Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-26T09:35:12.228Z Has data issue: false hasContentIssue false

20 - Personality Neuroscience

from Part IV - Biological Perspectives: Evolution, Genetics and Neuroscience of Personality

Published online by Cambridge University Press:  18 September 2020

Philip J. Corr
Affiliation:
City, University London
Gerald Matthews
Affiliation:
University of Central Florida
Get access

Summary

Human behaviors and experiences are generated by biological processes, primarily within the brain. On this basis, we may assume that the regularities in these behaviors and experiences that constitute personality are associated with regularities in the biological functions of the brain, making personality neuroscience possible (Allen & DeYoung, 2017; DeYoung, 2010; Yarkoni, 2015; Zuckerman, 2005). It is increasingly easy to study psychologically relevant individual differences using neuroscientific methods, and this field is growing rapidly, as indicated by the establishment of a new journal, Personality Neuroscience.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abram, S. V., & DeYoung, C. G. (2017). Using personality neuroscience to study personality disorder. Personality Disorders: Theory, Research, and Treatment, 8, 213.Google Scholar
Alcaro, A., Huber, R., & Panksepp, J. (2007). Behavioral functions of the mesolimbic dopaminergic system: an affective neuroethological perspective. Brain Research Reviews, 56, 283321.Google Scholar
Allen, T. A., & DeYoung, C. G. (2017). Personality neuroscience and the Five-Factor Model. In Widiger, T. A. (Ed.), Oxford handbook of the Five-Factor Model (pp. 319349) New York: Oxford University Press.Google Scholar
Allen, T. A., Rueter, A. R., Abram, S. V., Brown, J. S., & DeYoung, C. G. (2017). Personality and neural correlates of mentalizing ability. European Journal of Personality, 31, 599613.Google Scholar
Allison, T., Puce, A., & McCarthy, G. (2000). Social perception from visual cues: Role of the STS region. Trends in Cognitive Sciences, 4, 267278.Google Scholar
Aluja, A., Garcia, O., & Garcia, L. F. (2002). A comparative study of Zuckerman’s three structural models for personality through the NEO-PI-R, ZKPQ-III-R, EPQ-RS and Goldberg’s 50-bipolar adjectives. Personality and Individual Differences, 33, 713725.Google Scholar
Aluja, A., Garcia, O., & Garcia, L. F. (2004). Replicability of the three, four and five Zuckerman’s personality super-factors: Exploratory and confirmatory factor analysis of the EPQ-RS, ZKPQ and NEO-PI-R. Personality and Individual Differences, 36, 10931108.Google Scholar
Ando, J., Suzuki, A., Yamagata, S., Kijima, N., Maekawa, H., Ono, Y., & Jang, K. L. (2004). Genetic and environmental structure of Cloninger’s temperament and character dimensions. Journal of Personality Disorders, 18, 379393.CrossRefGoogle ScholarPubMed
Andrews-Hanna, J. R., Smallwood, J., & Spreng, R. N. (2014). The default network and self-generated thought: Component processes, dynamic control, and clinical relevance. Annals of the New York Academy of Sciences, 1316, 2952.Google Scholar
Angleitner, A., Riemann, R., & Spinath, F. M. (2004). Investigating the ZKPQ-III-R: Psychometric properties, relations to the Five-Factor Model and genetic and environmental influences on its scales and facets. In Stelmack, R. M. (Ed.), On the psychobiology of personality: Essays in honor of Marvin Zuckerman (pp. 89105). New York: Elsevier.Google Scholar
Ball, S. A., Tennen, H., & Kranzler, H. R. (1999). Factor replicability and validity of the Temperament and Character Inventory in substance-dependent patients. Psychological Assessment, 11, 514524.Google Scholar
Barrós‐Loscertales, A., Meseguer, V., Sanjuán, A., Belloch, V., Parcet, M. A., Torrubia, R., & Avila, C. (2006). Striatum gray matter reduction in males with an overactive behavioral activation system. European Journal of Neuroscience, 24, 20712074.CrossRefGoogle ScholarPubMed
Beaty, R. E., Chen, Q., Christensen, A. P., Qiu, J., Silvia, P. J., & Schachter, D. L. (2017). Brain networks of the imaginative mind: Dynamic functional connectivity of default and cognitive control networks relates to openness to experience. Human Brain Mapping, 39, 811821.CrossRefGoogle ScholarPubMed
Beaty, R. E., Kaufman, S. B., Benedek, M., Jung, R. E., Kenett, Y. N., Jauk, E., … Silvia, P. J. (2016). Personality and complex brain networks: The role of openness to experience in default network efficiency. Human Brain Mapping, 37, 773779.Google Scholar
Beldarrain, M. G., Garcia-Monco, J. C., Astigarraga, E., Gonzalez, A., & Grafman, J. (2005). Only spontaneous counterfactual thinking is impaired in patients with prefrontal cortex lesions. Cognitive Brain Research, 24, 723726.Google Scholar
Benjamin, J., Li, L., Patterson, C., Greenberg, B. D., Murphy, D. L., & Hamer, D. H. (1996). Population and familial association between the D4 dopamine receptor gene and measures of novelty seeking. Nature Genetics, 12, 8184.CrossRefGoogle ScholarPubMed
Berridge, K. C., Robinson, T. E., & Aldridge, J. W. (2009). Dissecting components of reward: “Liking,” “wanting,” and learning. Current Opinion in Pharmacology, 9, 6573.Google Scholar
Birn, R., Shackman, A., Oler, J., Williams, L., Mcfarlin, D., Rogers, G., … Alexander, A. (2014). Evolutionarily conserved prefrontal-amygdalar dysfunction in early-life anxiety. Molecular Psychiatry, 19, 915922.Google Scholar
Bjørnebekk, A., Fjell, A. M., Walhovd, K. B., Grydeland, H., Torgersen, S., & Westlye, L. T. (2013). Neuronal correlates of the Five-Factor Model (FFM) of human personality: Multimodal imaging in a large healthy sample. NeuroImage, 65, 194208.CrossRefGoogle Scholar
Bouchard, T. J. (1994). Genes, environment, and personality, Science, 264, 17001701.Google Scholar
Bress, J. N., & Hajcak, G. (2013). Self‐report and behavioral measures of reward sensitivity predict the feedback negativity. Psychophysiology, 50, 610616.Google Scholar
Bromberg-Martin, E. S., Matsumoto, M., & Hikosaka, O. (2010). Dopamine in motivational control: Rewarding, aversive, and alerting. Neuron, 68, 815834.Google Scholar
Brown, S. M., Manuck, S. B., Flory, J. D., & Hariri, A. R. (2006). Neural basis of individual differences in impulsivity: Contributions of corticolimbic circuits for behavioral arousal and control. Emotion, 6, 239245.Google Scholar
Bunge, S. A., & Zelazo, P. D. (2006). A brain-based account of the development of rule use in childhood. Current Directions in Psychological Science, 15, 118121.Google Scholar
Button, K. S., Ioannidis, J. P. A., Mokrysz, C., Nosek, B. A., Flint, J., Robinson, E. S. J., & Munafò, M. R. (2013). Power failure: Why small sample size undermines the reliability of neuroscience. Nature Reviews. Neuroscience, 14, 365–76.Google Scholar
Canli, T., & Lesch, K.-P. (2007). Long story short: The serotonin transporter in emotion regulation and social cognition. Nature Neuroscience, 10, 11031109.Google Scholar
