Skip to main content Accessibility help
×
Hostname: page-component-68945f75b7-z8dg2 Total loading time: 0 Render date: 2024-08-06T00:23:11.088Z Has data issue: false hasContentIssue false

11 - The Forest versus the Trees: Creativity, Cognition and Imagination

from Part III - Attention and Imagination

Published online by Cambridge University Press:  19 January 2018

Rex E. Jung
Affiliation:
University of New Mexico
Oshin Vartanian
Affiliation:
University of Toronto
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abraham, A. (2013). The promises and perils of the neuroscience of creativity. Frontiers in Human Neuroscience, 7, 246. http://doi.org/10.3389/fnhum.2013.00246CrossRefGoogle ScholarPubMed
Abraham, A. (2014). Creative thinking as orchestrated by semantic processing vs. cognitive control brain networks. Frontiers in Human Neuroscience, 8, 95. http://doi.org/10.3389/fnhum.2014.00095CrossRefGoogle ScholarPubMed
Abraham, A. (2016). The imaginative mind. Human Brain Mapping, 37, 41974211.CrossRefGoogle ScholarPubMed
Abraham, A., Beudt, S., Ott, D. V. M., & von Cramon, D. Y. (2012). Creative cognition and the brain: Dissociations between frontal, parietal–temporal and basal ganglia groups. Brain Research, 1482, 5570. http://doi.org/10.1016/j.brainres.2012.09.007CrossRefGoogle ScholarPubMed
Abraham, A., & Bubic, A. (2015). Semantic memory as the root of imagination. Cognitive Science, 6, 325. http://doi.org/10.3389/fpsyg.2015.00325Google ScholarPubMed
Abraham, A., Pieritz, K., Thybusch, K., Rutter, B., Kröger, S., Schweckendiek, J., … Hermann, C. (2012). Creativity and the brain: Uncovering the neural signature of conceptual expansion. Neuropsychologia, 50(8), 19061917. http://doi.org/10.1016/j.neuropsychologia.2012.04.015CrossRefGoogle ScholarPubMed
Abraham, A., Schubotz, R. I., & von Cramon, D. Y. (2008). Thinking about the future versus the past in personal and non-personal contexts. Brain Research, 1233, 106119. http://doi.org/10.1016/j.brainres.2008.07.084CrossRefGoogle ScholarPubMed
Abraham, A., & Windmann, S. (2007). Creative cognition: The diverse operations and the prospect of applying a cognitive neuroscience perspective. Methods (San Diego, California), 42(1), 3848. http://doi.org/10.1016/j.ymeth.2006.12.007CrossRefGoogle ScholarPubMed
Andrews-Hanna, J. R., Reidler, J. S., Huang, C., & Buckner, R. L. (2010). Evidence for the default network’s role in spontaneous cognition. Journal of Neurophysiology, 104(1), 322335. http://doi.org/10.1152/jn.00830.2009CrossRefGoogle ScholarPubMed
Andrews-Hanna, J. R., Smallwood, J., & Spreng, R. N. (2014). The default network and self-generated thought: Component processes, dynamic control, and clinical relevance. Annals of the New York Academy of Sciences, 1316, 2952. http://doi.org/10.1111/nyas.12360CrossRefGoogle ScholarPubMed
Aziz-Zadeh, L., Kaplan, J. T., & Iacoboni, M. (2009). “Aha!”: The neural correlates of verbal insight solutions. Human Brain Mapping, 30(3), 908916. http://doi.org/10.1002/hbm.20554CrossRefGoogle ScholarPubMed
Badre, D. (2008). Cognitive control, hierarchy, and the rostro-caudal organization of the frontal lobes. Trends in Cognitive Sciences, 12(5), 193200. http://doi.org/10.1016/j.tics.2008.02.004CrossRefGoogle ScholarPubMed
