Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-pjpqr Total loading time: 0 Render date: 2024-07-05T12:09:48.114Z Has data issue: false hasContentIssue false

2 - Alternation of generations

Published online by Cambridge University Press:  11 August 2009

Elizabeth Sheffield
Affiliation:
School of Biological Sciences, University of Manchester, Manchester M13 9PT, UK
Tom A. Ranker
Affiliation:
University of Colorado, Boulder
Christopher H. Haufler
Affiliation:
University of Kansas
Get access

Summary

Introduction

What is meant by the term “alternation of generations”? There is no consensus on this, but a plethora of definitions and interpretations. For example: “The alternation of a sexual phase and an asexual phase in the life cycle of an organism. The two phases, or generations, are often morphologically, and sometimes chromosomally, distinct.” This is the current Encyclopedia Britannica version, one of the broadest, and one of the most defensible. One alternative is: “The succession of multicellular haploid and diploid phases in some sexually reproducing organisms …” (Purves et al., 2004). The latter is typical of the definitions found in biological textbooks, and as we shall see, restricts the process too much to be useful to fern biologists. The essential feature of the process upon which most authors agree is the presence of distinct multicellular forms. This distinguishes a set of organisms from those with only a single multicellular phase (such as humans, which reproduce, at least at present, via single-celled gametes that, on fusion, generate a multicellular phase morphologically comparable with the parent form that generated the gametes). Organisms with a single multicellular phase include those like ourselves, where the conspicuous phase is diploid (“diplonts”), and those in which the haploid phase is the only one with more than single cells (“haplonts”).

The possession of two different free-living forms allows each to exploit different environments. The tiny spores of the ferns allow genes to travel far beyond the immediate vicinity of the parent.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alonso-Amelot, M. E., Oliveros, A., Calcagno, M. P., and Arellano, E. (2001). Bracken adaptation mechanisms and xenobiotic chemistry. Pure and Applied Chemistry, 73, 549–553.CrossRefGoogle Scholar
Ambrozic-Dolinsek, J., Camloh, M., and Bohanec, J. Z. (2002). Apospory in leaf culture of staghorn fern (Platycerium bifurcatum). Plant Cell Reports, 20, 791–796.Google Scholar
Arens, N. C. and Baracaldo, P. S. (2000). Variation in tree fern stipe length with canopy height: tracking preferred habitat through morphological change. American Fern Journal, 90, 1–15.CrossRefGoogle Scholar
Balick, M. J., Furth, D. G., and Cooper-Driver, G. (1978). Biochemical and evolutionary aspects of arthropod predation in ferns. Oecologia, 35, 55–89.CrossRefGoogle ScholarPubMed
Banks, J. A. (1999). Gametophyte development in ferns. Annual Review of Plant Physiology, 50, 163–186.CrossRefGoogle ScholarPubMed
Bell, G. (1994). The comparative biology of the alternation of generations. In Lectures on Mathematics in the Life Sciences: Theories for the Evolution of Haploid–Diploid Life Cycles, Vol. 25, ed. Kirkpatrick, M.. Providence, RI: American Mathematical Society, pp. 1–26.Google Scholar
Borno, R. T., Steinmeyer, J. D., and Maharbiz, M. M. (2006). Transpiration actuation: the design, fabrication and characterization of biomimetic microactuators driven by the surface tension of water. Journal of Micromechanics and Microengineering, 16, 2375–2383.CrossRefGoogle Scholar
Campbell, N. A. and Reece, J. B. (2004). Biology, 7th edn. San Francisco, CA: Benjamin Cummings.Google Scholar