Canu, E., Agosta, F., & Filippi, M. (2015). A selective review of structural connectivity abnormalities of schizophrenic patients at different stages of the disease. Schizophrenia Research, 161, 1928.Google Scholar
Carp, J. (2012). The secret lives of experiments: Methods reporting in the fMRI literature. NeuroImage, 63, 289300.Google Scholar
Chang, L., Connelly, B. S., & Geeza, A. A. (2012). Separating method factors and higher order traits of the Big Five: A meta-analytic multitrait–multimethod approach. Journal of Personality and Social Psychology, 102, 408426.Google Scholar
Chavanon, M. L., Wacker, J., & Stemmler, G. (2013). Paradoxical dopaminergic drug effects in extraversion: Dose- and time-dependent effects of sulpiride on EEG theta activity. Frontiers in Human Neuroscience, 7, 117.Google Scholar
Chiang, M. C., Barysheva, M., Shattuck, D. W., Lee, A. D., Madsen, S. K., Avedissian, C., … Thompson, P. M. (2009). Genetics of brain fiber architecture and intellectual performance. The Journal of Neuroscience, 29, 22122224.Google Scholar
Chmielewski, M., Bagby, R. M., Markon, K., Ring, A. J., & Ryder, A. G. (2014). Openness to experience, intellect, schizotypal personality disorder, and psychoticism: Resolving the controversy. Journal of Personality Disorders, 28, 483499.Google Scholar
Choi, E. Y., Yeo, B. T. T., & Buckner, R. L. (2012). The organization of the human striatum estimated by intrinsic functional connectivity. Journal of Neurophysiology, 108, 22422263.Google Scholar
Churchwell, J. C., & Yurgelun-Todd, D. A. (2013). Age-related changes in insula cortical thickness and impulsivity: Significance for emotional development and decision-making. Developmental Cognitive Neuroscience, 6, 8086.Google Scholar
Gignac, G. E., & Szodorai, E. T. (2016). Effect size guidelines for individual differences researchers. Personality and individual differences, 102, 7478.Google Scholar
Civai, C., Hawes, D. R., DeYoung, C. G., & Rustichini, A. (2016). Intelligence and Extraversion in the neural evaluation of delayed rewards. Journal of Research in Personality, 61, 99108.Google Scholar
Cloninger, C. R. (1987). A systematic method for clinical description and classification of personality variants. Archives of General Psychiatry, 44, 573588.Google Scholar
Cloninger, C. R., Svrakic, D. M., & Przybeck, T. R. (1993). A psychobiological model of temperament and character. Archives of General Psychiatry, 50, 975990.Google Scholar
Connelly, B. S., & Ones, D. S. (2010). An other perspective on personality: Meta-analytic integration of observers’ accuracy and predictive validity. Psychological Bulletin, 136, 10921122.Google Scholar
Cooper, A. J., Duke, E., Pickering, A. D., & Smillie, L. D. (2014). Individual differences in reward prediction error: Contrasting relations between feedback-related negativity and trait measures of reward sensitivity, impulsivity and extraversion. Frontiers in Human Neuroscience, 8, 248.Google Scholar
Costa, P. T. Jr., & McCrae, R. R. (1992). NEO PI-R professional manual. Odessa, FL: Psychological Assessment Resources.Google Scholar
Cremers, H. R., Demenescu, L. R., Aleman, A., Renken, R., van Tol, M. J., van der Wee, N. J., … Roelofs, K. (2010). Neuroticism modulates amygdala—prefrontal connectivity in response to negative emotional facial expressions. Neuroimage, 49, 963970.Google Scholar
Cremers, H., van Tol, M. J., Roelofs, K., Aleman, A., Zitman, F. G., van Buchem, M. A., … van der Wee, N. J. (2011). Extraversion is linked to volume of the orbitofrontal cortex and amygdala. PloS one, 6, e28421.Google Scholar
Davey, C. G., Whittle, S., Harrison, B. J., Simmons, J. G., Byrne, M. L., Schwartz, O. S., & Allen, N. B. (2015). Functional brain-imaging correlates of negative affectivity and the onset of first-episode depression. Psychological Medicine, 45, 10011009.CrossRefGoogle ScholarPubMed
Davidson, R. J. (2002). Anxiety and affective style: Role of prefrontal cortex and amygdala. Biological Psychiatry, 51, 6880.Google Scholar
Davis, K. L., Panksepp, J., & Normansell, L. (2003). The Affective Neuroscience Personality Scales: Normative data and implications. Neuro-Psychoanalysis, 5, 5769.Google Scholar
de Moor, M. H., Costa, P. T., Terracciano, A., Krueger, R. F., De Geus, E. J., Toshiko, T., … Metspalu, A. (2010). Meta-analysis of genome-wide association studies for personality. Molecular Psychiatry, 17, 337349.CrossRefGoogle ScholarPubMed
Depue, R. A., & Collins, P. F. (1999). Neurobiology of the structure of personality: Dopamine, facilitation of incentive motivation, and extraversion. Behavioral and Brain Sciences, 22, 491569.Google Scholar
Depue, R. A., & Fu, Y. (2013). On the nature of extraversion: Variation in conditioned contextual activation of dopamine-facilitated affective, cognitive, and motor processes. Frontiers in Human Neuroscience, 7, 288.Google Scholar
Depue, R. A., & Lenzenweger, M. F. (2005). A neurobehavioral dimensional model of personality disturbance. In Lenzenweger, M. & Clarkin, J. (Eds.), Theories of personality disorders (2nd ed. pp. 391454). New York: Guilford Press.Google Scholar
Depue, R. A., Luciana, M., Arbisi, P., Collins, P., & Leon, A. (1994). Dopamine and the structure of personality: Relation of agonist-induced dopamine activity to positive emotionality. Journal of Personality and Social Psychology, 67, 485498.Google Scholar
Depue, R. A., & Morrone-Strupinsky, J. V. (2005). A neurobehavioral model of affiliative bonding: Implications for conceptualizing a human trait of affiliation. Behavioral and Brain Sciences, 28, 313350.Google Scholar
DeYoung, C. G. (2006). Higher-order factors of the Big Five in a multi-informant sample. Journal of Personality and Social Psychology, 91, 11381151.Google Scholar
DeYoung, C. G. (2010). Personality neuroscience and the biology of traits. Social and Personality Psychology Compass, 4, 11651180.Google Scholar
DeYoung, C. G. (2013). The neuromodulator of exploration: A unifying theory of the role of dopamine in personality. Frontiers in Human Neuroscience, 7, 762.Google Scholar
DeYoung, C. G. (2015). Cybernetic Big Five Theory. Journal of Research in Personality, 56, 3358.Google Scholar
DeYoung, C. G. (2020). Intelligence and personality. In Sternberg, R. J. & Kaufman, S. B. (Eds.), The Cambridge handbook of intelligence (2nd ed., pp. 10111047) New York: Cambridge University Press.Google Scholar
DeYoung, C. G., Carey, B. E., Krueger, R. F., & Ross, S. R. (2016). Ten aspects of the Big Five in the Personality Inventory for DSM–5. Personality Disorders: Theory, Research, and Treatment, 7, 113123.CrossRefGoogle ScholarPubMed
DeYoung, C. G., & Krueger, R. F. (2018). A cybernetic theory of psychopathology. Psychological Inquiry, 29, 117138.Google Scholar
DeYoung, C. G., Grazioplene, R. G., & Peterson, J. B. (2012). From madness to genius: The Openness/Intellect trait domain as a paradoxical simplex. Journal of Research in Personality, 46, 6378.Google Scholar