Badre, D., & Wagner, A. D. (2007). Left ventrolateral prefrontal cortex and the cognitive control of memory. Neuropsychologia, 45(13), 28832901. http://doi.org/10.1016/j.neuropsychologia.2007.06.015CrossRefGoogle ScholarPubMed
Bar, M. (2007). The proactive brain: Using analogies and associations to generate predictions. Trends in Cognitive Sciences, 11(7), 280289. http://doi.org/10.1016/j.tics.2007.05.005CrossRefGoogle ScholarPubMed
Bartolomeo, P. (2008). The neural correlates of visual mental imagery: An ongoing debate. Cortex; a Journal Devoted to the Study of the Nervous System and Behavior, 44(2), 107108. http://doi.org/10.1016/j.cortex.2006.07.001CrossRefGoogle ScholarPubMed
Beaty, R. E., Benedek, M., Barry Kaufman, S., & Silvia, P. J. (2015). Default and executive network coupling supports creative idea production. Scientific Reports, 5, 10964. http://doi.org/10.1038/srep10964CrossRefGoogle Scholar
Beaty, R. E., Benedek, M., Silvia, P. J., & Schacter, D. L. (2016). Creative cognition and brain network dynamics. Trends in Cognitive Sciences, 20(2), 8795. http://doi.org/10.1016/j.tics.2015.10.004CrossRefGoogle ScholarPubMed
Beaty, R. E., Silvia, P. J., Nusbaum, E. C., Jauk, E., & Benedek, M. (2014). The roles of associative and executive processes in creative cognition. Memory & Cognition, 42(7), 11861197. http://doi.org/10.3758/s13421-014-0428-8CrossRefGoogle ScholarPubMed
Blasi, G., Goldberg, T. E., Weickert, T., Das, S., Kohn, P., Zoltick, B., … Mattay, V. S. (2006). Brain regions underlying response inhibition and interference monitoring and suppression. The European Journal of Neuroscience, 23(6), 16581664. http://doi.org/10.1111/j.1460-9568.2006.04680.xCrossRefGoogle Scholar
Boccia, M., Piccardi, L., Palermo, L., Nori, R., & Palmiero, M. (2015). Where do bright ideas occur in our brain? Meta-analytic evidence from neuroimaging studies of domain-specific creativity. Frontiers in Psychology, 6, 1195. http://doi.org/10.3389/fpsyg.2015.01195CrossRefGoogle ScholarPubMed
Bubić, A., & Abraham, A. (2014). Neurocognitive bases of future oriented cognition. Review of Psychology, 21(1), 315.Google Scholar
Bubic, A., von Cramon, D. Y., & Schubotz, R. I. (2010). Prediction, cognition and the brain. Frontiers in Human Neuroscience, 4, 25. http://doi.org/10.3389/fnhum.2010.00025Google ScholarPubMed
Buckner, R. L., Andrews-Hanna, J. R., & Schacter, D. L. (2008). The brain’s default network: Anatomy, function, and relevance to disease. Annals of the New York Academy of Sciences, 1124, 138. http://doi.org/10.1196/annals.1440.011CrossRefGoogle ScholarPubMed
Chand, G., & Dhamala, M. (2015). Interactions among the brain default-mode, salience and central-executive networks during perceptual decision-making of moving dots. Brain Connectivity. http://doi.org/10.1089/brain.2015.0379Google Scholar
Chen, A. C., Oathes, D. J., Chang, C., Bradley, T., Zhou, Z.-W., Williams, L. M., … Etkin, A. (2013). Causal interactions between frontoparietal central executive and default-mode networks in humans. Proceedings of the National Academy of Sciences of the United States of America, 110(49), 1994419949. http://doi.org/10.1073/pnas.1311772110CrossRefGoogle ScholarPubMed
Chi, R. P., & Snyder, A. W. (2011). Facilitate insight by non-invasive brain stimulation. PLoS ONE, 6(2), e16655. http://doi.org/10.1371/journal.pone.0016655CrossRefGoogle ScholarPubMed
