Skip to main content Accessibility help
×
Hostname: page-component-84b7d79bbc-c654p Total loading time: 0 Render date: 2024-07-26T15:23:36.985Z Has data issue: false hasContentIssue false

3 - Meristem organization and organ diversity

Published online by Cambridge University Press:  11 August 2009

Ryoko Imaichi
Affiliation:
Department of Chemical and Biological Sciences, Faculty of Science, Japan Women's University, 8-1, Mejirodai 2-chome, Tokyo 112-8681, Japan
Tom A. Ranker
Affiliation:
University of Colorado, Boulder
Christopher H. Haufler
Affiliation:
University of Kansas
Get access

Summary

Introduction

Vascular plants are classified into two groups, microphyllous lycophytes and megaphyllous euphyllophytes (ferns including whisk ferns and horsetails, and seed plants). This classification is based on comparative morphology (Kenrick and Crane, 1997), and it is consistent with recent molecular phylogenetic analyses (Qiu and Palmer, 1999; Pryer et al., 2001; 2004, Qiu et al., 2006; see Chapter 15). Based on this classification, it seems likely that the stem, the leaf, and the root evolved independently in both plant groups. In addition, the root-producing organs called the rhizophore and rhizomorph have evolved only in lycophytes (Kato and Imaichi, 1997). The evolutionary origins of these organs have been proposed mainly based on comparative morphology and anatomy of extant as well as fossil plants (Gifford and Foster, 1989; Stewart and Rothwell, 1993).

Each organ develops through a series of individual morphogenetic events (ontogeny), so attention should be and has been focused on the role of developmental changes during evolutionary diversification. If the ontogeny of a given organ is modified by addition or deletion of specific morphogenetic events to or from the original morphogenetic series, or is modified by alteration of the timing of morphogenetic events, such as retardation or acceleration (heterochrony), the final organ shape could change, leading to evolution of specialized and novel organs (e.g., Gould, 1977; Kluge, 1988; Imaichi and Kato, 1992). Therefore, comparison of morphogenetic events (development) among organs in the context of phylogeny should offer clues for improving the evolutionary scenarios of certain organs.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barlow, P. W. (2002). Cellular patterning in root meristems: its origins and significance. In Plant Roots, The Hidden Half, ed. Waisel, Y., Eshel, A., and Kafkafi, U., 3rd edn., New York: Marcel Dekker, pp. 49–82.Google Scholar
Barlow, P. W., Lück, H. B., and Lück, J. (2004). Pathways towards the evolution of a quiescent centre in roots. Biologia, Bratislava, 59 (suppl. 13), 21–32.Google Scholar
Bierhorst, D. W. (1954). The subterranean sporophytic axes of Psilotum nudum. American Journal of Botany, 41, 732–739.CrossRefGoogle Scholar
Bierhorst, D. W. (1977). On the stem apex, leaf initiation and early leaf ontogeny in filicalean ferns. American Journal of Botany, 64, 125–152.CrossRefGoogle Scholar
Bower, F. O. (1923). The Ferns, Vol. 1, Analytical Examination of the Criteria of Comparison. Cambridge: Cambridge University Press.Google Scholar
Bowman, J. L. and Eshed, Y. (2000). Formation and maintenance of the shoot apical meristem. Trends in Plant Science, 5, 110–115.CrossRefGoogle ScholarPubMed
Buvat, R. (1989). Ontogeny, Cell Differentiation, and Structure of Vascular Plants. Heidelberg: Springer-Verlag.CrossRefGoogle Scholar
Clowes, F. A. L. (1961). Apical Meristems. Oxford: Blackwell Scientific.Google Scholar
Cooke, T. D., Tilney, M. S., and Tilney, L. G. (1996). Plasmodesmatal networks in apical meristems and mature structures: geometric evidence for both primary and secondary formation of plasmodesmata. In Membranes: Specialized Functions in Plants, ed. Smallwood, M., Knox, J. P., and Bowles, D. J., pp. 471–488. Oxford: Bios Scientific.Google Scholar