DeYoung, C. G., Hirsh, J. B., Shane, M. S., Papademetris, X., Rajeevan, N., & Gray, J. R. (2010). Testing predictions from personality neuroscience: Brain structure and the Big Five. Psychological Science, 21, 820828.Google Scholar
DeYoung, C. G., & Rueter, A. R. (2016). Impulsivity as a personality trait. In Vohs, K. D. & Baumeister, R. F. (Eds.), Handbook of self-regulation: Research, theory, and applications (2nd ed., pp. 345363). New York: Guilford Press.Google Scholar
DeYoung, C. G., Shamosh, N. A., Green, A. E., Braver, T. S., & Gray, J. R. (2009). Intellect as distinct from Openness: Differences revealed by fMRI of working memory. Journal of Personality and Social Psychology, 97, 883892.Google Scholar
DeYoung, C. G., Quilty, L. C., & Peterson, J. B. (2007). Between facets and domains: Ten aspects of the Big Five. Journal of Personality and Social Psychology, 93, 880896.Google Scholar
DeYoung, C. G., Quilty, L. C., Peterson, J. B., Gray, J. R. (2014). Openness to experience, intellect, and cognitive ability. Journal of Personality Assessment, 96, 4652.Google Scholar
DeYoung, C. G., Weisberg, Y. J., Quilty, L. C., & Peterson, J. B. (2013). Unifying the aspects of the Big Five, the interpersonal circumplex, and trait affiliation. Journal of Personality, 81, 465475.Google Scholar
Digman, J. M. (1997). Higher-order factors of the Big Five. Journal of Personality and Social Psychology, 73, 12461256.Google Scholar
Du, L., Bakish, D., Ravindran, A. V., & Hrdina, P. D. (2002). Does fluoxetine influence major depression by modifying five-factor personality traits? Journal of Affective Disorders, 71, 235241.Google Scholar
Eichhammer, P., Sand, P. G., Stoertebecker, P., Langguth, B., Zowe, M., & Hajak, G. (2005). Variation at the DRD4 promoter modulates extraversion in Caucasians. Molecular Psychiatry, 10, 520522.Google Scholar
Elliot, A. J., & Thrash, T. M. (2002). Approach–avoidance motivation in personality: Approach and avoidance temperaments and goals. Journal of Personality and Social Psychology, 82, 804818.Google Scholar
Everaerd, D., Klumpers, F., van Wingen, G., Tendolkar, I., & Fernández, G. (2015). Association between neuroticism and amygdala responsivity emerges under stressful conditions. NeuroImage, 112, 218224.Google Scholar
Everhart, D. E., Demaree, H. A., & Harrison, D. W. (2008). The influence of hostility on electroencephalographic activity and memory functioning during an affective memory task. Clinical Neurophysiology, 119, 134143.Google Scholar
Eysenck, H. J. (1967). The biological basis of personality. Springfield, IL: Thomas.Google Scholar
Eysenck, H. J. (1992). The definition and measurement of Psychoticism. Personality and Individual Differences, 13, 757785.Google Scholar
Eysenck, H. J. (1997). Personality and experimental psychology: The unification of psychology and the possibility of a paradigm. Journal of Personality and Social Psychology, 73, 12241237.Google Scholar
Eysenck, H. J., & Eysenck, M. W. (1985). Personality and individual differences: A natural science approach. New York: Plenum.Google Scholar
Farr, O. M., Hu, S., Zhang, S., & Chiang-shan, R. L. (2012). Decreased saliency processing as a neural measure of Barratt impulsivity in healthy adults. Neuroimage, 63, 10701077.Google Scholar
Fleeson, W. (2001). Towards a structure- and process-integrated view of personality: Traits as density distributions of states. Journal of Personality and Social Psychology, 80, 10111027.Google Scholar
Fleeson, W. (2007). Situation-based contingencies underlying trait-content manifestation in behavior. Journal of Personality, 75, 825862.Google Scholar
Fleeson, W., & Gallagher, P. (2009). The implications of Big Five standing for the distribution of trait manifestation in behavior: Fifteen experience-sampling studies and a meta-analysis. Journal of Personality and Social Psychology, 97, 10971114.Google Scholar
Forbes, E. E., Brown, S. M., Kimak, M., Ferrell, R. E., Manuck, S. B., & Hariri, A. R. (2009). Genetic variation in components of dopamine neurotransmission impacts ventral striatal reactivity associated with impulsivity. Molecular Psychiatry, 14, 6070.Google Scholar
Forbes, C. E., Poore, J. C., Krueger, F., Barbey, A. K., Solomon, J., & Grafman, J. (2014). The role of executive function and the dorsolateral prefrontal cortex in the expression of neuroticism and conscientiousness. Social Neuroscience, 9, 139151.Google Scholar
Fox, M. D., Corbetta, M., Snyder, A. Z., Vincent, J. L., & Raichle, M. E. (2006). Spontaneous neuronal activity distinguishes human dorsal and ventral attention systems. Proceedings of the National Academy of Sciences, 103, 1004610051.Google Scholar
Freeman, H. D., & Gosling, S. D. (2010). Personality in nonhuman primates: A review and evaluation of past research. American Journal of Primatology, 72, 653671.Google Scholar
Frokjaer, V. G., Mortensen, E. L., Nielsen, F. A., Haugbol, S., Pinborg, L. H., Adams, K. H., … Knudsen, G. M. (2008). Frontolimbic serotonin 2A receptor binding in healthy subjects is associated with personality risk factors for affective disorder. Biological Psychiatry, 63, 569576.Google Scholar
Gailliot, M. T., Baumeister, R. F., DeWall, C. N., Maner, J. K., Plant, E. A., Tice, D. M., Brewer, L. E., & Schmeichel, B. J. (2007). Self-control relies on glucose as a limited energy source: Willpower is more than a metaphor. Journal of Personality and Social Psychology, 92, 325336.Google Scholar
Gailliot, M. T., Baumeister, R. F. (2007). The physiology of willpower: Linking blood glucose to self-control. Personality and Social Psychology Review, 11, 303327.Google Scholar
Gailliot, M. T., Schmeichel, B. J., & Baumeister, R. F. (2006). Self-regulatory processes defend against the threat of death: Effects of self-control depletion and trait self-control on thoughts and fears of dying. Journal of Personality and Social Psychology, 91, 4962.Google Scholar
Garcia-Banda, G., Chellew, K., Fornes, J., Perez, G., Servera, M., & Evans, P. (2014). Neuroticism and cortisol: Pinning down an expected effect. International Journal of Psychophysiology, 91, 132138.Google Scholar
Gerritsen, L., Geerlings, M., Bremmer, M., Beekman, A., Deeg, D., Penninx, B. W. J. H., & Comijs, H. (2009). Personality characteristics and hypothalamic-pituitary-adrenal axis regulation in older persons. The American Journal of Geriatric Psychiatry, 17, 10771084.Google Scholar
Gillespie, N. A., Cloninger, C. R., Heath, A. C., Martin, N. G. (2003). The genetic and environmental relationship between Cloninger’s dimensions of temperament and character. Personality and Individual Differences, 35, 19311946.CrossRefGoogle ScholarPubMed
Goldberg, L. R., & Rosolack, T. K. (1994) The Big Five factor structure as an integrative framework: An empirical comparison with Eysenck’s P-E-N model. In Halverson, C. F. Jr., Kohnstamm, G. A. & Martin, R. P. (Eds.), The developing structure of temperament and personality from infancy to adulthood (pp. 735). Hillsdale, NJ: Lawrence Erlbaum.Google Scholar
