Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-26T07:56:32.244Z Has data issue: false hasContentIssue false

10 - Internally Directed Attention in Creative Cognition

from Part III - Attention and Imagination

Published online by Cambridge University Press:  19 January 2018

Rex E. Jung
Affiliation:
University of New Mexico
Oshin Vartanian
Affiliation:
University of Toronto
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Addis, D. R., Pan, L., Musicaro, R., & Schacter, D. L. (2016). Divergent thinking and constructing episodic simulations. Memory, 24, 8997.CrossRefGoogle ScholarPubMed
Addis, D. R., Wong, A. T., & Schacter, D. L. (2007). Remembering the past and imagining the future: Common and distinct neural substrates during event construction and elaboration. Neuropsychologia, 45, 13631377.CrossRefGoogle ScholarPubMed
Andrews-Hanna, J. R., Smallwood, J., & Spreng, R. N. (2014). The default network and self-generated thought: Component processes, dynamic control, and clinical relevance. Annuals of the New York Academy of Sciences, 1316, 2952.CrossRefGoogle ScholarPubMed
Arden, R., Chavez, R. S., Grazioplene, R., & Jung, R. E. (2010). Neuroimaging creativity: A psychometric review. Behavioral Brain Research, 214, 143156.CrossRefGoogle Scholar
Baird, B., Smallwood, J., & Schooler, J. W. (2011). Back to the future: Autobiographical planning and the functionality of mind-wandering. Consciousness and Cognition, 20, 16041611.CrossRefGoogle Scholar
Beaty, R. E. (2015). The neuroscience of musical improvisation. Neuroscience & Biobehavioral Reviews, 51, 108117.CrossRefGoogle ScholarPubMed
Beaty, R. E., Benedek, M., Kaufman, S. B., & Silvia, P. J. (2015). Default and executive network coupling supports creative idea production. Scientific Reports, 5, 10964.CrossRefGoogle Scholar
Beaty, R. E., Benedek, M., Silvia, P. J., & Schacter, D. L. (2016). Creative cognition and brain network dynamics. Trends in Cognitive Sciences, 20, 8795.CrossRefGoogle ScholarPubMed
Beaty, R. E., Benedek, M., Wilkins, R. W., Jauk, E., Fink, A., Silvia, P. J., … Neubauer, A. C. (2014). Creativity and the default network: A functional connectivity analysis of the creative brain at rest. Neuropsychologia, 64, 9298.CrossRefGoogle ScholarPubMed
Beaty, R. E., Burgin, C. J., Nusbaum, E. C., Kwapil, T. R., Hodges, D. A., & Silvia, P. J. (2013). Music to the inner ears: Exploring individual differences in musical imagery. Consciousness and Cognition, 22, 11631173.CrossRefGoogle Scholar
Beaty, R. E., & Silvia, P. J. (2013). Metaphorically speaking: Cognitive abilities and the production of figurative speech. Memory and Cognition, 41, 255267.CrossRefGoogle Scholar
Beaty, R. E., Silvia, P. J., Nusbaum, E. C., Jauk, E., & Benedek, M. (2014). The role of associative and executive processes in creative cognition. Memory & Cognition, 42, 11861195.CrossRefGoogle Scholar
Benedek, M., Beaty, R., Jauk, E., Koschutnig, K., Fink, A., Silvia, P. J., … Neubauer, A. C. (2014). Creating metaphors: The neural basis of figurative language production. NeuroImage, 90, 99106.CrossRefGoogle ScholarPubMed
Benedek, M., Bergner, S., Könen, T., Fink, A., & Neubauer, A. C. (2011). EEG alpha synchronization is related to top-down processing in convergent and divergent thinking. Neuropsychologia, 49, 35053511.CrossRefGoogle ScholarPubMed
Benedek, M., Franz, F., Heene, M., & Neubauer, A. C. (2012). Differential effects of cognitive inhibition and intelligence on creativity. Personality and Individual Differences, 53(4), 480485. doi:10.1016/j.paid.2012.04.014CrossRefGoogle ScholarPubMed