Croxdale, J. G. (1976). Origin and early morphogenesis of lateral buds in the fern Davallia. American Journal of Botany, 63, 226–238.CrossRefGoogle Scholar
Crum, H. A. (2001). Structural Diversity of Bryophytes. Ann Arbor, MI: The University of Michigan.Google Scholar
Dasanayake, M. D. (1960). Aspects of morphogenesis in a dorsiventral fern, Pteridium aquilinum (L.) Kuhn. Annals of Botany, 24, 317–329.CrossRefGoogle Scholar
Dengler, N. G. (1983). The developmental basis of anisophylly in Selaginella martensii. I. Initiation and morphology of growth. American Journal of Botany, 70, 181–192.CrossRefGoogle Scholar
Edwards, D. (1994). Towards an understanding of pattern and process in the growth of early vascular plants. In Shape and Form in Plants and Fungi, ed. Ingram, D. S. and Hudson, A.. London: Academic Press, pp. 39–59.Google Scholar
Esau, K. (1977). Anatomy of Seed Plants. 2nd edn. New York: Wiley.Google Scholar
Floyd, S. K. and Bowman, J. L. (2006). Distinct developmental mechanisms reflect the independent origins of leaves in vascular plants. Current Biology, 16, 1911–1917.CrossRefGoogle ScholarPubMed
Floyd, S. K. and Bowman, J. L. (2007). The ancestral developmental tool kit of land plants. International Journal of Plant Sciences, 168, 1–35.CrossRefGoogle Scholar
Frankenhäuser, H.. (1987). Morphogenetische und histogenetische Studien am Vegetationskegel der Equiseten. I. Achsenmeristem und Verzweigung. Beiträge zur Biologie der Pflanzen, 62, 369–404.Google Scholar
Freeberg, J. A. and Wetmore, R. H. (1967). The lycopsida – a study in development. Phytomorphology, 17, 78–91.Google Scholar
Friedman, W. E., Moore, R. C., and Purugganan, M. D. (2004). The evolution of plant development. American Journal of Botany, 91, 1726–1741.CrossRefGoogle ScholarPubMed
Gifford, E. M. Jr. (1983). Concept of apical cells in bryophytes and pteridophytes. Annual Review of Plant Physiology, 34, 419–440.CrossRefGoogle Scholar
Gifford, E. M. and Foster, A. S. (1989). Morphology and Evolution of Vascular Plants, 3rd edn. New York: Freeman.Google Scholar
Gould, S. J. (1977). Ontogeny and Phylogeny. Cambridge, MA: Belknap Press of Harvard University Press.Google Scholar
Gunning, B. E. S. (1978). Age-related and origin-related control of the numbers of plasmodesmata in cell walls of developing Azolla roots. Planta, 143, 181–190.Google ScholarPubMed
Guttenberg, H.. (1966). Histogenese der pteridophyten. Berlin-Nikolassee: Gebrüder Borntraeger.Google Scholar
Hagemann, W. (1980). Über den Verzweigungsvorgang bei Psilotum und Selaginella mit Anmerkungen zum Begriff der Dichotomie. Plant Systematics and Evolution, 133, 181–197.CrossRefGoogle Scholar
Hagemann, W. (1984). Morphological aspects of leaf development in ferns and angiosperms. In Contemporary Problems in Plant Anatomy, ed. White, R. A. and Dickison, W. C.. Orlando, FL: Academic Press, pp. 301–349.Google Scholar
Hagemann, W. and Gleissberg, S. (1996). Organogenetic capacity of leaves: the significance of marginal blastozones in angiosperms. Plant Systematics and Evolution, 199, 121–152.CrossRefGoogle Scholar
Hagemann, W. and Schulz, U. (1978). Wedelanlegung und Rhizomverzweigung bei einigen Gleicheniaceen. Botanische Jahrbücher Systematic, 99, 380–399.Google Scholar
Harrison, C. J., Corley, S. B., Moylan, E. C., Alexander, D. L., Scotland, R. W., and Langdale, J. A. (2005). Independent recruitment of a conserved developmental mechanism during leaf evolution. Nature, 434, 509–514.CrossRefGoogle ScholarPubMed
Hébant-Mauri, R. (1975). Apical segmentation and leaf initiation in the tree fern Dicksonia squarrosa. Canadian Journal of Botany, 53, 764–772.CrossRefGoogle Scholar