Smith, Cavalier T. (1978). Nuclear volume control by nucleoskeletal DNA, selection for cell volume and cell growth rate, and the solution of the DNA C-value paradox. Journal of Cell Science, 34, 247–278.Google Scholar
Conant, D. S. (1978). A radioisotope technique to measure spore dispersal of the tree fern Cyathea arborea Sm. Pollen et Spores, 20, 583–593.Google Scholar
Conway, E. (1957). Spore production in bracken (Pteridium aquilinum (L.) Kuhn). Journal of Ecology, 45, 273–284.CrossRefGoogle Scholar
Cordle, A. R., Irish, E. E., and Cheng, C. L. (2007). Apogamy induction in Ceratopteris richardii. International Journal of Plant Science, 168, 361–369.CrossRefGoogle Scholar
Daniels, R. E. (1986). Studies in the growth of Pteridium aquilinum (L.) Kuhn (bracken). 2. Effects of shading and nutrient application. Weed Research, 26, 121–126.CrossRefGoogle Scholar
del Ramirez-Trejo, M., Perez-Garcia, B., and Orozco-Segovia, A. (2004). Analysis of fern spore banks from the soil of three vegetation types in the central region of Mexico. American Journal of Botany, 91, 682–688.CrossRefGoogle Scholar
DiMichele, W. A. and Bateman, R. M. (1996). Plant paleoecology and evolutionary inference: two examples from the Paleozoic. Review of Paleobotany and Palynology, 90, 223–247.CrossRefGoogle Scholar
Dyce, J. W. (1993). The Cultivation and Propagation of British Ferns, Special Publication 3, 2nd edn. London: British Pteridological Society.Google Scholar
Dyck, L. J. and DeWreede, R. E. (1995). Patterns of seasonal demographic changes in the alternate isomorphic stages of Mazzaella splendens (Gigartinales, Rhodophyta). Phycologia, 34, 390–395.CrossRefGoogle Scholar
Dyer, A. F. and Lindsay, S. (1992). Soil spore banks of temperate ferns. American Fern Journal, 82, 69–123.CrossRefGoogle Scholar
Dyer, A. F. and Lindsay, S. (1996). Soil spore banks – a new resource for conservation. In Pteridology in Perspective, ed. Camus, J. M., Gibby, M., and Johns, R. J.. Kew: Royal Botanic Gardens, pp. 153–160.Google Scholar
Elmore, H. W. and Whittier, D. P. (1975). The involvement of ethylene and sucrose in the inductive and developmental phases of apogamous bud formation in Pteridium gametophytes. Canadian Journal of Botany, 53, 375–381.CrossRefGoogle Scholar
Farlow, W. (1874). An asexual growth from the prothallus of Pteris cretica. Quarterly Journal of the Microscopical Society, 14, 266–272.Google Scholar
Fernandez, H., Bertrand, A. M., and Sanchez-Tames, R. (1999). Biological and nutritional aspects involved in fern multiplication. Plant Cell, Tissue and Organ Culture, 56, 211–214.CrossRefGoogle Scholar
Freeberg, J. A. (1957). The apogamous development of sporelings of Lycopodium cernuum L., L. complanatum var. flabelliforme Fernald and L. selago L. in vitro. Phytomorphology, 7, 217–229.Google Scholar
Freeman, S. (2005). Biological Science, 2nd stdt. edn. Upper Saddle River, NJ: Pearson Prentice Hall.Google Scholar
Gastony, G. J. and Haufler, C. H. (1976). Chromosome number and apomixis in the fern genus Bommeria (Gymnogrammaceae). Biotropica, 8, 1–11.CrossRefGoogle Scholar
Gastony, G. J. and Windham, M. D. (1989). Species concepts in pteridophytes: the treatment and definition of agamosporous species. American Fern Journal, 79, 65–77.CrossRefGoogle Scholar
Gerrienne, P., Dilcher, D. L., Bergamaschi, S., Milagres, I., Pereira, E., and Rodrigues, M. A. C. (2006). An exceptional specimen of the early land plant Cooksonia paranensis and a hypothesis on the life cycle of the earliest tracheophytes. Review of Paleobotany and Palynology, 142, 123–130.CrossRefGoogle Scholar
Ghorbani, J., Das, P. M., Das, A. B., Hughes, J. M., McAllister, H. A., Pallai, S. K., Pakeman, R. J., Marrs, R. H., and Duc, M. G. (2003). Effects of restoration treatments on the diaspore bank under dense Pteridium stands in the UK. Applied Vegetation Science, 6, 189–198.Google Scholar