Benedek, M., & Jauk, E. (in press). Spontaneous and controlled processes in creative cognition. In Fox, K. C. R., & Christoff, K. (Eds.), The Oxford handbook of spontaneous thought: Mind wandering, creativity, dreaming, and clinical disorders. Oxford: Oxford University Press.Google Scholar
Benedek, M., Jauk, E., Beaty, R. E., Fink, A., Koschutnig, K., & Neubauer, A. C. (2016). Brain mechanisms associated with internally directed attention and self-generated thought. Scientific Reports, 6, 22959.CrossRefGoogle ScholarPubMed
Benedek, M., Jauk, E., Sommer, M., Arendasy, M., & Neubauer, A. C. (2014). Intelligence, creativity, and cognitive control: The common and differential involvement of executive functions in intelligence and creativity. Intelligence, 46, 7383.CrossRefGoogle ScholarPubMed
Benedek, M., Könen, T., & Neubauer, A. C. (2012). Associative abilities underlying creativity. Psychology of Aesthetics, Creativity, and the Arts, 6, 273281.CrossRefGoogle Scholar
Benedek, M., Mühlmann, C., Jauk, , , E., & Neubauer, A. C. (2013). Assessment of divergent thinking by means of the subjective top-scoring method: Effects of the number of top-ideas and time-on-task on reliability and validity. Psychology of Aesthetics, Creativity, and the Arts, 7, 341349.CrossRefGoogle ScholarPubMed
Benedek, M., Schickel, R. J., Jauk, E., Fink, A., & Neubauer, A. C. (2014). Alpha power increases in right parietal cortex reflects focused internal attention. Neuropsychologia, 56, 393400.CrossRefGoogle ScholarPubMed
Benedek, M., Stoiser, R., Walcher, S., & Körner, C. (2017). Eye behavior associated with internally versus externally directed cognition. Frontiers in Psychology, 8, 1092. doi:10.3389/fpsyg.2017.01092CrossRefGoogle ScholarPubMed
Buckner, R. L., Andrews-Hanna, J. R., & Schacter, D. L. (2008). The brain’s default network. Annals of the New York Academy of Sciences, 1124, 138.CrossRefGoogle ScholarPubMed
Carson, S. H., Peterson, J. B., & Higgins, D. M. (2003). Decreased latent inhibition is associated with increased creative achievement in high-functioning individuals. Journal of Personality and Social Psychology, 85, 499506.CrossRefGoogle ScholarPubMed
Christoff, K. (2013). Thinking. In Ochsner, K. N. & Kosslyn, S. M. (Eds.), The Oxford handbook of cognitive neuroscience (Vol. 2, pp. 318333). Oxford: Oxford University Press.Google Scholar
Chun, M. M., Golomb, J. D., & Turk-Browne, N. B. (2011). A taxonomy of external and internal attention. Annual Review Psychology, 62, 73101.CrossRefGoogle ScholarPubMed
Cooper, N. R., Croft, R. J., Dominey, S. J. J., Burgess, A. P., & Gruzelier, J. H. (2003). Paradox lost? Exploring the role of alpha oscillations during externally vs. internally directed attention and the implications for idling and inhibition hypotheses. International Journal of Psychophysiology, 47, 6574.CrossRefGoogle ScholarPubMed
Corbetta, M., & Shulman, G. L. (2002). Control of goal-directed and stimulus-driven attention in the brain. Nature Reviews Neuroscience, 3, 201215.CrossRefGoogle ScholarPubMed
Dietrich, A. (2003). Functional neuroanatomy of altered states of consciousness: The transient hypofrontality hypothesis. Consciousness and Cognition, 12, 231256.CrossRefGoogle ScholarPubMed
Dietrich, A., & Kanso, R. (2010). A review of EEG, ERP, and neuroimaging studies of creativity and insight. Psychological Bulletin, 136, 822848.CrossRefGoogle ScholarPubMed