Hébant-Mauri, R. (1984). Branching patterns in Trichomanes and Cardiomanes (hymenophyllaceous ferns). Canadian Journal of Botany, 62, 1336–1343.CrossRefGoogle Scholar
Hébant-Mauri, R. (1990). The branching of Trichomanes proliferum (Hymenophyllaceae). Canadian Journal of Botany, 68, 1091–1097.CrossRefGoogle Scholar
Hébant-Mauri, R. (1993). Cauline meristems in leptosporangiate ferns: structure, lateral appendages, and branching. Canadian Journal of Botany, 71, 1612–1624.CrossRefGoogle Scholar
Hébant-Mauri, R. and Gay, H. (1993). Morphogenesis and its relation to architecture in the dimorphic clonal fern Lomagramma guianensis (Aublet) Ching (Dryopteridaceae). Botanical Journal of the Linnean Society, 112, 257–276.CrossRefGoogle Scholar
Hébant-Mauri, R. and Veillon, J. M. (1989). Branching and leaf initiation in the erect aerial system of Stromatopteris moniliformis (Gleicheniaceae). Canadian Journal of Botany, 67, 407–414.CrossRefGoogle Scholar
Hirsch, A. M. and Kaplan, D. R. (1974). Organography, branching, and the problem of leaf versus bud differentiation in the vining epiphytic fern genus Microgramma. American Journal of Botany, 61, 217–229.CrossRefGoogle Scholar
Holmes, J. (1989). Anomalous branching patterns in some fossil Filicales: implications in the evolution of the megaphyll and the lateral branch, habit and growth pattern. Plant Systematics and Evolution, 165, 137–158.CrossRefGoogle Scholar
Imaichi, R. (1980). Developmental studies on the leaf and the extra-axillary bud of Histiopteris incisa. Botanical Magazine (Tokyo), 93, 25–38.CrossRefGoogle Scholar
Imaichi, R. (1982). Developmental study on Hypolepis punctata (Thunb.) Mett. I. Initiation of the first and the second petiolar buds in relation to early leaf ontogeny. Botanical Magazine (Tokyo), 95, 435–453.CrossRefGoogle Scholar
Imaichi, R. (1983). Developmental study on Hypolepis punctata (Thunb.) Mett. II. Initiation of the third petiolar bud. Botanical Magazine (Tokyo), 96, 159–170.CrossRefGoogle Scholar
Imaichi, R. (1984). Developmental anatomy of the shoot apex of leptosporangiate ferns. I. Leaf ontogeny and shoot branching of Dennstaedtia scabra. Journal of Japanese Botany, 59, 367–380.Google Scholar
Imaichi, R. (1986). Surface-viewed shoot apex of Angiopteris lygodiifolia Ros. (Marattiaceae). Botanical Magazine (Tokyo), 99, 309–317.CrossRefGoogle Scholar
Imaichi, R. (1988). Developmental anatomy of the shoot apex of leptosporangiate ferns. II. Leaf ontogeny of Adiantum capillus-veneris (Adiantaceae). Canadian Journal of Botany, 66, 1729–1733.CrossRefGoogle Scholar
Imaichi, R. and Hiratsuka, R. (2007). Evolution of shoot apical meristem structures in vascular plants with respect to plasmodesmatal network. American Journal of Botany, 94, 1911–1921.CrossRefGoogle ScholarPubMed
Imaichi, R. and Kato, M. (1989). Developmental anatomy of the shoot apical cell, rhizophore and root of Selaginella uncinata. Botanical Magazine (Tokyo), 102, 369–380.CrossRefGoogle Scholar
Imaichi, R. and Kato, M. (1991). Developmental study of branched rhizophores in three Selaginella species. American Journal of Botany, 78, 1694–1703.CrossRefGoogle Scholar
Imaichi, R. and Kato, M. (1992). Comparative leaf development of Osmunda lancea and O. japonica (Osmundaceae): heterochronic origin of rheophytic stenophylly. Botanical Magazine (Tokyo), 105, 199–213.CrossRefGoogle Scholar
Imaichi, R. and Nishida, M. (1986). Developmental anatomy of three-dimensional leaf of Botrychium ternatum (Thunb.) Sw. Botanical Magazine (Tokyo), 99, 85–106.CrossRefGoogle Scholar
Jernstedt, J. A., Cutter, E. G., and Lu, P. (1994). Independence of organogenesis and cell pattern in developing angle shoots of Selaginella martensii. Annals of Botany, 74, 343–355.CrossRefGoogle Scholar
Kaplan, D. R. and Groff, P. A. (1995). Developmental themes in vascular plants: functional and evolutionary significance. Monographs in Systematic Botany from the Missouri Botanical Garden, 53, 111–145.Google Scholar