Cole, M. W., & Schneider, W. (2007). The cognitive control network: Integrated cortical regions with dissociable functions. NeuroImage, 37(1), 343360. http://doi.org/10.1016/j.neuroimage.2007.03.071CrossRefGoogle ScholarPubMed
Corbett, F., Jefferies, E., & Ralph, M. A. L. (2009). Exploring multimodal semantic control impairments in semantic aphasia: Evidence from naturalistic object use. Neuropsychologia, 47(13), 27212731. http://doi.org/10.1016/j.neuropsychologia.2009.05.020CrossRefGoogle ScholarPubMed
Corbett, F., Jefferies, E., & Ralph, M. A. L. (2011). Deregulated semantic cognition follows prefrontal and temporo-parietal damage: Evidence from the impact of task constraint on nonverbal object use. Journal of Cognitive Neuroscience, 23(5), 11251135. http://doi.org/10.1162/jocn.2010.21539CrossRefGoogle ScholarPubMed
Daselaar, S. M., Porat, Y., Huijbers, W., & Pennartz, C. M. A. (2010). Modality-specific and modality-independent components of the human imagery system. NeuroImage, 52(2), 677685. http://doi.org/10.1016/j.neuroimage.2010.04.239CrossRefGoogle ScholarPubMed
Dietrich, A. (2015). How creativity happens in the brain. Houndmills: Palgrave Macmillan.CrossRefGoogle Scholar
Dietrich, A., & Kanso, R. (2010). A review of EEG, ERP, and neuroimaging studies of creativity and insight. Psychological Bulletin, 136(5), 822848. http://doi.org/10.1037/a0019749CrossRefGoogle ScholarPubMed
Dixon, M. L., Fox, K. C. R., & Christoff, K. (2014). A framework for understanding the relationship between externally and internally directed cognition. Neuropsychologia, 62, 321330. http://doi.org/10.1016/j.neuropsychologia.2014.05.024CrossRefGoogle ScholarPubMed
Donoso, M., Collins, A. G. E., & Koechlin, E. (2014). Foundations of human reasoning in the prefrontal cortex. Science, 344(6191), 14811486. http://doi.org/10.1126/science.1252254CrossRefGoogle ScholarPubMed
du Boisgueheneuc, F., Levy, R., Volle, E., Seassau, M., Duffau, H., Kinkingnehun, S., … Dubois, B. (2006). Functions of the left superior frontal gyrus in humans: A lesion study. Brain: A Journal of Neurology, 129(Pt 12), 33153328. http://doi.org/10.1093/brain/awl244CrossRefGoogle ScholarPubMed
Ellamil, M., Dobson, C., Beeman, M., & Christoff, K. (2012). Evaluative and generative modes of thought during the creative process. NeuroImage, 59(2), 17831794. http://doi.org/10.1016/j.neuroimage.2011.08.008CrossRefGoogle ScholarPubMed
Eriksson, J., Vogel, E. K., Lansner, A., Bergström, F., & Nyberg, L. (2015). Neurocognitive architecture of working memory. Neuron, 88(1), 3346. http://doi.org/10.1016/j.neuron.2015.09.020CrossRefGoogle ScholarPubMed
Evans, J. S. B. T. (2008). Dual-processing accounts of reasoning, judgment, and social cognition. Annual Review of Psychology, 59, 255278. http://doi.org/10.1146/annurev.psych.59.103006.093629CrossRefGoogle ScholarPubMed
Evans, J. S. B. T., & Stanovich, K. E. (2013). Dual-process theories of higher cognition: Advancing the debate. Perspectives on Psychological Science, 8(3), 223241. http://doi.org/10.1177/1745691612460685CrossRefGoogle ScholarPubMed
Farah, M. J., & Hook, C. J. (2013). The seductive allure of “seductive allure.” Perspectives on Psychological Science, 8(1), 8890. http://doi.org/10.1177/1745691612469035CrossRefGoogle ScholarPubMed