Dixon, M. L., Fox, K. C. R., & Christoff, K. (2014). A framework for understanding the relationship between externally and internally directed cognition. Neuropsychologia, 62, 321330.CrossRefGoogle ScholarPubMed
Dubé, C., Payne, , Sekuler, L., , R., & Rotello, C. M. (2013). Paying attention to attention in recognition memory. Insights from models and electrophysiology. Psychological Science, 24, 23982408.CrossRefGoogle ScholarPubMed
Engle, R. W. (2002). Working memory capacity as executive attention. Current directions in Psychological Science, 11, 1923.CrossRefGoogle Scholar
Fink, A., & Benedek, M. (2013). The creative brain: Brain correlates underlying the generation of original ideas. In Vartanian, O., Bristol, A. S., & Kaufman, J. C. (Eds.), Neuroscience of creativity (pp. 207232). Cambridge, MA: MIT Press.CrossRefGoogle Scholar
Fink, A., & Benedek, M. (2014). EEG alpha power and creative ideation. Neuroscience and Biobehavioral Reviews, 44, 111123.CrossRefGoogle ScholarPubMed
Fink, A., Benedek, M., Grabner, R. H., Staudt, B., & Neubauer, A. C. (2007). Creativity meets neuroscience: Experimental tasks for the neuroscientific study of creative thinking. Methods, 42, 6876.CrossRefGoogle ScholarPubMed
Fink, A., Grabner, R. H., Benedek, M., & Neubauer, A. C. (2006). Divergent thinking training is related to frontal electroencephalogram alpha synchronization. European Journal of Neuroscience, 23, 22412246.CrossRefGoogle ScholarPubMed
Fink, A., Grabner, R. H., Benedek, M., Reishofer, G., Hauswirth, V., Fally, M., … Neubauer, A. C. (2009). The creative brain: Investigation of brain activity during creative problem solving by means of EEG and fMRI. Human Brain Mapping, 30, 734748.CrossRefGoogle ScholarPubMed
Fink, A., Graif, B., & Neubauer, A. C. (2009). Brain correlates underlying creative thinking: EEG alpha activity in professional vs. novice dancers. NeuroImage, 46, 854862.CrossRefGoogle ScholarPubMed
Fink, A., Koschutnig, K., Hutterer, L., Steiner, E., Benedek, M., Weber, B., … Weiss, E. M. (2014). Gray matter density in relation to different facets of verbal creativity. Brain Structure and Function, 219, 12631269.CrossRefGoogle ScholarPubMed
Fink, A., & Neubauer, A. C. (2006). EEG alpha oscillations during the performance of verbal creativity tasks: Differential effects of sex and verbal intelligence. International Journal of Psychophysiology, 62, 4653.CrossRefGoogle ScholarPubMed
Fink, A., & Neubauer, A. C. (2008). Eysenck meets Martindale: The relationship between extraversion and originality from the neuroscientific perspective. Personality and Individual Differences, 44, 299310.CrossRefGoogle Scholar
Fink, A., Schwab, D., & Papousek, I. (2011). Sensitivity of EEG upper alpha activity to cognitive and affective creativity interventions. International Journal of Psychophysiology, 82, 233239.CrossRefGoogle ScholarPubMed
Finke, R. A. (1996). Imagery, creativity, and emergent structure. Consciousness and Cognition, 5, 381393.CrossRefGoogle ScholarPubMed
Fox, K. C. R., Spreng, R. N., Ellamil, M., Andrews-Hanna, J. R., & Christoff, K. (2015). The wandering brain: Meta-analysis of functional neuroimaging studies of mind-wandering and related spontaneous thought processes. NeuroImage, 111, 611621.CrossRefGoogle ScholarPubMed
Gabora, L. (2002). Cognitive mechanisms underlying the creative process. In Hewett, T. & Kavanagh, T. (Eds.), Proceedings of the Fourth International Conference on Creativity and Cognition (pp. 126133). Loughborough: Loughborough University.CrossRefGoogle Scholar