Greer, G. K. and McCarthy, B. C. (2000). Patterns of growth and reproduction in a natural population of the fern Polystichum acrostichoides. American Fern Journal, 90, 60–76.CrossRefGoogle Scholar
Habgood, K. S., Hass, H., Kerp, H. (2004). Evidence for an early terrestrial food web: coprolites from the Early Devonian Rhynie chert. Transactions of the Royal Society of Edinburgh, Earth Sciences, 94, 371–389.CrossRefGoogle Scholar
Harvey, W. H. and Caponetti, J. D. (1972). In vitro studies on the induction of sporogenous tissue on leaves of cinnamon fern. I. Environmental factors. Canadian Journal of Botany, 50, 2673–2682.CrossRefGoogle Scholar
Hickock, L. G., Warne, L. K., and Slocum, M. K. (1987). Ceratopteris richardii: applications for experimental plant biology. American Journal of Botany, 74, 1304–1316.CrossRefGoogle Scholar
Hirsch, A. M. (1975). The effect of sucrose on the differentiation of excised fern leaf tissue into either gametophytes or sporophytes. Plant Physiology, 56, 390–393.CrossRefGoogle ScholarPubMed
Hughes, J. S. and Otto, S. P. (1999). Ecology and the evolution of biphasic life cycles. The American Naturalist, 154, 306–320.CrossRefGoogle ScholarPubMed
Hulme, M. and Jenkins, G. J. (1998). Climate Change Scenarios for the UK: Scientific Report. UKCIP Technical Report No 1. Norwich: Climate Research Unit.Google Scholar
James, H. F. and Burney, D. A. (1997). The diet and ecology of Hawaii's extinct flightless waterfowl: evidence from coprolites. Biological Journal of the Linnean Society, 62, 279–297.CrossRefGoogle Scholar
Jimenez, V. M., Guevara, E., Herrera, J., and Bangerth, F. (2001). Endogenous hormone levels in habituated nucellar Citrus callus during the initial stages of regeneration. Plant Cell Reports, 20, 92–100.Google Scholar
Kaplan, D. R. and Cooke, T. J. (1996). The genius of Wilhelm Hofmeister: the origin of causal-analytical research in plant development. American Journal of Botany, 83, 1647–1660.CrossRefGoogle Scholar
Kendall, A., Page, C. N., and Taylor, J. A. (1995). Linkages between bracken sporulation rates and weather and climate in Britain. In Bracken: An Environmental Issue, ed. Smith, R. T. and Taylor, J. A.. Aberystwyth: International Bracken Group, Special Publication No. 2, pp. 77–81.Google Scholar
Korpelainen, H. (1995). Mating system and distribution of enzyme genetic-variation in bracken (Pteridium aquilinum). Canadian Journal of Botany, 73, 1611–1617.CrossRefGoogle Scholar
Kuriyama, A., Sugawara, Y., Matsushima, H., and Takeuchi, M. (1990). Production of sporophytic structures from gametophytes by cytokinin in Equisetum arvense. Naturwissenschaften, 77, 31–32.CrossRefGoogle Scholar
Laird, S. and Sheffield, E. (1986). Antheridia and archegonia of the apogamous fern Pteris cretica. Annals of Botany, 57, 139–143.CrossRefGoogle Scholar
Lang, W. H. (1898). On apogamy and the development of sporangia upon fern prothalli. Philosophical Transactions of the Royal Society, London, 110, 187–236.CrossRefGoogle Scholar
Lindsay, S., Sheffield, E., and Dyer, A. F. (1995). Dark germination as a factor limiting the formation of soil spore banks by bracken. In Bracken: An Environmental Issue, ed. Smith, R. T. and Taylor, J. A.. Aberystwyth: International Bracken Group, Special Publication No. 2, pp. 47–51.Google Scholar
Lovis, J. D. (1977). Evolutionary patterns and processes in ferns. In Advances in Botanical Research, ed. Preston, R. D. and Woolhouse, H. W.. New York: Academic Press, pp. 229–415.Google Scholar
Mable, B. K. and Otto, S. P. (1998). The evolution of life cycles with haploid and diploid phases. Bioessays, 20, 453–462.3.0.CO;2-N>CrossRefGoogle Scholar