Gosling, S. D., & John, O. P. (1999). Personality dimensions in nonhuman animals: A cross-species review. Current Directions in Psychological Science, 8, 6975.Google Scholar
Gray, J. A. (1982). The neuropsychology of anxiety: An enquiry into the functions of the septo‑hippocampal system. New York: Oxford University Press.Google Scholar
Gray, J. A., & McNaughton, N. (2000). The neuropsychology of anxiety: An enquiry into the functions of the septo-hippocampal system (2nd ed.). New York: Oxford University Press.Google Scholar
Gray, J. R., & Thompson, P. M. (2004). Neurobiology of intelligence: Science and ethics. Nature Reviews Neuroscience, 5, 471482.Google Scholar
Grazioplene, R. G., Chavez, R. S., Rustichini, A., & DeYoung, C. G. (2016). Personality, psychosis, and connectivity: White matter correlates of psychosis-linked traits support continuity between personality and psychopathology. Journal of Abnormal Psychology, 125, 11351145.Google Scholar
Grodin, E. N., & White, T. L. (2015). The neuroanatomical delineation of agentic and affiliative extraversion. Cognitive, Affective, & Behavioral Neuroscience, 15, 114.Google Scholar
Halperin, J. M., Kalmar, J. H., Schulz, K. P., Marks, D. J., Sharma, V., & Newcorn, J. H. (2006). Elevated childhood serotonergic function protects against adolescent aggression in disruptive boys. Journal of the American Academy of Child & Adolescent Psychiatry, 45, 833840.Google Scholar
Hanna, G. L., Yuwiler, A., & Coates, J. K. (1995). Whole blood serotonin and disruptive behaviors in juvenile obsessive-compulsive disorder. Journal of the American Academy of Child & Adolescent Psychiatry, 34, 2835.Google Scholar
Harmon-Jones, E. (2004). Contributions from research on anger and cognitive dissonance to understanding the motivational functions of asymmetrical frontal brain activity. Biological Psychology, 67, 5176.Google Scholar
Hauser, T. U., Iannaccone, R., Stämpfli, P., Drechsler, R., Brandeis, D., Walitza, S., & Brem, S. (2014). The feedback-related negativity (FRN) revisited: New insights into the localization, meaning and network organization. NeuroImage, 84, 159168.Google Scholar
Hennig, J. (2004). Personality, serotonin, and noradrenaline. In Stelmack, R. M. (Ed.), On the psychobiology of personality: Essays in honor of Marvin Zuckerman (pp. 379395). New York: Elsevier.Google Scholar
Herbst, J. H., Zonderman, A. B., McCrae, R. R., & Costa, P. T. (2000). Do the dimensions of the Temperament and Character Inventory map a simple genetic architecture? Evidence from molecular genetics and factor analysis. American Journal of Psychiatry, 157, 12851290.Google Scholar
Hill, J., Inder, T., Neil, J., Dierker, D., Harwell, J., & Van Essen, D. (2010). Similar patterns of cortical expansion during human development and evolution. Proceedings of the National Academy of Sciences of the United States of America, 107, 1313513140.Google Scholar
Holmes, A. J., Lee, P. H., Hollinshead, M. O., Bakst, L., Roffman, J. L., Smoller, J. W., & Buckner, R. L. (2012). Individual differences in amygdala-medial prefrontal anatomy link negative affect, impaired social functioning, and polygenic depression risk. The Journal of Neuroscience, 32, 1808718100.Google Scholar
Hou, X., Allen, T. A., Wei, D., Huang, H., Wang, K., DeYoung, C. G., & Qiu, J. (2017). Trait compassion is associated with the neural substrate of empathy. Cognitive, Affective, & Behavioral Neuroscience, 17, 10181027.Google Scholar
Hu, X., Erb, M., Ackermann, H., Martin, J. A., Grodd, W., & Reiterer, S. M. (2011). Voxel-based morphometry studies of personality: Issue of statistical model specification-effect of nuisance covariates. NeuroImage, 54, 19942005.Google Scholar
Hubbard, J., Harbaugh, W. T., Srivastava, S., Degras, D., & Mayr, U. (2016). A general benevolence dimension that links neural, psychological, economic, and life-span data on altruistic tendencies. Journal of Experimental Psychology: General, 145, 13511358.Google Scholar
Hyde, L. W., Gorka, A., Manuck, S. B., & Hariri, A. R. (2011). Perceived social support moderates the link between threat-related amygdala reactivity and trait anxiety. Neuropsychologia, 49, 651656.Google Scholar
Iacoboni, M. (2007). Face to face: The neural basis of social mirroring and empathy. Psychiatric Annals, 37, 236241.Google Scholar
Ioannidis, J. P. A. (2011). Excess significance bias in the literature on brain volume abnormalities. Archives of General Psychiatry, 68, 773780.Google Scholar
Jackson, J., Balota, D. A., & Head, D. (2011). Exploring the relationship between personality and regional brain volume in healthy aging. Neurobiology of Aging, 32, 21622171.Google Scholar
Jalbrzikowski, M., Larsen, B., Hallquist, M. N., Foran, W., Calabro, F., & Luna, B. (2017). Development of white matter microstructure and intrinsic functional connectivity between the amygdala and ventromedial prefrontal cortex: Associations with anxiety and depression. Biological Psychiatry, 82, 511521.Google Scholar
Jang, K. L., Hu, S., Livesley, W. J., Angleitner, A., Riemann, R., & Vernon, P. A. (2002). Genetic and environmental influences on the covariance of facets defining the domains of the five-factor model of personality. Personality and Individual Differences, 33, 83101.Google Scholar
Jang, K. L., Livesley, W. J., Ando, J., Yamagata, S., Suzuki, A., Angleitner, A., … Spinath, F. (2006). Behavioral genetics of the higher-order factors of the Big Five. Personality and Individual Differences, 41, 261272.Google Scholar
Jang, K. L., McCrae, R. R., Angleitner, A., Riemann, R., & Livesley, W. J. (1998). Heritability of facet-level traits in a cross-cultural twin sample: Support for a hierarchical model of personality. Journal of Personality and Social Psychology, 74, 15561565.Google Scholar
John, O. P., & Srivastava, S. (1999). The Big Five trait taxonomy: History, measurement, and theoretical perspectives. In Pervin, L. A. & John, O. P. (Eds.), Handbook of personality: Theory and research (2nd ed., pp. 102138). New York: Guilford Press.Google Scholar
John, O. P., Naumann, L. P., & Soto, C. J. (2008). Paradigm shift to the integrative Big Five trait taxonomy. Handbook of Personality: Theory and Research, 3, 114158.Google Scholar
Johnson, W., & Krueger, R. F. (2004). Genetic and environmental structure of adjectives describing the domains of the Big Five Model of personality: A nationwide US twin study. Journal of Research in Personality, 38, 448472.Google Scholar
Jung, R. E., Grazioplene, R., Caprihan, A., Chavez, R. S., & Haier, R. J. (2010). White matter integrity, creativity, and psychopathology: Disentangling constructs with diffusion tensor imaging. PlOS One, 5, e9818.Google Scholar
Jung, R. E., & Haier, R. J. (2007). The parieto-frontal integration theory (P-FIT) of intelligence: Converging neuroimaging evidence. Behavioral and Brain Sciences, 30, 135154.Google Scholar