Faust, M., & Kenett, Y. N. (2014). Rigidity, chaos and integration: Hemispheric interaction and individual differences in metaphor comprehension. Frontiers in Human Neuroscience, 8, 511. http://doi.org/10.3389/fnhum.2014.00511CrossRefGoogle ScholarPubMed
Fink, A., Grabner, R. H., Benedek, M., Reishofer, G., Hauswirth, V., Fally, M., … Neubauer, A. C. (2009). The creative brain: Investigation of brain activity during creative problem solving by means of EEG and FMRI. Human Brain Mapping, 30(3), 734748. http://doi.org/10.1002/hbm.20538CrossRefGoogle ScholarPubMed
Finke, R. A. (1990). Creative imagery: Discoveries and inventions in visualization. Hillsdale, NJ: Lawrence Erlbaum Associates.Google Scholar
Finke, R. A., Ward, T. B., & Smith, S. M. (1996). Creative cognition: Theory, research, and applications (1st pbk. ed.). Cambridge, MA: MIT Press.CrossRefGoogle Scholar
Fox, K. C. R., Spreng, R. N., Ellamil, M., Andrews-Hanna, J. R., & Christoff, K. (2015). The wandering brain: Meta-analysis of functional neuroimaging studies of mind-wandering and related spontaneous thought processes. NeuroImage, 111, 611621. http://doi.org/10.1016/j.neuroimage.2015.02.039CrossRefGoogle ScholarPubMed
Fox, M. D., Snyder, A. Z., Vincent, J. L., Corbetta, M., Van Essen, D. C., & Raichle, M. E. (2005). The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proceedings of the National Academy of Sciences of the United States of America, 102(27), 96739678. http://doi.org/10.1073/pnas.0504136102CrossRefGoogle ScholarPubMed
Fox, M. D., Zhang, D., Snyder, A. Z., & Raichle, M. E. (2009). The global signal and observed anticorrelated resting state brain networks. Journal of Neurophysiology, 101(6), 32703283. http://doi.org/10.1152/jn.90777.2008CrossRefGoogle ScholarPubMed
Goulden, N., Khusnulina, A., Davis, N. J., Bracewell, R. M., Bokde, A. L., McNulty, J. P., & Mullins, P. G. (2014). The salience network is responsible for switching between the default mode network and the central executive network: Replication from DCM. NeuroImage, 99, 180190. http://doi.org/10.1016/j.neuroimage.2014.05.052CrossRefGoogle Scholar
Green, A. E. (2016). Creativity, within reason semantic distance and dynamic state creativity in relational thinking and reasoning. Current Directions in Psychological Science, 25(1), 2835. http://doi.org/10.1177/0963721415618485CrossRefGoogle Scholar
Green, A. E., Kraemer, D. J. M., Fugelsang, J. A., Gray, J. R., & Dunbar, K. N. (2010). Connecting long distance: Semantic distance in analogical reasoning modulates frontopolar cortex activity. Cerebral Cortex, 20(1), 7076. http://doi.org/10.1093/cercor/bhp081CrossRefGoogle ScholarPubMed
Green, A. E., Kraemer, D. J. M., Fugelsang, J. A., Gray, J. R., & Dunbar, K. N. (2012). Neural correlates of creativity in analogical reasoning. Journal of Experimental Psychology. Learning, Memory, and Cognition, 38(2), 264272. http://doi.org/10.1037/a0025764CrossRefGoogle ScholarPubMed
Ioannides, A. A. (2007). Dynamic functional connectivity. Current Opinion in Neurobiology, 17(2), 161170. http://doi.org/10.1016/j.conb.2007.03.008CrossRefGoogle ScholarPubMed
Ioannidis, J. P. A. (2005). Why most published research findings are false. PLoS Med, 2(8), e124. http://doi.org/10.1371/journal.pmed.0020124CrossRefGoogle ScholarPubMed
Irish, M., & Piguet, O. (2013). The pivotal role of semantic memory in remembering the past and imagining the future. Frontiers in Behavioral Neuroscience, 7, 27. http://doi.org/10.3389/fnbeh.2013.00027CrossRefGoogle ScholarPubMed
