–9.CrossRefGoogle ScholarPubMed
Schmidt-Kittler, O., Ragg, T., Daskalakis, A., Granzow, M., Ahr, A., Blankenstein, T. J., Kaufmann, M., Diebold, J., Arnholdt, H., Muller, P., Bischoff, J., Harich, D., Schlimok, G., Riethmuller, G., Eils, R. & Klein, C. A.. From latent disseminated cells to overt metastasis: genetic analysis of systemic breast cancer progression. Proc Natl Acad Sci U S A, 100 (2003), 7737–7742.CrossRefGoogle ScholarPubMed
Joossens, J., Ali, O. M., El-Sayed, I., Surpateanu, G., Veken, P., Lambeir, A. M., Setyono-Han, B., Foekens, J. A., Schneider, A., Schmalix, W., Haemers, A. & Augustyns, K.. Small, potent, and selective diaryl phosphonate inhibitors for urokinase-type plasminogen activator with in vivo antimetastatic properties. J Med Chem, 50 (2007), 6638–6646.CrossRefGoogle ScholarPubMed
Tyndall, J. D., Kelso, M. J., Clingan, P. & Ranson, M.. Peptides and small molecules targeting the plasminogen activation system: towards prophylactic anti-metastasis drugs for breast cancer. Recent Patents Anticancer Drug Discov, 3 (2008), 1–13.CrossRefGoogle ScholarPubMed
Alonso, D. F., Tejera, A. M., Farias, E. F., Joffe, E. Bal de Kier & Gomez, D. E.. Inhibition of mammary tumor cell adhesion, migration, and invasion by the selective synthetic urokinase inhibitor B428. Anticancer Res, 18 (1998), 4499–4504.Google ScholarPubMed
Ploug, M., Ostergaard, S., Hansen, L. B., Holm, A. & Dano, K.. Photoaffinity labeling of the human receptor for urokinase-type plasminogen activator using a decapeptide antagonist. Evidence for a composite ligand-binding site and a short interdomain separation. Biochemistry, 37 (1998), 3612–3622.CrossRefGoogle Scholar
Goodson, R. J., Doyle, M. V., Kaufman, S. E. & Rosenberg, S.. High-affinity urokinase receptor antagonists identified with bacteriophage peptide display. Proc Natl Acad Sci U S A, 91 (1994), 7129–7133.CrossRefGoogle ScholarPubMed
Tressler, R. J., Pitot, P. A., Stratton, J. R., Forrest, L. D., Zhuo, S., Drummond, R. J., Fong, S., Doyle, M. V., Doyle, L. V., Min, H. Y. & Rosenberg, S.. Urokinase receptor antagonists: discovery and application to in vivo models of tumor growth. APMIS, 107 (1999), 168–173.CrossRefGoogle ScholarPubMed
Ploug, M., Ostergaard, S., Gardsvoll, H., Kovalski, K., Holst-Hansen, C., Holm, A., Ossowski, L. & Dano, K.. Peptide-derived antagonists of the urokinase receptor. affinity maturation by combinatorial chemistry, identification of functional epitopes, and inhibitory effect on cancer cell intravasation. Biochemistry, 40 (2001), 12157–12168.CrossRefGoogle ScholarPubMed
Sato, S., Kopitz, C., Schmalix, W. A., Muehlenweg, B., Kessler, H., Schmitt, M., Kruger, A. & Magdolen, V.. High-affinity urokinase-derived cyclic peptides inhibiting urokinase/urokinase receptor-interaction: effects on tumor growth and spread. FEBS Lett, 528 (2002), 212–216.CrossRefGoogle Scholar
Chaurasia, P., Aguirre-Ghiso, J. A., Liang, O. D., Gardsvoll, H., Ploug, M. & Ossowski, L.. A region in urokinase plasminogen receptor domain III controlling a functional association with alpha5beta1 integrin and tumor growth. J Biol Chem, 281 (2006), 14852–14863.CrossRefGoogle ScholarPubMed
Wei, Y., Tang, C. H., Kim, Y., Robillard, L., Zhang, F., Kugler, M. C. & Chapman, H. A.. Urokinase receptors are required for alpha 5 beta 1 integrin-mediated signaling in tumor cells. J Biol Chem, 282 (2007), 3929–3939.CrossRefGoogle Scholar
Degryse, B., Resnati, M., Czekay, R. P., Loskutoff, D. J. & Blasi, F.. Domain 2 of the urokinase receptor contains an integrin-interacting epitope with intrinsic signaling activity: generation of a new integrin inhibitor. J Biol Chem, 280 (2005), 24792–24803.CrossRefGoogle ScholarPubMed
Dewerchin, M., Nuffelen, A. V., Wallays, G., Bouche, A., Moons, L., Carmeliet, P., Mulligan, R. C. & Collen, D.. Generation and characterization of urokinase receptor-deficient mice. J Clin Invest, 97 (1996), 870–878.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×