Kaczkurkin, A. N., Moore, T. M., Ruparel, K., Ciric, R., Calkins, M. E., Shinohara, R. T., … Gennatas, E. D. (2016). Elevated amygdala perfusion mediates developmental sex differences in trait anxiety. Biological Psychiatry, 80, 775785.Google Scholar
Kalbitzer, J., Frokjaer, V. G., Erritzoe, D., Svarer, C., Cumming, P., Nielsen, F. Å., … Kringelbach, M. L. (2009). The personality trait openness is related to cerebral 5-HTT levels. Neuroimage, 45, 280285.Google Scholar
Kanske, P., Böckler, A., Trautwein, F. M., & Singer, T. (2015). Dissecting the social brain: Introducing the EmpaToM to reveal distinct neural networks and brain–behavior relations for empathy and Theory of Mind. NeuroImage, 122, 619.Google Scholar
Kaplan, J. T., & Iacoboni, M. (2006). Getting a grip on other minds: Mirror neurons, intention understanding and cognitive empathy. Social Neuroscience, 1, 175183.Google Scholar
Kapogiannis, D., Sutin, A., Davatzikos, C., Costa, P., & Resnick, S. (2013). The five factors of personality and regional cortical variability in the Baltimore longitudinal study of aging. Human Brain Mapping, 34, 28292840.Google Scholar
Karjalainen, T., Tuominen, L., Manninen, S., Kalliokoski, K. K., Nuutila, P., Jääskeläinen, I. P., … Nummenmaa, L. (2016). Behavioural activation system sensitivity is associated with cerebral μ-opioid receptor availability. Social Cognitive and Affective Neuroscience, 11, 13101316.Google Scholar
Kaufman, S. B., DeYoung, C. G., Gray, J. R., Jiménez, L., Brown, J., & Mackintosh, N. J. (2010). Implicit learning as an ability. Cognition, 116, 321340.Google Scholar
Keightley, M. L., Seminowicz, D. A., Bagby, R. M., Costa, P. T., Fossati, P., & Mayberg, H. S. (2003). Personality influences limbic-cortical interactions during sad mood. NeuroImage, 20, 20312039.Google Scholar
Knutson, B., Momenan, R., Rawlings, R. R., Fong, G. W., & Hommer, D. (2001). Negative association of neuroticism with brain volume ratio in healthy humans. Biological Psychiatry, 50, 685690.Google Scholar
Koelsch, S., Skouras, S., & Jentschke, S. (2013). Neural correlates of emotional personality: A structural and functional magnetic resonance imaging study. PlOS One, 8, e77196.Google Scholar
Krueger, R. F., & Markon, K. E. (2014). The role of the DSM-5 personality trait model in moving toward a quantitative and empirically based approach to classifying personality and psychopathology. Annual Review of Clinical Psychology, 10, 477501.Google Scholar
Kujawa, A., Proudfit, G. H., Kessel, E. M., Dyson, M., Olino, T., & Klein, D. N. (2015). Neural reactivity to monetary rewards and losses in childhood: Longitudinal and concurrent associations with observed and self-reported positive emotionality. Biological Psychology, 104, 4147.Google Scholar
Lahey, B. B. (2009). Public health significance of neuroticism. American Psychologist, 64, 241256.Google Scholar
Laird, A. R., Fox, P. M., Eickhoff, S. B., Turner, J. A., Ray, K. L., McKay, D. R., … Fox, P. T. (2011). Behavioral interpretations of intrinsic connectivity networks. Journal of Cognitive Neuroscience, 23, 40224037.Google Scholar
Lamm, C., Decety, J., & Singer, T. (2011). Meta-analytic evidence for common and distinct neural networks associated with directly experienced pain and empathy for pain. NeuroImage, 54, 24922502.Google Scholar
Lange, S., Leue, A., & Beauducel, A. (2012). Behavioral approach and reward processing: Results on feedback-related negativity and P3 component. Biological Psychology, 89, 416425.Google Scholar
Lebedev, A. V., Kaelen, M., Lövdén, M., Nilsson, J., Feilding, A., Nutt, D. J., & Carhart‐Harris, R. L. (2016). LSD‐induced entropic brain activity predicts subsequent personality change. Human brain mapping, 37, 32033213.Google Scholar
Lesch, K. P., Bengel, D., Heils, A., Sabol, S. Z., Greenberg, B. D., Petri, S., … Murphy, D. L. (1996). Association of anxiety-related traits with a polymorphism in the serotonin transporter gene regulatory region. Science, 274, 15271531.Google Scholar
Lewis, G. J., Panizzon, M. S., Eyler, L., Fennema-Notestine, C., Chen, C. H., Neale, M. C., … Franz, C. E. (2014). Heritable influences on amygdala and orbitofrontal cortex contribute to genetic variation in core dimensions of personality. NeuroImage, 103, 309315.Google Scholar
Li, Y., Qiao, L., Sun, J., Wei, D., Li, W., Qiu, J., … Shi, H. (2014). Gender-specific neuroanatomical basis of behavioral inhibition/approach systems (BIS/BAS) in a large sample of young adults: A voxel-based morphometric investigation. Behavioral Brain Research, 274, 400408.Google Scholar
Liu, W.-Y., Weber, B., Reuter, M., Markett, S., Chu, W.-C., & Montag, C. (2013). The Big Five of personality and structural imaging revisited: A VBM-DARTEL study. Neuroreport, 24, 375380.Google Scholar
Lo, M. T., Hinds, D. A., Tung, J. Y., Franz, C., Fan, C. C., Wang, Y., … Sanyal, N. (2017). Genome-wide analyses for personality traits identify six genomic loci and show correlations with psychiatric disorders. Nature Genetics, 49, 152156.Google Scholar
MacLean, K. A., Johnson, M. W., & Griffiths, R. R. (2011). Mystical experiences occasioned by the hallucinogen psilocybin lead to increases in the personality domain of openness. Journal of Psychopharmacology, 25, 14531461.Google Scholar
Manuck, S. B., Flory, J. D., McCaffery, J. M., Matthews, K. A., Mann, J. J., & Muldoon, M. F. (1998). Aggression, impulsivity, and central nervous system serotonergic responsivity in a nonpatient sample. Neuropsychopharmacology, 19, 287299.Google Scholar
Markon, K. E., Krueger, R. F., & Watson, D. (2005). Delineating the structure of normal and abnormal personality: An integrative hierarchical approach. Journal of Personality and Social Psychology, 88, 139157.Google Scholar
Marsh, A. A., Henry, H. Y., Pine, D. S., & Blair, R. J. R. (2010). Oxytocin improves specific recognition of positive facial expressions. Psychopharmacology, 209, 225232.Google Scholar
Matthews, G., & Gilliland, K. (1999). The personality theories of H. J. Eysenck and J. A. Gray: A comparative review. Personality and Individual Differences, 26, 583626.Google Scholar
McAdams, D. P., & Pals, J. L. (2006). A new Big Five: Fundamental principles for an integrative science of personality. American Psychologist, 61, 204217.Google Scholar
McCrae, R. R., & Costa, P. T. Jr. (2008). The five factor theory of personality. In John, O. P., Robins, R. W. & Pervin, L. A. (Eds.), Handbook of personality: Theory and research (pp. 159181). New York: Guilford Press.Google Scholar
McCrae, R. R., Yamagata, S., Jang, K. L., Riemann, R., Ando, J., Ono, Y., … Spinath, F. M. (2008). Substance and artifact in the higher-order factors of the Big Five. Journal of Personality and Social Psychology, 95, 442455.Google Scholar
McEwen, B. S. (1998). Stress, adaptation, and disease. Allostasis and allostatic load. Annals of the New York Academy of Science, 840, 3344.Google Scholar