Mahlberg, P. G. and Baldwin, M. (1975). Experimental studies on megaspore viability, parthenogenesis and sporophyte formation in Marsilea, Pilularia and Regnellidium. Botanical Gazette, 136, 269–273.CrossRefGoogle Scholar
Marrs, R. H. and Watt, A. S. (2006). Biological flora of the British isles No. 245 List Br. Vasc. Pl. (1958) no. 8, 1: Pteridium aquilinum (L.) Kuhn. Journal of Ecology, 94, 1272–1321.CrossRefGoogle Scholar
Martin, K. P., Sini, S., Zhang, C.-L., Slater, A., and Madhusoodanan, P. V. (2006). Efficient induction of apospory and apogamy in vitro in silver fern (Pityrogramma calomelanos L.). Plant Cell Reports, 25, 1300–1307.CrossRefGoogle Scholar
Materi, D. M. and Cumming, B. G. (1991). Effects of carbohydrate deprivation on rejuvenation, apospory and regeneration in ostrich fern (Matteuccia struthiopteris) sporophytes. Canadian Journal of Botany, 69, 1241–1245.CrossRefGoogle Scholar
Mayr, E. (1982). Adaptation and selection. Biologisches Zentralblatt, 101, 161–174.Google Scholar
Mehra, P. N. and Sulklyan, D. S. (1969). In vitro studies on apogamy, apospory and controlled differentiation of rhizome segments of the fern Ampelopteris prolifera (Retz.) Copel. Botanical Journal of the Linnean Society, 62, 431–443.CrossRefGoogle Scholar
Menendez, V., Villacorta, N. F., and Revilla, M. A. (2006). Exogenous and endogenous growth regulators on apogamy in Dryopteris affinis (Lowe) Fraser-Jenkins ssp. affinis. Plant Cell Reports, 25, 85–91.CrossRefGoogle Scholar
Moran, R. C. (2004). A Natural History of Ferns. Portland, OR: Timber Press.Google Scholar
Nakazato, T., Jung, M. K., Housworth, E. A., Riesberg, L. H., and Gastony, G. J. (2006). Genetic map-based analysis of genome structure in the homosporous fern Ceratopteris richardii. Genetics, 173, 1585–1597.CrossRefGoogle ScholarPubMed
Ooya, N. (1974). Induction of apogamy in Equisetum arvense. Botanical Magazine (Tokyo), 87, 253–259.CrossRefGoogle Scholar
Page, C. N. (1990). Taxonomic evaluation of the fern genus Pteridium and its active evolutionary state. In Bracken Biology and Management, ed. Thomson, J. A. and Smith, R. T.. Sydney: Australian Institute of Agricultural Science, pp. 23–34.Google Scholar
Pakeman, R. J., Marrs, R. H., Howard, D. C., Barr, C. J., and Fuller, R. M. (1996). The bracken problem in Great Britain; its present extent and future changes. Applied Geography, 16, 65–86.CrossRefGoogle Scholar
Peck, J. H., Peck, C. J., and Farrar, D. R. (1990). Comparative life history studies and the distribution of pteridophyte populations. American Fern Journal, 80, 126–142.CrossRefGoogle Scholar
Penrod, K. A. and McCormick, L. H. (1996). Abundance of viable hay-scented fern spores germinated from hardwood forest soils at various distances from a source. American Fern Journal, 86, 69–79.CrossRefGoogle Scholar
Purves, W. K., Sadava, D., Orians, G. H., and Heller, H. C. (2004). Life: the Science of Biology. New York: W. H. Freeman.Google Scholar
Raghavan, V. (1989). Developmental Biology of Fern Gametophytes. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Ranal, M. A. (2004). Bark spore bank of ferns in a gallery forest of the ecological station of Pangua, Uberlandia-MG, Brazil. American Fern Journal, 94, 57–69.CrossRefGoogle Scholar
Ranker, T. A., Gemmill, C. E. C., Trapp, P. G., Hambleton, A., and Ha, K. (1996). Population genetics and reproductive biology of lava-flow colonising species of Hawaiian Sadleria (Blechnaceae). In Pteridology in Perspective, ed. Camus, J. M., Gibby, M., and Johns, R. J.. Kew: Royal Botanic Gardens, pp. 581–598.Google Scholar
Raven, P. H., Evert, R. F., and Eichorn, S. E. (2005). Biology of Plants. New York: W. H. Freeman.Google Scholar
Richerd, S., Couvet, D., and Valero, M. (1993). Evolution of the alternation of haploid and diploid phases in life cycles. II. Maintenance of the haplo-diplontic cycle. Journal of Evolutionary Biology, 6, 263–280.CrossRefGoogle Scholar
