Skip to main content Accessibility help
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 8
  • Print publication year: 2017
  • Online publication date: July 2017

15 - Solar Wind Interaction and Atmospheric Escape

Related content

Powered by UNSILO
Acuña, M., Connerney, J. E. P., Wasilewski, P. A., et al. (1998), Magnetic field and plasma observations at Mars: initial results of the Mars global surveyor mission, Science, 279(5357), 16761680.
Anderson, D. E. J., and Hord, C. W. (1971), Mariner 6 and 7 Ultraviolet Spectrometer experiment: analysis of hydrogen Lyman-alpha data, J. Geophys. Res., 76(2), 6666, doi:10.1029/JA076i028p06666.
Andersson, L., Ergun, R. E., and Stewart, A. I. F. (2010), The Combined Atmospheric Photochemistry and Ion Tracing code: reproducing the Viking Lander results and initial outflow results, Icarus, 206(1), 120129, doi:10.1016/j.icarus.2009.07.009.
André, M., and Yau, A. (1997), Theories and observations of ion energization and outflow in the high latitude magnetosphere, Space Sci. Rev., 80(1), 2748, doi:10.1023/A:1004921619885.
Ayres, T. R. (1997), Evolution of the solar ionizing flux, J. Geophys. Res., 102(E), 16411652, doi:10.1029/96JE03306.
Baker, D. N., S. G. Kanekal, J. P. McCollough, et al. (2008), Adverse space weather at the solar cycle minimum, American Geophysical Union Meeting, Abstract No. SH31C-05.
Bame, S. J., Asbridge, J. R., Feldman, W. C., et al. (1980), Deceleration of the solar wind upstream from the earth’s bow shock and the origin of diffuse upstream ions, J. Geophys. Res., 85, 29812990, doi:10.1029/JA085iA06p02981.
Barabash, S., and Lundin, R. (2006), ASPERA-3 on Mars Express, Icarus, 182(2), 301307, doi:10.1016/j.icarus.2006.02.015.
Barabash, S., Fedorov, A., Lundin, R., and Sauvaud, J.-A. (2007), Martian atmospheric erosion rates, Science, 315(5811), 501503, doi:10.1126/science.1134358.
Bauske, R., Nagy, A. F., Gombosi, T. I., et al. (1998), A three-dimensional MHD study of solar wind mass loading processes at Venus: effects of photoionization, electron impact ionization, and charge exchange, J. Geophys. Res., 103(A), 2362523638, doi:10.1029/98JA01791.
Bertaux, J.-L., Leblanc, F., Witasse, O., et al. (2005), Discovery of an aurora on Mars, Nature, 435(7), 790794, doi:10.1038/nature03603.
Bertucci, C., Mazelle, C., Crider, D. H., et al. (2003), Magnetic field draping enhancement at the Martian magnetic pileup boundary from Mars Global Surveyor observations, Geophys. Res. Lett., 30(2), 1099, doi:10.1029/2002GL015713.
Bertucci, C., Duru, F., Edberg, N., et al. (2011), The induced magnetospheres of Mars, Venus, and Titan, Space Sci. Rev., 162(1), 113171, doi:10.1007/s11214-011-9845-1.
Brace, L. H., Theis, R. F., and Hoegy, W. R. (1982), Plasma clouds above the ionopause of Venus and their implications, Planetary and Space Science, 30, 2937, doi:10.1016/0032-0633(82)90069-1.
Brain, D. A. (2006), Mars Global Surveyor measurements of the Martian solar wind interaction, Space Sci. Rev., 126(1), 77112, doi:10.1007/s11214-006-9122-x.
Brain, D., and Halekas, J. S. (2012), Aurora in Martian mini magnetospheres, Auroral Phenomenology and Magnetospheric Processes: Earth and Other Planets, Geophysical Monograph Series, 197, 123132, doi:10.1029/2011GM001201.
Brain, D. A., and Jakosky, B. M. (1998), Atmospheric loss since the onset of the Martian geologic record: combined role of impact erosion and sputtering, J. Geophys. Res., 103(E), 2268922694, doi:10.1029/98JE02074.