Miller, G. E., Cohen, S., Rabin, B. S., Skoner, D. P., & Doyle, W. J. (1999). Personality and tonic cardiovascular, neuroendocrine, and immune parameters. Brain, Behavior, and Immunity, 13, 109123.Google Scholar
Mischel, W., & Shoda, Y. (1998). Reconciling processing dynamics and personality dispositions. Annual Review of Psychology, 49, 229258.Google Scholar
Montoya, E. R., Terburg, D., Bos, P. A., & Van Honk, J. (2012). Testosterone, cortisol, and serotonin as key regulators of social aggression: A review and theoretical perspective. Motivation and Emotion, 36, 6573.Google Scholar
Morawetz, C., Alexandrowicz, R. W., & Heekeren, H. R. (2017). Successful emotion regulation is predicted by amygdala activity and aspects of personality: A latent variable approach. Emotion, 17, 421.Google Scholar
Moul, C., Dobson-Stone, C., Brennan, J., Hawes, D., & Dadds, M. (2013). An exploration of the serotonin system in antisocial boys with high levels of callous-unemotional traits. PlOS one, 8, e56619.Google Scholar
Mueller, E. M., Burgdorf, C., Chavanon, M. L., Schweiger, D., Wacker, J., & Stemmler, G. (2014). Dopamine modulates frontomedial failure processing of agentic introverts versus extraverts in incentive contexts. Cognitive, Affective, & Behavioral Neuroscience, 14, 756768.Google Scholar
Muhlert, N., & Lawrence, A. D. (2015). Brain structure correlates of emotion-based rash impulsivity. NeuroImage, 115, 138146.Google Scholar
Munafò, M. R., & Flint, J. (2011). Dissecting the genetic architecture of human personality. Trends in Cognitive Sciences, 15, 395400.Google Scholar
Mutschler, I., Reinbold, C., Wankerl, J., Seifritz, E., & Ball, T. (2013). Structural basis of empathy and the domain general region in the anterior insular cortex. Frontiers in Human Neuroscience, 7, 177.Google Scholar
Nagel, M., Jansen, P. R., Stringer, S., Watanabe, K., de Leeuw, C. A., Bryois, J., … Linnasrsson, S. (2017). GWAS meta-analysis of Neuroticism (N = 449,484) identifies novel genetic loci and pathways. bioRxiv, 184820.Google Scholar
Nater, U. M., Hoppmann, C., & Klumb, P. L. (2010). Neuroticism and conscientiousness are associated with cortisol diurnal profiles in adults: Role of positive and negative affect. Psychoneuroendocrinology, 35, 15731577.Google Scholar
Navas-Sánchez, F. J., Alemán-Gómez, Y., Sánchez-Gonzalez, J., Guzmán-De-Villoria, J. A., Franco, C., Robles, O., … Desco, M. (2014). White matter microstructure correlates of mathematical giftedness and intelligence quotient. Human Brain Mapping, 35, 26192631.Google Scholar
Netter, P. (2004). Personality and hormones. In Stelmack, R. M. (Ed.), On the psychobiology of personality: Essays in honor of Marvin Zuckerman (pp. 353377). New York: Elsevier.Google Scholar
Nettle, D. (2006). The evolution of personality variation in humans and other animals. American Psychologist, 61, 622631.Google Scholar
Nettle, D., & Liddle, B. (2008). Agreeableness is related to social-cognitive, but not social-perceptual, theory of mind. European Journal of Personality, 22, 323335.Google Scholar
Nguyen, T. V., McCracken, J. T., Albaugh, M. D., Botteron, K. N., Hudziak, J. J., & Ducharme, S. (2016). A testosterone-related structural brain phenotype predicts aggressive behavior from childhood to adulthood. Psychoneuroendocrinology, 63, 109118.Google Scholar
Nour, M. M., Evans, L., & Carhart-Harris, R. L. (2017). Psychedelics, Personality and Political Perspectives. Journal of Psychoactive Drugs, 49, 110.Google Scholar
Nummenmaa, L., Manninen, S., Tuominen, L., Hirvonen, J., Kalliokoski, K. K., Nuutila, P., … Sams, M. (2015). Adult attachment style is associated with cerebral μ‐opioid receptor availability in humans. Human brain mapping, 36, 36213628.Google Scholar
Ohmura, Y., Takahashi, T., Kitamura, N., & Wehr, P. (2006). Three-month stability of delay and probability discounting measures. Experimental and Clinical Psychopharmacology, 14, 318328.Google Scholar
Omura, K., Constable, R. T., & Canli, T. (2005). Amygdala gray matter concentration is associated with extraversion and neuroticism. Neuroreport, 16, 19051908.Google Scholar
Panksepp, J. (1998). Affective neuroscience: The foundations of human and animal emotion. New York: Oxford University Press.Google Scholar
Paris, J. (2005). Neurobiological dimensional models of personality: A review of the models of Cloninger, Depue, and Siever. Journal of Personality Disorders, 19, 156170.Google Scholar
Passamonti, L., Terracciano, A., Riccelli, R., Donzuso, G., Cerasa, A., Vaccaro, M. G., … Quattrone, A. (2015). Increased functional connectivity within mesocortical networks in open people. Neuroimage, 104, 301309.Google Scholar
Patil, I., Zanon, M., Novembre, G., Zangrando, N., Chittaro, L., & Silani, G. (2018). Neuroanatomical basis of concern-based altruism in virtual environment. Neuropsychologia, 116, 3443.Google Scholar
Penke, L., Maniega, S. M., Bastin, M. E., Valdés Hernández, M. C., Murray, C., Royle, N. A., … Deary, I. J. (2012). Brain white matter tract integrity as a neural foundation for general intelligence. Molecular Psychiatry, 17, 10261030.Google Scholar
Perry, A., Mankuta, D., & Shamay-Tsoory, S. G. (2015). OT promotes closer interpersonal distance among highly empathic individuals. Social Cognitive and Affective Neuroscience, 10, 39.Google Scholar
Pettersson-Yeo, W., Allen, P., Benetti, S., McGuire, P., & Mechelli, A. (2011). Dysconnectivity in schizophrenia: Where are we now? Neuroscience and Biobehavioral Reviews, 35, 11101124.Google Scholar
Pickering, A. D. (2004). The neuropsychology of impulsive antisocial sensation seeking personality traits: From dopamine to hippocampal function? In Stelmack, R. M. (Ed.), On the psychobiology of personality: Essays in honor of Marvin Zuckerman (pp. 453477). New York: Elsevier.Google Scholar
Pickering, A. D., & Gray, J. A. (1999). The neuroscience of personality. In Pervin, L. A. & John, O. P. (Eds.), Handbook of personality: Theory and research (2nd ed., pp. 277299). New York: Guilford Press.Google Scholar
Privado, J., Román, F. J., Saénz-Urturi, C., Burgaleta, M., & Colom, R. (2017). Gray and white matter correlates of the Big Five personality traits. Neuroscience, 349, 174184.Google Scholar
Pytlik Zillig, L. M., Hemenover, S. H., & Dienstbier, R. A. (2002). What do we assess when we assess a Big 5 trait? A content analysis of the affective, behavioral and cognitive processes represented in the Big 5 personality inventories. Personality & Social Psychology Bulletin, 28, 847858.Google Scholar
Quilty, L. C., DeYoung, C. G., Oakman, J. M., & Bagby, R. M. (2014). Extraversion and behavioral activation: Integrating the components of approach. Journal of Personality Assessment, 96, 8794.Google Scholar
Quilty, L. C., Meusel, L.-A. C., & Bagby, R. M. (2008). Neuroticism as a mediator of treatment response to SSRIs in major depressive disorder. Journal of Affective Disorders, 111, 6773.Google Scholar