Gonen-Yaacovi, G., de Souza, L. C., Levy, R., Urbanski, M., Josse, G., & Volle, E. (2013). Rostral and caudal prefrontal contribution to creativity: A meta-analysis of functional imaging data. Frontiers in Human Neuroscience, 7, 465.CrossRefGoogle ScholarPubMed
Grabner, R. H., Fink, A., & Neubauer, A. C. (2007). Brain correlates of self-rated originality of ideas: Evidence from event-related power and phase-locking changes in the EEG. Behavioral Neuroscience, 121, 224230.CrossRefGoogle ScholarPubMed
Gusnard, D. A., & Raichle, M. E. (2001). Searching for a baseline: Functional imaging and the resting human brain. Nature Reviews Neuroscience, 2, 685694.CrossRefGoogle ScholarPubMed
Händel, B. F., Haarmeier, , , T., & Jensen, O. (2011). Alpha oscillations correlate with the successful inhibition of unattended stimuli. Journal of Cognitive Neuroscience, 23, 24942502.CrossRefGoogle ScholarPubMed
Jaarsveld, S., Fink, A., Rinner, M., Schwab, D., Benedek, M., & Lachmann, T. (2015). Intelligence in creative processes: An EEG study. Intelligence, 49, 171178.CrossRefGoogle Scholar
Jauk, E., Benedek, M., & Neubauer, A. C. (2012). Tackling creativity at its roots: Evidence for different patterns of EEG alpha activity related to convergent and divergent modes of task processing. International Journal of Psychophysiology, 84, 219225.CrossRefGoogle ScholarPubMed
Jauk, E., Neubauer, A. C., Dunst, B., Fink, A., & Benedek, M. (2015). Gray matter correlates of creative potential: A latent variable voxel-based morphometry study. NeuroImage, 111, 312320.CrossRefGoogle ScholarPubMed
Jaušovec, N., 2000. Differences in cognitive processes between gifted, intelligent, creative, and average individuals while solving complex problems: An EEG study. Intelligence, 28, 213237.CrossRefGoogle Scholar
Jensen, O., Bonnefond, M., & VanRullen, R. (2012). An oscillatory mechanism for prioritizing salient unattended stimuli. Trends in Cognitive Sciences, 16, 200206.CrossRefGoogle ScholarPubMed
Jensen, O., Gelfand, J., Kounios, J., & Lisman, J. E. (2002). Oscillations in the alpha band (9–12 Hz) increase with memory load during retention in a short-term memory task. Cerebral Cortex, 12, 877882.CrossRefGoogle Scholar
Jensen, O., & Mazaheri, A. (2010). Shaping functional architecture by oscillatory alpha activity: Gating by inhibition. Frontiers in Human Neuroscience, 4, 186.CrossRefGoogle ScholarPubMed
Jung, R. E., Flores, R. A., & Hunter, D. (2016). A new measure of imagination ability: Anatomical brain imaging correlates. Frontiers in Psychology, 7, 496.CrossRefGoogle ScholarPubMed
Jung, R. E., Mead, B. S., Carrasco, J., & Flores, R. A. (2013). The structure of creative cognition in the human brain. Frontiers in Human Neuroscience, 7, 330.CrossRefGoogle ScholarPubMed
Jung, R. E., Segall, J. M., Bockholt, H. J., Flores, R. A., Smith, S. M., Chavez, R. S., & Haier, R. J. (2010). Neuoroanatomy of creativity. Human Brain Mapping, 31, 398409.CrossRefGoogle ScholarPubMed
Jung-Beeman, M. (2005). Bilateral brain processes for comprehending natural language. Trends in Cognitive Sciences, 9, 512518.CrossRefGoogle ScholarPubMed
Jung-Beeman, M., Bowden, E. M., Haberman, J., Frymiare, J. L., Arambel-Liu, S., Greenblatt, R., … Kounios, J. (2004). Neural activity when people solve verbal problems with insight. PLoS Biology, 2, 500510.CrossRefGoogle ScholarPubMed
Kane, M. J., Bleckley, K. M., Conway, A. R., & Engle, R. W. (2001). A controlled-attention view of working-memory capacity. Journal of Experimental Psychology: General, 130, 169183.CrossRefGoogle ScholarPubMed