Kaplan, D. R. and Hagemann, W. (1991). The relationship of cell and organism in vascular plants. BioScience, 41, 693–703.CrossRefGoogle Scholar
Karrfalt, E. E. (1984). The origin and early development of the root-producing meristem of Isoetes andicola L. D. Gomez. Botanical Gazette, 145, 372–377.CrossRefGoogle Scholar
Kato, M. and Akiyama, H. (2005). Interpolation hypothesis for origin of the vegetative sporophyte of land plants. Taxon, 54, 443–450.CrossRefGoogle Scholar
Kato, M. and Imaichi, R. (1997). Morphological diversity and evolution of vegetative organs in pteridophytes. In Evolution and Diversification of Land Plants, ed. Iwatsuki, K. and Raven, P. H.. Tokyo: Springer-Verlag, pp. 27–43.CrossRefGoogle Scholar
Kato, M., Takahashi, A., and Imaichi, R. (1988). Anatomy of the axillary bud of Helminthostachys zeylanica (Ophioglossaceae) and its systematic implications. Botanical Gazette, 149, 57–63.CrossRefGoogle Scholar
Kenrick, P. and Crane, P. R. (1997). The Origin and Early Diversification of Land Plants. A Cladistic Study. Washington, DC: Smithsonian Institution Press.Google Scholar
Klekowski, E. J. Jr. (1988). Mutation, Developmental Selection, and Plant Evolution. New York: Columbia University Press.Google Scholar
Kluge, A. G. (1988). The characterization of ontogeny. In Ontogeny and Systematics, ed. Humphries, C. J.. New York: Columbia University Press, pp. 57–81.Google Scholar
Lee, Y.-H. (1989). Development of mantle leaves in Platycerium bifurcatum (Polypodiaceae). Plant Systematics and Evolution, 165, 199–209.Google Scholar
Lintilhac, P. M. and Green, P. B. (1976). Patterns of microfibrillar order in a dormant fern apex. American Journal of Botany, 63, 726–728.CrossRefGoogle Scholar
Lyndon, R. F. (1998). The Shoot Apical Meristem. Cambridge: Cambridge University Press.Google Scholar
McAlpin, B. W. and White, R. A. (1974). Shoot organization in the Filicales: the promeristem. American Journal of Botany, 61, 562–579.CrossRefGoogle Scholar
Mishler, B. D. and Churchill, S. P. (1984). A cladistic approach to the phylogeny of the “bryophytes”. Brittonia, 36, 406–424.CrossRefGoogle Scholar
Mueller, R. J. (1982a). Shoot morphology of the climbing fern Lygodium (Schizaeaceae): general organography, leaf initiation, and branching. Botanical Gazette, 143, 319–330.CrossRefGoogle Scholar
Mueller, R. J. (1982b). Shoot ontogeny and the comparative development of the heteroblastic leaf series in Lygodium japonicum (Thunb.). SW. Botanical Gazette, 143, 424–438.CrossRefGoogle Scholar
Newman, I. V. (1965). Pattern in the meristems of vascular plants. III. Pursuing the patterns in the apical meristem where no cell is a permanent cell. Journal of the Linnean Society of London (Botany), 59, 185–214.CrossRefGoogle Scholar
Ogura, Y. (1972). Comparative Anatomy of Vegetative Organs of the Pteridophytes. Berlin: Gebrüder Borntraeger.Google Scholar
Paolillo, D. J. (1982). Meristems and evolution: developmental correspondence among the rhizomorphs of the lycopsids. American Journal of Botany, 69, 1032–1042.CrossRefGoogle Scholar
Philipson, W. R. (1990). The significance of apical meristems in the phylogeny of land plants. Plant Systematics and Evolution, 173, 17–38.CrossRefGoogle Scholar
Popham, R. A. (1951). Principal types of vegetative shoot apex organization in vascular plants. The Ohio Journal of Science, 51, 249–270.Google Scholar
Popham, R. A. (1960). Variability among vegetative shoot apices. Bulletin of the Torrey Botanical Club, 87, 139–150.CrossRefGoogle Scholar
Pryer, K. M., Schneider, H., Smith, A. R., Cranfill, R., Wolf, P. G., Hunt, J. S., and Sipes, S. D. (2001). Horsetails and ferns are a monophyletic group and the closest living relatives to seed plants. Nature, 409, 618–622.CrossRefGoogle ScholarPubMed