Richerd, S., Perrot, D., Couvet, M., Valero, M., and Kondrashov, A. S. (1994). Deleterious mutations can account for the maintenance of the haplo-diploid cycle. In Genetics and Evolution in Aquatic Organisms, ed. Beaumont, A. R.. New York: Chapman and Hall, pp. 263–280.Google Scholar
Rumsey, F. J., Vogel, J. C., Russell, S. J., Barrett, J. A., Gibby, M. (1999). Population structure and conservation biology of the endangered fern Trichomanes speciosum Willd. (Hymenophyllaceae) at its northern distributional limit. Biological Journal of the Linnean Society, 66, 333–344.Google Scholar
Savada, D., Heller, C., Orians, G., Purves, W. K., and Hillis, D. M. (2008). Life: The Science of Biology, 8th edn. Gordonsville, VA: Sinauer.Google Scholar
Schmidt, B., Rasmussen, L. H., Svendsen, G. W., Ingerslev, F., and Hansen, H. C. B. (2005). Genotoxic activity and inhibition of soil respiration by ptaquiloside, a bracken fern carcinogen. Environmental Toxicology and Chemistry, 24, 2751–2756.CrossRefGoogle ScholarPubMed
Schneller, J. J. (1998). How much genetic variation in fern populations is stored in the spore banks? A study of Athyrium filix-femina (L.) Roth. Journal of the Linnean Society, 127, 195–206.Google Scholar
Schwabe, W. W. (1951). Physiological studies in plant nutrition. XVI. The mineral nutrition of bracken. Part 1. Prothallial culture and the effects of phosphorus and potassium supply on leaf production in the sporophyte. Annals of Botany, 15, 417–446.CrossRefGoogle Scholar
Sharpe, J. M. (1996). Growth and demography of sporophytes of Thelypteris angustifolia in the Luquillo rainforest of Puerto Rico. In Pteridology in Perspective, ed. Camus, J. M., Gibby, M., and Johns, R. J.. Kew: Royal Botanic Gardens, pp. 667–668.Google Scholar
Sheffield, E. (1992). Apogamy and apospory: their potential uses in breeding and propagation. In Fern Horticulture, Past, Present and Future Perspectives, ed. Ide, J. M., Jermy, A. C., and Paul, A.. Andover: Intercept, pp. 189–193.Google Scholar
Sheffield, E. (1994). Alternation of generations in ferns: mechanisms and significance. Biological Reviews, 69, 331–343.CrossRefGoogle Scholar
Sheffield, E. (1996). From pteridophyte spore to sporophyte in the natural environment. In Pteridology in Perspective, ed. Camus, J. M., Gibby, M., and Johns, R. J.. Kew: Royal Botanic Gardens, pp. 541–549.Google Scholar
Sheffield, E. and Bell, P. R. (1987). Current studies of the pteridophyte life cycle. Botanical Reviews, 53, 442–490.CrossRefGoogle Scholar
Sheffield, E., Wolf, P. G., and Ranker, T. A. (1995). Genetic analysis of bracken in the Hawaiian Islands. In Bracken: An Environmental Issue, ed. Smith, R. T. and Taylor, J. A.. Aberystwyth: International Bracken Group, Special Publication No. 2, pp. 29–32.Google Scholar
Simán, S. E. (2000). Fern spores and human health. Unpublished Ph.D. Thesis, University of Manchester.Google Scholar
Simán, S. E. and Sheffield, E. (2002). Polypodium vulgare plants sporulate continuously in a non-seasonal glasshouse environment. American Fern Journal, 92, 30–38.CrossRefGoogle Scholar
Simán, S. E. and Sheffield, E. (2006). Growth impairment of human cells by fern spore extracts. Fern Gazette, 17, 287–291.Google Scholar
Simán, S. E., Povey, A., and Sheffield, E. (1999). Human health risks from fern spores? – a review. Fern Gazette, 15, 275–287.Google Scholar
Simán, S. E., Povey, A. C., O'Connor, P. J., Ward, T. H., Margison, G. P., and Sheffield, E. (2000). Fern spore extracts can damage DNA. British Journal of Cancer, 83, 69–73.CrossRefGoogle ScholarPubMed
Solomon, E. P., Berg, L. R., and Martin, D. W. (2005). Biology. Belmont, CA: Brooks/Cole-Thomson Learning.Google ScholarPubMed