Kane, M. J., Brown, L. H., McVay, J. C., Silvia, P. J., Myin-Germeys, I., & Kwapil, T. R. (2007). For whom the mind wanders, and when an experience-sampling study of working memory and executive control in daily life. Psychological Science, 18, 614621.CrossRefGoogle ScholarPubMed
Kasof, J. (1997). Creativity and breadth of attention. Creativity Research Journal, 10, 303315.CrossRefGoogle Scholar
Kellner, R., & Benedek, M. (2017). The role of creative potential and intelligence for humor production. Psychology of Aesthetics, Creativity, and the Arts, 11, 5258. doi:10.1037/aca0000065CrossRefGoogle Scholar
Killingsworth, M. A., & Gilbert, D. T. (2010). A wandering mind is an unhappy mind. Science, 330, 932932.CrossRefGoogle ScholarPubMed
Klimesch, W. (2012). Alpha-band oscillations, attention, and controlled access to stored information. Trends in Cognitive Sciences, 16, 606617.CrossRefGoogle ScholarPubMed
Klimesch, W., Doppelmayr, M., Schwaiger, J., Auinger, P., & Winkler, T. (1999). “Paradoxical” alpha synchronization in a memory task. Cognitive Brain Research, 7, 493501.CrossRefGoogle Scholar
Koestler, A. (1964). The act of creation. New York, NY: Macmillan.Google Scholar
Kosslyn, S. M., Ganis, G., & Thompson, W. L. (2001). Neural foundations of imagery. Nature Reviews Neuroscience, 2, 635642.CrossRefGoogle ScholarPubMed
Kosslyn, S. M., Pascual-Leone, A., Felician, O., Camposano, S., Keenan, J. P., Ganis, G., … Alpert, N. M. (1999). The role of area 17 in visual imagery: Convergent evidence from PET and rTMS. Science, 284, 167170.CrossRefGoogle ScholarPubMed
Kosslyn, S. M., Thompson, W. L., & Alpert, N. M. (1997). Neural systems shared by visual imagery and visual perception: A positron emission tomography study. NeuroImage, 6, 320334.CrossRefGoogle ScholarPubMed
Kounios, J., & Beeman, M. (2009). The Aha! moment: The cognitive neuroscience of insight. Current Directions in Psychological Science, 18, 210216.CrossRefGoogle Scholar
Kris, E. (1952). Psychoanalytic explorations in art. New York, NY: International Universities Press.Google Scholar
Martindale, C. (1999). Biological bases of creativity. In Sternberg, R. (Ed.), Handbook of creativity (pp. 137152). Cambridge: Cambridge University Press.Google Scholar
Martindale, C., & Armstrong, J. (1974). The relationship of creativity to cortical activation and its operant control. Journal of Genetic Psychology, 124, 311320.CrossRefGoogle ScholarPubMed
Martindale, C., & Hasenfus, N. (1978). EEG differences as a function of creativity, stage of the creative process, and effort to be original. Biological Psychology, 6, 157167.CrossRefGoogle Scholar
Martindale, C., & Hines, D. (1975). Creativity and cortical activation during creative, intellectual, and EEG feedback tasks. Biological Psychology, 3, 7180.CrossRefGoogle ScholarPubMed
Mednick, S. A. (1962). The associative basis of the creative process. Psychological Review, 69, 220232.CrossRefGoogle ScholarPubMed
Mendelsohn, G. A. (1976). Associative and attentional processes in creative performance. Journal of Personality, 44, 341369.CrossRefGoogle Scholar
Mok, L. W. (2014). The interplay between spontaneous and controlled processing in creative cognition. Frontiers in Human Neuroscience, 8, 663.CrossRefGoogle ScholarPubMed
Nusbaum, E. C., & Silvia, P. J. (2011). Are intelligence and creativity really so different? Fluid intelligence, executive processes, and strategy use in divergent thinking. Intelligence, 39, 3645.CrossRefGoogle Scholar