Ramanaiah, N. V., Rielage, J. K., & Cheng, Y. (2002). Cloninger’s temperament and character inventory and the NEO Five–Factor Inventory. Psychological Reports, 90, 5963.Google Scholar
Riccelli, R., Toschi, N., Nigro, S., Terracciano, A., & Passamonti, L. (2017). Surface-based morphometry reveals the neuroanatomical basis of the five-factor model of personality. Social Cognitive and Affective Neuroscience, 12, 671684.Google Scholar
Richard, F. D., Bond, C. F. Jr., & Stokes-Zoota, J. J. (2003). One hundred years of social psychology quantitatively described. Review of General Psychology, 7, 331363.Google Scholar
Riemann, R., Angleitner, A., & Strelau, J. (1997). Genetic and environmental influences on personality: A study of twins reared together using the self- and peer report NEO-FFI scales. Journal of Personality, 65, 449476.Google Scholar
Rizzolatti, G., & Craighero, L. (2004). The mirror-neuron system. Annual Review of Neuroscience, 27, 169192.Google Scholar
Roberts, B. W. (2007). Contextualizing personality psychology. Journal of Personality, 75, 10711081.Google Scholar
Roberts, B. W., Luo, J., Briley, D. A., Chow, P. I., Su, R., & Hill, P. L. (2017). A systematic review of personality trait change through intervention. Psychological Bulletin, 143, 117141.Google Scholar
Rueter, A. R., Abram, S. V., MacDonald, A. W., Rustichini, A., & DeYoung, C. G. (2018). The goal priority network as a neural substrate of Conscientiousness. Human Brain Mapping, 39, 35743585.Google Scholar
Sassa, Y., Taki, Y., Takeuchi, H., Hashizume, H., Asano, M., Asano, K., … Kawashima, R. (2012). The correlation between brain gray matter volume and empathizing and systemizing quotients in healthy children. NeuroImage, 60, 20352041.Google Scholar
Saucier, G. (1992). Openness versus intellect: Much ado about nothing? European Journal of Personality, 6, 381386.Google Scholar
Saucier, G. (2009). Recurrent personality dimensions in inclusive lexical studies: Indications for a Big Six structure. Journal of Personality, 77, 15771614.Google Scholar
Saxe, R., & Powell, L. J. (2006). It’s the thought that counts: Specific brain regions for one component of theory of mind. Psychological science, 17, 692699.Google Scholar
Schmidt, L. A., Fox, N. A., Rubin, K. H., Sternberg, E. M., Gold, P. W., Smith, C. C., & Schulkin, J. (1997). Behavioral and neuroendocrine responses in shy children. Developmental Psychobiology, 30, 127140.Google Scholar
Shackman, A. J., McMenamin, B. W., Maxwell, J. S., Greischar, L. L., & Davidson, R. J. (2009). Right dorsolateral prefrontal cortical activity and behavioral inhibition. Psychological Science, 20, 15001506.Google Scholar
Shackman, A. J., Tromp, D. P., Stockbridge, M. D., Kaplan, C. M., Tillman, R. M., & Fox, A. S. (2016). Dispositional negativity: An integrative psychological and neurobiological perspective. Psychological Bulletin, 142, 12751314.Google Scholar
Schinka, J. A., Busch, R. M., & Robichaux-Keene, N. (2004). A meta-analysis of the association between the serotonin transporter gene polymorphism (5-HTTLPR) and trait anxiety. Molecular Psychiatry, 9, 197202.Google Scholar
Schuyler, B. S., Kral, T. R. A., Jacquart, J., Burghy, C. A., Weng, H. Y., Perlman, D. M., … Davidson, R. J. (2014). Temporal dynamics of emotional responding: Amygdala recovery predicts emotional traits. Social Cognitive and Affective Neuroscience, 9, 176181.Google Scholar
Seitz, R. J., Nickel, J., & Azari, N. P. (2006). Functional modularity of the medial prefrontal cortex: Involvement in human empathy. Neuropsychology, 20, 743751.Google Scholar
Sen, S., Burmeister, M., & Ghosh, D. (2004). Meta-analysis of the association between a serotonin transporter promoter polymorphism (5-HTTLPR) and anxiety-related personality traits. American Journal of Medical Genetics Part B (Neuropsychiatric Genetics), 127B, 8589.Google Scholar
Servaas, M. N., van der Velde, J., Costafreda, S. G., Horton, P., Ormel, J., Riese, H., & Aleman, A. (2013). Neuroticism and the brain: A quantitative meta-analysis of neuroimaging studies investigating emotion processing. Neuroscience and Biobehavioral Reviews, 37, 15181529.Google Scholar
Smeets-Janssen, M. M., Roelofs, K., Van Pelt, J., Spinhoven, P., Zitman, F. G., Penninx, B. W., & Giltay, E. J. (2015). Salivary testosterone is consistently and positively associated with extraversion: results from the Netherlands study of depression and anxiety. Neuropsychobiology, 71, 7684.Google Scholar
Smeland, O. B., Wang, Y., Lo, M. T., Li, W., Frei, O., Witoelar, A., … Chen, C. H. (2017). Identification of genetic loci shared between schizophrenia and the Big Five personality traits. Scientific Reports, 7, 2222.Google Scholar
Smillie, L. D., Cooper, A. J., & Pickering, A. D. (2011). Individual differences in reward–prediction–error: Extraversion and feedback-related negativity. Social Cognitive and Affective Neuroscience, 6, 646652.Google Scholar
Smillie, L. D., Pickering, A. D., & Jackson, C. J. (2006). The new Reinforcement Sensitivity Theory: Implications for personality measurement. Personality & Social Psychology Review, 10, 320335.Google Scholar
Smith, S. M., Fox, P. T., Miller, K. L., Glahn, D. C., Fox, P. M., Mackay, C. E., … Beckmann, C. F. (2009). Correspondence of the brain’s functional architecture during activation and rest. Proceedings of the National Academy of Sciences, 106, 1304013045.Google Scholar
Sniekers, S., Stringer, S., Watanabe, K., Jansen, P. R., Coleman, J. R., Krapohl, E., … Amin, N. (2017). Genome-wide association meta-analysis of 78,308 individuals identifies new loci and genes influencing human intelligence. Nature Genetics, 49, 11071112Google Scholar
Somerville, L. H., Whalen, P. J., & Kelley, W. M. (2010). Human bed nucleus of the stria terminalis indexes hypervigilant threat monitoring. Biological Psychiatry, 68, 416424.Google Scholar
Sutin, A. R., Beason-Held, L. L., Dotson, V. M., Resnick, S. M., & Costa, P. T. (2010). The neural correlates of neuroticism differ by sex and prospectively mediate depressive symptoms among older women. Journal of Affective Disorders, 127, 241247.Google Scholar
Takeuchi, H., Taki, Y., Nouchi, R., Sekiguchi, A., Hashizume, H., Sassa, Y., … Nakagawa, S. (2014a). Association between resting-state functional connectivity and empathizing/systemizing. Neuroimage, 99, 312322.Google Scholar
Takeuchi, H., Taki, Y., Nouchi, R., Sekiguchi, A., Kotozaki, Y., Miyauchi, C. M., … Kunitoki, K. (2014b). Regional gray matter density is associated with achievement motivation: Evidence from voxel-based morphometry. Brain Structure and Function, 219, 7183.Google Scholar
Tang, T. Z., Derubeis, R. J., Hollon, S. D., Amsterdam, J., Shelton, R., & Schalet, B. (2009). Personality change during depression treatment. Archives of General Psychiatry, 66, 13221330.Google Scholar