Smith, R. T. and Taylor, J. A. (2000). Bracken: An Environmental Issue. Leeds: University of Leeds.Google Scholar
Srivastava, D. S., Lawton, J. H., and Robinson, G. S. (1997). Spore-feeding: a new, regionally vacant niche for bracken herbivores. Ecological Entomology, 22, 475–478.CrossRefGoogle Scholar
Steeves, T. A. and Wetmore, R. H. (1953). Morphogenetic studies on Osmunda cinnamomea L. – some aspects of the general morphology. Phytomorphology, 3, 339–354.Google Scholar
Taylor, T. N., Kerp, H., and Hass, H. (2005). Life history biology of early land plants: deciphering the gametophyte phase. Proceedings of the National Academy of Sciences of the United States of America, 102, 5892–5897.CrossRefGoogle ScholarPubMed
Teng, W. L. and Teng, M. C. (1997). In vitro regeneration patterns of Platycerium bifurcatum leaf cell suspension culture. Plant Cell Reports, 16, 820–824.CrossRefGoogle Scholar
Thomson, J. A., Mickel, J. A., and Mehltreter, K. (in press). Taxonomic status and relationships of bracken ferns (Pteridium: Dennstaedtiaceae) of Laurasian affinity in Central and North America. Botanical Journal of the Linnean Society.Google Scholar
Tyson, M. J., Sheffield, E., and Callaghan, T. V. (1995). An overview of 134Cs and 85Sr transport, allocation and concentration studies in artificially propagated bracken. In Bracken: An Environmental Issue, ed. Smith, R. T. and Taylor, J. A.. Aberystwyth: International Bracken Group, Special Publication No. 2, pp. 38–42.Google Scholar
Walker, T. G. (1984). Chromosomes and evolution in pteridophytes. In Chromosomes in Evolution of Eukaryotic Groups, Vol. 2, ed. Sharma, A. K. and Sharma, A.. Boca Raton, FL: CRC Press.Google Scholar
Walker, T. G. (1985). Some aspects of agamospory in ferns – the Braithwaite system. Proceedings of the Royal Society of Edinburgh Section B, Biological Sciences, 86, 59–86.CrossRefGoogle Scholar
Wang, J. Y., Gitura, R. W., and Wang, Q. F. (2005). Ecology and conservation of the endangered quillwort Isoetes sinensis in China. Journal of Natural History, 39, 4069–4079.CrossRefGoogle Scholar
Whittier, D. P. (1966). The influence of growth substances on the induction of apogamy in Pteridium gametophytes. American Journal of Botany, 53, 882–886.CrossRefGoogle Scholar
Whittier, D. P. and Steeves, T. A. (1960). The induction of apogamy in the bracken fern. Canadian Journal of Botany, 40, 1525–1531.CrossRefGoogle Scholar
Wild, M. and Gagnon, D. (2005). Does lack of available suitable habitat explain the patchy distributions of rare calcicole fern species? Ecography, 28, 191–196.CrossRefGoogle Scholar
Wolf, P. G., Haufler, C. H., and Sheffield, E. (1988). Electrophoretic variation and mating system of the clonal weed Pteridium aquilinum (L.) Kuhn (Bracken). Evolution, 42, 1350–1355.CrossRefGoogle Scholar
Wolf, P. G., Sheffield, E., and Haufler, C. H. (1990). Genetic attributes of bracken as revealed by enzyme electrophoresis. In Bracken Biology and Management, ed. Thomson, J. A. and Smith, R. T.. Hawthorn, Victoria: Australian Institute of Agriculture and Science, pp. 71–78.Google Scholar
Wolf, P. G., Sheffield, E., and Haufler, C. H. (1991). Estimates of gene flow, genetic substructure and population heterogeneity in bracken (Pteridium aquilinum). Biological Journal of the Linnean Society, 42, 407–423.CrossRefGoogle Scholar
Wynn, J. M. (2002). Factors contributing to the regeneration of bracken (Pteridium aquilinum (L.) Kuhn by spores. Unpublished Ph.D. Thesis, University of Manchester.Google Scholar
Wynn, J. M., Small, J. L., Pakeman, R. J., and Sheffield, E. (2000). An assessment of genetic and environmental effects on sporangial development in bracken [Pteridium aquilinum (L.) Kuhn] using a novel quantitative method. Annals of Botany, 85 (Suppl. 2), 113–115.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×