Jung, R. E., Mead, B. S., Carrasco, J., & Flores, R. A. (2013). The structure of creative cognition in the human brain. Frontiers in Human Neuroscience, 7. http://doi.org/10.3389/fnhum.2013.00330CrossRefGoogle ScholarPubMed
Jung, R. E., Segall, J. M., Jeremy Bockholt, H., Flores, R. A., Smith, S. M., Chavez, R. S., & Haier, R. J. (2010). Neuroanatomy of creativity. Human Brain Mapping, 31(3), 398409. http://doi.org/10.1002/hbm.20874CrossRefGoogle ScholarPubMed
Jung-Beeman, M., Bowden, E. M., Haberman, J., Frymiare, J. L., Arambel-Liu, S., Greenblatt, R., … Kounios, J. (2004). Neural activity when people solve verbal problems with insight. PLoS Biology, 2(4), E97. http://doi.org/10.1371/journal.pbio.0020097CrossRefGoogle ScholarPubMed
Kenett, Y. N., Anaki, D., & Faust, M. (2014). Investigating the structure of semantic networks in low and high creative persons. Frontiers in Human Neuroscience, 8, 407. http://doi.org/10.3389/fnhum.2014.00407CrossRefGoogle ScholarPubMed
Koechlin, E. (2015). Prefrontal executive function and adaptive behavior in complex environments. Current Opinion in Neurobiology, 37, 16. http://doi.org/10.1016/j.conb.2015.11.004CrossRefGoogle ScholarPubMed
Kounios, J., & Beeman, M. (2014). The cognitive neuroscience of insight. Annual Review of Psychology, 65, 7193. http://doi.org/10.1146/annurev-psych-010213-115154CrossRefGoogle ScholarPubMed
Kröger, S., Rutter, , Hill, B., Windmann, H., Hermann, S., , C., & Abraham, A. (2013). An ERP study of passive creative conceptual expansion using a modified alternate uses task. Brain Research, 1527, 189198. http://doi.org/10.1016/j.brainres.2013.07.007CrossRefGoogle ScholarPubMed
Kröger, S., Rutter, , Stark, B., Windmann, R., Hermann, S, , C., & Abraham, A. (2012). Using a shoe as a plant pot: Neural correlates of passive conceptual expansion. Brain Research, 1430, 5261. http://doi.org/10.1016/j.brainres.2011.10.031CrossRefGoogle ScholarPubMed
Levens, S. M., Larsen, J. T., Bruss, J., Tranel, D., Bechara, A., & Mellers, B. A. (2014). What might have been? The role of the ventromedial prefrontal cortex and lateral orbitofrontal cortex in counterfactual emotions and choice. Neuropsychologia, 54, 7786. http://doi.org/10.1016/j.neuropsychologia.2013.10.026CrossRefGoogle ScholarPubMed
Limb, C. J., & Braun, A. R. (2008). Neural substrates of spontaneous musical performance: An FMRI study of jazz improvisation. PLoS ONE, 3(2), e1679. http://doi.org/10.1371/journal.pone.0001679CrossRefGoogle ScholarPubMed
Liu, S., Chow, H. M., Xu, Y., Erkkinen, M. G., Swett, K. E., Eagle, M. W., … Braun, A. R. (2012). Neural correlates of lyrical improvisation: An fMRI study of freestyle rap. Scientific Reports, 2. http://doi.org/10.1038/srep00834CrossRefGoogle ScholarPubMed
Liu, S., Erkkinen, M. G., Healey, M. L., Xu, Y., Swett, K. E., Chow, H. M., & Braun, A. R. (2015). Brain activity and connectivity during poetry composition: Toward a multidimensional model of the creative process. Human Brain Mapping, 36, 33513372. http://doi.org/10.1002/hbm.22849CrossRefGoogle Scholar
Martindale, C. (1999). Biological bases of creativity. In Sternberg, R. J. (Ed.), Handbook of creativity (pp. 137152). Cambridge: Cambridge University Press.Google Scholar