Pryer, K. M., Schuettpelz, E., Wolf, P. G., Schneider, H., Smith, A. R., and Cranfill, R. (2004). Phylogeny and evolution of ferns (Monilophytes) with a focus on the early leptosporangiate divergences. American Journal of Botany, 91, 1582–1598.CrossRefGoogle ScholarPubMed
Qiu, Y.-L. and Palmer, J. D. (1999). Phylogeny of early land plants: insights from genes and genomes. Trends in Plant Science, 4, 26–30.CrossRefGoogle ScholarPubMed
Qiu, Y.-L, Li, L., Wang, B., Chen, Z., Knoop, V., Groth-Malonek, M., Dombrovska, O., Lee, J., Kent, L., Rest, J., Estabrook, G. F., Hendry, T. A., Taylor, D. W., Testa, C. M., Ambros, M., Crandall-Stotler, B., Duff, R. J., Stech, M., Frey, W., Quandt, D., and Davisk, C. C. (2006). The deepest divergences in land plants inferred from phylogenomic evidence. Proceedings of the National Academy of Sciences of the United States of America, 103, 15511–15516.CrossRefGoogle ScholarPubMed
Schuster, R. M. (1984). Comparative anatomy and morphology of the Hepaticae. In New Manual of Bryology, ed. Schuster, R. M.. Nichinan: The Hattori Botanical Laboratory, pp. 760–891.Google Scholar
Siegert, A. (1974). Die Verzweigung der Selaginellen unter Berücksichtigung der Keimungsgeschichte. Beiträge zur Biologie der Pflanzen, 50, 21–112.Google Scholar
Soma, K. (1966). On the shoot apices of Dicranopteris dichotoma and Diplopterygium glaucum. Botanical Magazine (Tokyo), 79, 457–466.CrossRefGoogle Scholar
Steeves, T. A. and Sussex, I. M. (1989). Patterns in Plant Development, 2nd edn. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Stevenson, D. W. (1976a). The cytohistological and cytohistochemical zonation of the shoot apex of Botrychium multifidum. American Journal of Botany, 63, 852–856.CrossRefGoogle Scholar
Stevenson, D. W. (1976b). Observations on phyllotaxis, stelar morphology, the shoot apex, and gemmae of Lycopodium lucidulum Michaux (Lycopodiaceae). Botanical Journal of the Linnean Society, 72, 81–100.CrossRefGoogle Scholar
Stevenson, D. W. (1976c). Shoot apex organization and origin of the rhizome-borne roots and their associated gaps in Dennstaedtia cicutaria. American Journal of Botany, 63, 673–678.CrossRefGoogle Scholar
Stewart, W. N. and Rothwell, G. W. (1993). Paleobotany and the Evolution of Plants, 2nd edn. Cambridge: Cambridge University Press.Google Scholar
Sussex, I. M. and Steeves, T. A. (1967). Apical initials and the concept of promeristem. Phytomorphology, 17, 387–391.Google Scholar
Takiguchi, Y., Imaichi, R., and Kato, M. (1997). Cell division patterns in the apices of subterranean axis and aerial shoot of Psilotum nudum (Psilotaceae): morphological and phylogenetic implications for the subterranean axis. American Journal of Botany, 84, 588–596.CrossRefGoogle ScholarPubMed
Troll, W. (1937). Vergleichende Morphologie der hüheren Pflanzen, band 1, teil 1. Berlin: Gebrüder Borntraeger. (Reprinted 1967, Königstein.)Google Scholar
Troop, J. E. and Mickel, J. T. (1968). Petiolar shoots in the dennstaedtioid and related ferns. American Fern Journal, 58, 64–70.CrossRefGoogle Scholar
van der Schoot, C. and Rinne, P. (1999). The symplasmic organization of the shoot apical meristem. In Plasmodesmata – Structure, Function, Role in Cell Communication, ed., Bel, A. J. E. and Kesteren, W. J. P.. Heidelberg: Springer-Verlag, pp. 225–242.Google Scholar
Wardlaw, C. W. (1946). Experimental and analytical studies of Pteridophytes. VIII. Further observation on bud development in Matteuccia Struthiopteris, Onoclea sensibilis, and species of Dryopteris. Annals of Botany, 9, 117–132.CrossRefGoogle Scholar
Yi, S.-Y. and Kato, M. (2001). Basal meristem and root development in Isoetes asiatica and Isoetes japonica. International Journal of Plant Sciences, 162, 1225–1235.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×