Palva, S., & Palva, J. M. (2007). New vistas for α-frequency band oscillations. Trends in Neurosciences, 30, 150158.CrossRefGoogle ScholarPubMed
Pearson, J., Naselaris, T., Holmes, E. A., & Kosslyn, S. M. (2015). Mental imagery: Functional mechanisms and clinical applications. Trends in Cognitive Sciences, 19, 590602.CrossRefGoogle ScholarPubMed
Pfurtscheller, G. (1999). Quantification of ERD and ERS in the time domain. In Pfurtscheller, G., & Lopes da Silva, F. H. (Eds.), Event-related desynchronization. Handbook of electroencephalography and clinical neurophysiology (Vol. 6, pp. 89105). Amsterdam: Elsevier.Google Scholar
Pfurtscheller, G., StancákJr., A., & Neuper, A. C. (1996). Event-related synchronization (ERS) in the alpha band – An electrophysiological correlate of cortical idling: A review. International Journal of Psychophysiology, 24, 3946.CrossRefGoogle ScholarPubMed
Pinho, A. L., Ullén, F., Castelo-Brancod, M., Fransson, P., & de Manzano, Ö. (2015). Addressing a paradox: dual strategies for creative performance in introspective and extrospective networks. Cerebral Cortex, 26, 30523063. doi:10.1093/cercor/bhv130CrossRefGoogle ScholarPubMed
Raichle, M. E., MacLeod, A. M., Snyder, A. Z., Powers, W. J., Gusnard, D. A., & Shulman, G. L. (2001). A default mode of brain function. Proceedings of the National Academy of Sciences, 98, 676682.CrossRefGoogle ScholarPubMed
Ray, W. J., & Cole, H. W. (1985). EEG alpha reflects attentional demands, and beta activity reflects emotional and cognitive processes. Science, 228, 750752.CrossRefGoogle ScholarPubMed
Rihs, T. A., Michel, C. M., & Thut, G. (2007). Mechanisms of selective inhibition in visual spatial attention are indexed by α-band EEG synchronization. European Journal of Neuroscience, 25, 603610.CrossRefGoogle ScholarPubMed
Rowe, G., Hirsh, J. B., & Anderson, A. K. (2007). Positive affect increases the breadth of attentional selection. Proceedings of the National Academy of Sciences, 104, 383388.CrossRefGoogle ScholarPubMed
Salvi, C., Bricolo, E., Franconeri, S. L., Kounios, J., & Beeman, M. (2015). Sudden insight is associated with shutting out visual inputs. Psychonomic Bulletin & Review, 22, 18141819.CrossRefGoogle ScholarPubMed
Sarter, M., Givens, B., & Bruno, J. P. (2001). The cognitive neuroscience of sustained attention: Where top-down meets bottom-up. Brain Research Reviews, 35, 146160.CrossRefGoogle ScholarPubMed
Sauseng, P., Klimesch, W., Doppelmayr, M., Pecherstorfer, T., Freunberger, R., & Hanslmayr, S. (2005). EEG alpha synchronization and functional coupling during top-down processing in a working memory task. Human Brain Mapping, 26, 148155.CrossRefGoogle Scholar
Schacter, D. L., Addis, D. R., Hassabis, D., Martin, V. C., Spreng, R. N., & Szpunar, K. K. (2012). The future of memory: Remembering, imagining, and the brain. Neuron, 76, 677694.CrossRefGoogle ScholarPubMed
Schwab, D., Benedek, M., Papousek, I., Weiss, E. M., & Fink, A. (2014). The time-course of EEG alpha power changes in creative ideation. Frontiers in Human Neuroscience, 8, 310.CrossRefGoogle ScholarPubMed
Silvia, P. J. (2015). Intelligence and creativity are pretty similar after all. Educational Psychology Review, 27, 599606.CrossRefGoogle Scholar
Smallwood, J., Brown, K. S., Tipper, C., Giesbrecht, B., Franklin, M. S., Mrazek, M. D., … Schooler, J. W. (2011). Pupillometric evidence for the decoupling of attention from perceptual input during offline thought. PLoS ONE, 6, e18298.CrossRefGoogle ScholarPubMed