Mashal, N., Faust, M., Hendler, T., & Jung-Beeman, M. (2007). An fMRI investigation of the neural correlates underlying the processing of novel metaphoric expressions. Brain and Language, 100(2), 115126. http://doi.org/10.1016/j.bandl.2005.10.005CrossRefGoogle ScholarPubMed
Mather, M., Cacioppo, J. T., & Kanwisher, N. (2013). How fMRI can inform cognitive theories. Perspectives on Psychological Science, 8(1), 108113. http://doi.org/10.1177/1745691612469037CrossRefGoogle ScholarPubMed
Medaglia, J. D., Lynall, M.-E., & Bassett, D. S. (2015). Cognitive network neuroscience. Journal of Cognitive Neuroscience, 27(8), 14711491. http://doi.org/10.1162/jocn_a_00810CrossRefGoogle ScholarPubMed
Menon, V., & Uddin, L. Q. (2010). Saliency, switching, attention and control: A network model of insula function. Brain Structure & Function, 214(5–6), 655667. http://doi.org/10.1007/s00429-010-0262-0CrossRefGoogle ScholarPubMed
Miran, M., & Miran, E. (1984). Cerebral asymmetries: Neuropsychological measurement and theoretical issues. Biological Psychology, 19(3–4), 295304.CrossRefGoogle ScholarPubMed
Mullally, S. L., & Maguire, E. A. (2013). Memory, imagination, and predicting the future: A common brain mechanism? The Neuroscientist, 20(3), 220234. http://doi.org/10.1177/1073858413495091CrossRefGoogle ScholarPubMed
Nee, D. E., & D’Esposito, M. (2016). The hierarchical organization of the lateral prefrontal cortex. eLife, 5. http://doi.org/10.7554/eLife.12112CrossRefGoogle ScholarPubMed
Nicholls, J. G. (1972). Creativity in the person who will never produce anything original and useful: The concept of creativity as a normally distributed trait. The American Psychologist, 27(8), 717727.CrossRefGoogle ScholarPubMed
Nickerson, R. S. (1998). Confirmation bias: A ubiquitous phenomenon in many guises. Review of General Psychology, 2(2), 175220. http://doi.org/10.1037/1089-2680.2.2.175CrossRefGoogle Scholar
Niendam, T. A., Laird, A. R., Ray, K. L., Dean, Y. M., Glahn, D. C., & Carter, C. S. (2012). Meta-analytic evidence for a superordinate cognitive control network subserving diverse executive functions. Cognitive, Affective & Behavioral Neuroscience, 12(2), 241268. http://doi.org/10.3758/s13415-011-0083-5CrossRefGoogle ScholarPubMed
Pearson, J., & Kosslyn, S. M. (2015). The heterogeneity of mental representation: Ending the imagery debate. Proceedings of the National Academy of Sciences of the United States of America, 112(33), 1008910092. http://doi.org/10.1073/pnas.1504933112CrossRefGoogle ScholarPubMed
Petersen, S. E., & Sporns, O. (2015). Brain networks and cognitive architectures. Neuron, 88(1), 207219. http://doi.org/10.1016/j.neuron.2015.09.027CrossRefGoogle ScholarPubMed
Petrides, M. (2005). Lateral prefrontal cortex: Architectonic and functional organization. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 360(1456), 781795. http://doi.org/10.1098/rstb.2005.1631CrossRefGoogle ScholarPubMed
Poldrack, R. A. (2012). The future of fMRI in cognitive neuroscience. NeuroImage, 62(2), 12161220. http://doi.org/10.1016/j.neuroimage.2011.08.007CrossRefGoogle ScholarPubMed
Raichle, M. E. (2015). The brain’s default mode network. Annual Review of Neuroscience, 38, 433447. http://doi.org/10.1146/annurev-neuro-071013-014030CrossRefGoogle ScholarPubMed
Ramnani, N., & Owen, A. M. (2004). Anterior prefrontal cortex: Insights into function from anatomy and neuroimaging. Nature Reviews. Neuroscience, 5(3), 184194. http://doi.org/10.1038/nrn1343CrossRefGoogle ScholarPubMed