Tangney, J. P., Baumeister, R. F., & Boone, A. L. (2004). High self-control predicts good adjustment, less pathology, better grades, and interpersonal success. Journal of Personality, 72, 271322.Google Scholar
Tellegen, A. (1982). Brief manual for the Multidimensional Personality Questionnaire. Unpublished manuscript, University of Minnesota, Minneapolis.Google Scholar
Terracciano, A., Sanna, S., Uda, M., Deiana, B., Usala, G., Busonero, F., … Costa, P. T. (2008). Genome-wide association scan for five major dimensions of personality. Molecular Psychiatry, 15, 647656.Google Scholar
Tochigi, M., Otowa, T., Hibino, H., Kato, C., Otani, T., Umekage, T., Utsumi, T., Kato, N., & Sasaki, T. (2006). Combined analysis of association between personality traits and three functional polymorphisms in the tyrosine hydroxylase, monoamine oxidase A, and catechol-O-methyltransferase genes. Neuroscience Research, 54, 180185.Google Scholar
Turan, B., Guo, J., Boggiano, M. M., & Bedgood, D. (2014). Dominant, cold, avoidant, and lonely: Basal testosterone as a biological marker for an interpersonal style. Journal of Research in Personality, 50, 8489.Google Scholar
Tyrka, A. R., Kelly, M. M., Graber, J. A., DeRose, L., Lee, J. K., Warren, M. P., & Brooks-Gunn, J. (2010). Behavioral adjustment in a community sample of boys: Links with basal and stress-induced salivary cortisol concentrations. Psychoneuroendocrinology, 35, 11671177.Google Scholar
Urošević, S., Collins, P., Muetzel, R., Lim, K., & Luciana, M. (2012). Longitudinal changes in behavioral approach system sensitivity and brain structures involved in reward processing during adolescence. Developmental Psychology, 48, 1488–500.Google Scholar
Valk, S., Bernhardt, B., Böckler, A., Trautwein, F. M., Kanske, P., & Singer, T. (2016). Socio-cognitive phenotypes differentially modulate large-scale structural covariance networks. Cerebral Cortex, 1358–1368.Google Scholar
Vazire, S. (2010). Who knows what about a person? The self–other knowledge asymmetry (SOKA) model. Journal of Personality and Social Psychology, 98, 281300.Google Scholar
Vincent, J. L., Kahn, I., Snyder, A. Z., Raichle, M. E., & Buckner, R. L. (2008). Evidence for a frontoparietal control system revealed by intrinsic functional connectivity. Journal of Neurophysiology, 100, 33283342.Google Scholar
Volkow, N. D., Tomasi, D., Wang, G.-J., Fowler, J. S., Telang, F., Goldstein, R. Z., … Alexoff, D. (2011). Positive emotionality is associated with baseline metabolism in orbitofrontal cortex and in regions of the default network. Molecular Psychiatry, 16, 818825.Google Scholar
Wacker, J., Chavanon, M.-L., & Stemmler, G. (2006). Investigating the dopaminergic basis of Extraversion in humans: A multilevel approach. Journal of Personality and Social Psychology, 91, 171187.Google Scholar
Wacker, J., Mueller, E., Pizzagalli, D. A., Hennig, J., & Stemmler, G. (2013). Dopamine-D2-receptor blockade reverses the association between trait approach motivation and frontal asymmetry in an approach-motivation context. Psychological Science, 24, 489497.Google Scholar
Wacker, J., & Smillie, L. D. (2015). Trait extraversion and dopamine function. Social and Personality Psychology Compass, 9, 225238.Google Scholar
Wacker, J., & Stemmler, G. (2006). Agentic extraversion modulates the cardiovascular effects of the dopamine D2 agonist bromocriptine. Psychophysiology, 43, 372381.Google Scholar
Wagner, M. T., Mithoefer, M. C., Mithoefer, A. T., MacAulay, R. K., Jerome, L., Yazar-Klosinski, B., & Doblin, R. (2017). Therapeutic effect of increased openness: Investigating mechanism of action in MDMA-assisted psychotherapy. Journal of Psychopharmacology, 31, 967974.Google Scholar
Wainwright, M. A., Wright, M. J., Luciano, M., Geffen, G. M., & Martin, N. G. (2008). Genetic covariation among facets of Openness to Experience and general cognitive ability. Twin Research and Human Genetics, 11, 275286.Google Scholar
Waller, N. G., DeYoung, C. G., & Bouchard, T. J. (2016). The recaptured scale technique: A method for testing the structural robustness of personality scales. Multivariate Behavioral Research, 51, 433445.Google Scholar
Weiss, A., Staes, N., Pereboom, J. J. M., Inoue-Murayama, M., Stevens, J. M. G., & Eens, M. (2015). Personality in Bonobos. Psychological Science, 26, 14301439.Google Scholar
White, T. L., & Depue, R. A. (1999). Differential association of traits of fear and anxiety with norepinephrine and dark-induced pupil reactivity. Journal of Personality and Social Psychology, 77, 863877.Google Scholar
Whiteside, S. P., & Lynam, R. W. (2001). The Five-Factor Model and impulsivity: Using a structural model of personality to understand impulsivity. Personality and Individual Differences, 30, 669689.Google Scholar
Wood, D., & Roberts, B. W. (2006). Cross-sectional and longitudinal tests of the personality and role identity structural model (PRISM). Journal of Personality, 74, 779809.Google Scholar
Wright, A. G., Creswell, K. G., Flory, J., Muldoon, M., & Manuck, S. N. (2019). Neurobiological functioning and the personality trait hierarchy: Central serotonergic responsivity and the stability metatrait. Psychological Science, 30, 14131423.Google Scholar
Wu, C. C., Samanez-Larkin, G. R., Katovich, K., & Knutson, B. (2014). Affective traits link to reliable neural markers of incentive anticipation. NeuroImage, 84, 279289.Google Scholar
Xu, J., & Potenza, M. N. (2012). White matter integrity and five-factor personality measures in healthy adults. Neuroimage, 59, 800807.Google Scholar
Yamagata, S., Suzuki, A., Ando, J., Ono, Y., Kijima, N., Yoshimura, K., … Jang, K. L. (2006). Is the genetic structure of human personality universal? A cross-cultural twin study from North America, Europe, and Asia. Journal of Personality and Social Psychology, 90, 987998.Google Scholar
Yarkoni, T. (2015). Neurobiological substrates of personality: A critical overview. In Mikulincer, M. & Shaver, P. R. (Eds.), APA handbook of personality and social psychology: Personality processes and individual differences (Vol. 4, pp. 6184). Washington, DC: American Psychological Association.Google Scholar
Yeo, B., Krienen, F., Sepulcre, J., Sabuncu, M., Lashkari, D., Hollinshead, M., … Buckner, R. L. (2011). The organization of the human cerebral cortex estimated by intrinsic functional connectivity. Journal of Neurophysiology, 106, 11251165.Google Scholar
Zelenski, J. M., & Larsen, R. J. (1999). Susceptibility to affect: A comparison of three personality taxonomies. Journal of Personality, 67, 761791.Google Scholar
Zuckerman, M. (2005). Psychobiology of personality (2nd ed.). New York: Cambridge University Press.Google Scholar
Zuckerman, M., Kuhlman, D. M., Joireman, J., Teta, P., & Kraft, M. (1993). A comparison of three structural models of personality: The Big Three, the Big Five, and the Alternative Five. Journal of Personality and Social Psychology, 65, 757768.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×