Smallwood, J., & Schooler, J. W. (2015). The science of mind wandering: Empirically navigating the stream of consciousness. Annual Review of Psychology, 66, 487518.CrossRefGoogle ScholarPubMed
Spreng, R. N., Mar, R. A., & Kim, A. S. N. (2009). The common neural basis of autobiographical memory, prospection, navigation, theory of mind, and the default mode: A quantitative meta-analysis. Journal of Cognitive Neuroscience, 21, 489510.CrossRefGoogle Scholar
Spreng, R. N., Stevens, W. D., Chamberlain, J. P., Gilmore, A. W., & Schacter, D. L. (2010). Default network activity, coupled with the frontoparietal control network, supports goal-directed cognition. NeuroImage, 53, 303317.CrossRefGoogle ScholarPubMed
Supp, G. G., Siegel, M., Hipp, J. F., & Engel, A. K. (2011). Cortical hypersynchrony predicts breakdown of sensory processing during loss of consciousness. Current Biology, 21, 19881993.CrossRefGoogle ScholarPubMed
Takeuchi, H., Taki, Y., Hashizume, H., Sassa, Y., Nagase, T., Nouchi, R., & Kawashima, R. (2011). Failing to deactivate: The association between brain activity during a working memory task and creativity. NeuroImage, 55, 681687.CrossRefGoogle ScholarPubMed
Vartanian, O. (2009). Variable attention facilitates creative problem solving. Psychology of Aesthetics, Creativity, and the Arts, 3, 5759.CrossRefGoogle Scholar
Von Stein, A., Chiang, C., & König, P. (2000). Top-down processing mediated by interareal synchronization. Proceedings of the National Academy of Sciences, 97, 1474814753.CrossRefGoogle ScholarPubMed
Von Stein, A., & Sarnthein, J. (2000). Different frequencies for different scales of cortical integration: From local gamma to long range alpha/theta synchronization. International Journal of Psychophysiology, 38, 301313.CrossRefGoogle Scholar
Walcher, S., Körner, C., & Benedek, M. (2017). Looking for ideas: Eye behavior during goal-directed internally-focused cognition. Consciousness and Cognition, 53, 165175. doi:10.1016/j.concog.2017.06.009CrossRefGoogle ScholarPubMed
Wiley, J., & Jarosz, A. F. (2012). Working memory capacity, attentional focus, and problem solving. Current Directions in Psychological Science, 21, 258262.CrossRefGoogle Scholar
Worden, M., Foxe, J. J., Wang, N., & Simpson, G. V. (2000). Anticipatory biasing of visuospatial attention indexed by retinotopically specific α-band electroencephalography increases over occipital cortex. Journal of Neuroscience, 20(6), RC63.CrossRefGoogle ScholarPubMed
Zabelina, D. L., O’Leary, D., Pornpattananangkul, N., Nusslock, R., & Beeman, M. (2015). Creativity and sensory gating indexed by the P50: Selective versus leaky sensory gating in divergent thinkers and creative achievers. Neuropsychologia, 69, 7784.CrossRefGoogle ScholarPubMed
Zabelina, D. L., & Robinson, M. D. (2010). Creativity as flexible cognitive control. Psychology of Aesthetics, Creativity, and the Arts, 4, 136143.CrossRefGoogle Scholar
Zabelina, D., Saporta, A., & Beeman, M. (2015). Flexible or leaky attention in creative people? Distinct patterns of attention for different types of creative thinking. Memory & Cognition, 144, 488498.Google Scholar
Zanto, T. P., Rubens, M. T., Thangavel, A., & Gazzaley, A. (2011). Causal role of the prefrontal cortex in top-down modulation of visual processing and working memory. Nature Neuroscience, 14, 656663.CrossRefGoogle ScholarPubMed
Zatorre, R. J., Halpern, A. R., Perry, D. W., Meyer, E., & Evans, A. C. (1996). Hearing in the mind’s ear: A PET investigation of musical imagery and perception. Journal of Cognitive Neuroscience, 8, 2946.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×