Reverberi, C., Toraldo, A., D’Agostini, S., & Skrap, M. (2005). Better without (lateral) frontal cortex? Insight problems solved by frontal patients. Brain: A Journal of Neurology, 128(Pt 12), 28822890. http://doi.org/10.1093/brain/awh577CrossRefGoogle ScholarPubMed
Robbins, T. W., Gillan, C. M., Smith, D. G., de Wit, S., & Ersche, K. D. (2012). Neurocognitive endophenotypes of impulsivity and compulsivity: Towards dimensional psychiatry. Trends in Cognitive Sciences, 16(1), 8191. http://doi.org/10.1016/j.tics.2011.11.009CrossRefGoogle ScholarPubMed
Rutter, B., Kröger, S., Hill, , Windmann, H., Hermann, S., , C., & Abraham, A. (2012). Can clouds dance? Part 2: An ERP investigation of passive conceptual expansion. Brain and Cognition, 80(3), 301310. http://doi.org/10.1016/j.bandc.2012.08.003CrossRefGoogle ScholarPubMed
Rutter, B., Kröger, S., Stark, , Schweckendiek, R., Windmann, J., Hermann, S., , C., & Abraham, A. (2012). Can clouds dance? Neural correlates of passive conceptual expansion using a metaphor processing task: Implications for creative cognition. Brain and Cognition, 78(2), 114122. http://doi.org/10.1016/j.bandc.2011.11.002CrossRefGoogle ScholarPubMed
Sawyer, K. (2011). The cognitive neuroscience of creativity: A critical review. Creativity Research Journal, 23(2), 137154. http://doi.org/10.1080/10400419.2011.571191CrossRefGoogle Scholar
Schacter, D. L., Addis, D. R., Hassabis, D., Martin, V. C., Spreng, R. N., & Szpunar, K. K. (2012). The future of memory: Remembering, imagining, and the brain. Neuron, 76(4), 677694. http://doi.org/10.1016/j.neuron.2012.11.001CrossRefGoogle ScholarPubMed
Schneider, W., & Shiffrin, R. M. (1977). Controlled and automatic human information processing: I. Detection, search, and attention. Psychological Review, 84(1), 166. http://doi.org/10.1037/0033-295X.84.1.1CrossRefGoogle Scholar
Scurich, N., & Shniderman, A. (2014). The selective allure of neuroscientific explanations. PLoS ONE, 9(9), e107529. http://doi.org/10.1371/journal.pone.0107529CrossRefGoogle ScholarPubMed
Seeley, W. W., Menon, V., Schatzberg, A. F., Keller, J., Glover, G. H., Kenna, H., … Greicius, M. D. (2007). Dissociable intrinsic connectivity networks for salience processing and executive control. The Journal of Neuroscience, 27(9), 23492356. http://doi.org/10.1523/JNEUROSCI.5587-06.2007CrossRefGoogle ScholarPubMed
Sepulcre, J., Sabuncu, M. R., & Johnson, K. A. (2012). Network assemblies in the functional brain. Current Opinion in Neurology, 25(4), 384391. http://doi.org/10.1097/WCO.0b013e328355a8e8Google ScholarPubMed
Shah, C., Erhard, K., Ortheil, H.-J., Kaza, E., Kessler, C., & Lotze, M. (2013). Neural correlates of creative writing: An fMRI Study. Human Brain Mapping, 34, 10881101. http://doi.org/10.1002/hbm.21493CrossRefGoogle ScholarPubMed
Smith, S. M. (2012). The future of FMRI connectivity. NeuroImage, 62(2), 12571266. http://doi.org/10.1016/j.neuroimage.2012.01.022CrossRefGoogle ScholarPubMed
Smith, S. M., Ward, T. B., & Schumacher, J. S. (1993). Constraining effects of examples in a creative generation task. Memory & Cognition, 21(6), 837845.CrossRefGoogle Scholar
Spreng, R. N., Mar, R. A., & Kim, A. S. N. (2009). The common neural basis of autobiographical memory, prospection, navigation, theory of mind, and the default mode: A quantitative meta-analysis. Journal of Cognitive Neuroscience, 21(3), 489510. http://doi.org/10.1162/jocn.2008.21029CrossRefGoogle Scholar
Spreng, R. N., Sepulcre, J., Turner, G. R., Stevens, W. D., & Schacter, D. L. (2013). Intrinsic architecture underlying the relations among the default, dorsal attention, and frontoparietal control networks of the human brain. Journal of Cognitive Neuroscience, 25(1), 7486. http://doi.org/10.1162/jocn_a_00281CrossRefGoogle ScholarPubMed
Sridharan, D., Levitin, D. J., & Menon, V. (2008). A critical role for the right frontoinsular cortex in switching between central-executive and default-mode networks. Proceedings of the National Academy of Sciences of the United States of America, 105(34), 1256912574. http://doi.org/10.1073/pnas.0800005105CrossRefGoogle ScholarPubMed
Stocker, K. (2012). The time machine in our mind. Cognitive Science, 36(3), 385420. http://doi.org/10.1111/j.1551-6709.2011.01225.xCrossRefGoogle ScholarPubMed
Stuss, D. T. (2011). Functions of the frontal lobes: Relation to executive functions. Journal of the International Neuropsychological Society, 17(5), 759765. http://doi.org/10.1017/S1355617711000695CrossRefGoogle ScholarPubMed
Taft, R., & Rossiter, J. R. (1966). The Remote Associates Test: Divergent or convergent thinking? Psychological Reports, 19(3), 13131314. http://doi.org/10.2466/pr0.1966.19.3f.1313CrossRefGoogle ScholarPubMed
Thompson-Schill, S. L. (2003). Neuroimaging studies of semantic memory: Inferring “how” from “where.” Neuropsychologia, 41(3), 280292.CrossRefGoogle Scholar
Uddin, L. Q. (2015). Salience processing and insular cortical function and dysfunction. Nature Reviews Neuroscience, 16(1), 5561. http://doi.org/10.1038/nrn3857CrossRefGoogle ScholarPubMed
Uttal, W. R. (2011). Mind and brain: A critical appraisal of cognitive neuroscience. Cambridge, MA: MIT Press.CrossRefGoogle Scholar
Vartanian, O. (2012). Dissociable neural systems for analogy and metaphor: Implications for the neuroscience of creativity. British Journal of Psychology, 103(3), 302316. http://doi.org/10.1111/j.2044-8295.2011.02073.xCrossRefGoogle ScholarPubMed
Wager, T. D., & Smith, E. E. (2003). Neuroimaging studies of working memory: A meta-analysis. Cognitive, Affective & Behavioral Neuroscience, 3(4), 255274.CrossRefGoogle ScholarPubMed
Ward, T. B. (1994). Structured imagination: The role of category structure in exemplar generation. Cognitive Psychology, 27, 140.CrossRefGoogle Scholar
Weisberg, D. S., Keil, F. C., Goodstein, J., Rawson, E., & Gray, J. R. (2008). The seductive allure of neuroscience explanations. Journal of Cognitive Neuroscience, 20(3), 470477. http://doi.org/10.1162/jocn.2008.20040CrossRefGoogle ScholarPubMed
Wilson, R. C., Guilford, J. P., Christensen, P. R., & Lewis, D. J. (1954). A factor-analytic study of creative-thinking abilities. Psychometrika, 19(4), 297311. http://doi.org/10.1007/BF02289230CrossRefGoogle Scholar
Zabelina, D. L., O’Leary, D., Pornpattananangkul, N., Nusslock, R., & Beeman, M. (2015). Creativity and sensory gating indexed by the P50: Selective versus leaky sensory gating in divergent thinkers and creative achievers. Neuropsychologia, 69, 7784. http://doi.org/10.1016/j.neuropsychologia.2015.01.034CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×