Brain, D. A., Bagenal, F., Acuña, M. H., et al. (2002), Observations of low-frequency electromagnetic plasma waves upstream from the Martian shock, J. Geophys. Res. – Space, 107(A), 1076, doi:10.1029/2000JA000416.
Brain, D. A., Bagenal, F., Acuña, M. H., and Connerney, J. E. P. (2003), Martian magnetic morphology: contributions from the solar wind and crust, J. Geophys. Res., 108(A), 1424, doi:10.1029/2002JA009482.
Brain, D. A., Halekas, J. S., Lillis, R., et al. (2005), Variability of the altitude of the Martian sheath, Geophys. Res. Lett., 32(1), 18203, doi:10.1029/2005GL023126.
Brain, D. A., Halekas, J. S., Peticolas, L. M., et al. (2006), On the origin of aurorae on Mars, Geophys. Res. Lett., 33(1), 01201, doi:10.1029/2005GL024782.
Brain, D. A., Lillis, R. J., Mitchell, D. L., Halekas, J. S., and Lin, R. P. (2007), Electron pitch angle distributions as indicators of magnetic field topology near Mars, J. Geophys. Res., 112(A), 09201, doi:10.1029/2007JA012435.
Brain, D. A., Baker, A. H., Briggs, J., et al. (2010a), Episodic detachment of Martian crustal magnetic fields leading to bulk atmospheric plasma escape, Geophys. Res. Lett., 37(1), 14108, doi:10.1029/2010GL043916.
Brain, D., Barabash, S., Boesswetter, A., et al. (2010b), A comparison of global models for the solar wind interaction with Mars, Icarus, 206(1), 139151, doi:10.1016/j.icarus.2009.06.030.
Brain, D. A., McFadden, J. P., Halekas, J. S., et al. (2015), The spatial distribution of planetary ion fluxes near Mars observed by MAVEN, Geophys. Res. Lett., 42, 91429148, doi:10.1002/2015GL065293.
Brecht, S. H. (1990), Magnetic asymmetries of unmagnetized planets, Geophys. Res. Lett., 17(9), 12431246, doi:10.1029/GL017i009p01243.
Brecht, S. H., and Ledvina, S. A. (2006), The solar wind interaction with the Martian ionosphere/atmosphere, Space Sci. Rev., 126(1), 1538, doi:10.1007/s11214-006-9084-z.
Brecht, S. H., and Ledvina, S. A. (2010), The loss of water from Mars: numerical results and challenges, Icarus, 206(1), 164173, doi:10.1016/j.icarus.2009.04.028.
Brecht, S. H., and Ledvina, S. A. (2012), Control of ion loss from Mars during solar minimum, Earth, Planets and Space, 64(2), 165178, doi:10.5047/eps.2011.05.037.
Briggs, J., Brain, D. A., Cartwright, M. L., Eastwood, J. P., and Halekas, J. S. (2011), A statistical study of flux ropes in the Martian magnetosphere, Planetary and Space Science, 59(1), 14981505, doi:10.1016/j.pss.2011.06.010.
Cameron, A. G. W. (1983), Origin of the atmospheres of the terrestrial planets, Icarus, 56, 195201, doi:10.1016/0019-1035(83)90032-5.
Carr, M. H., and Clow, G. D. (1981), Martian channels and valleys – their characteristics, distribution, and age, Icarus, 48, 91117, doi:10.1016/0019-1035(81)90156-1.
Chassefière, E., and Leblanc, F. (2004), Mars atmospheric escape and evolution; interaction with the solar wind, Planetary and Space Science, 52(1), 10391058, doi:10.1016/j.pss. 2004. 07.002.
Chaufray, J. Y., Modolo, R., Leblanc, F., et al. (2007), Mars solar wind interaction: formation of the Martian corona and atmospheric loss to space, J. Geophys. Res., 112(E9), doi:10.1029/2007JE002915.
Chaufray, J. Y., Bertaux, J. L., Leblanc, F., and Quemerais, E. (2008), Observation of the hydrogen corona with SPICAM on Mars Express, Icarus, 195(2), 598613, doi:10.1016/j.icarus. 2008. 01.009.
Cipriani, F., Leblanc, F., and Berthelier, J.-J. (2007), Martian corona: nonthermal sources of hot heavy species, J. Geophys. Res., 112(E), 07001, doi:10.1029/2006JE002818.
Cloutier, P. A., Law, C. C., Crider, D. H., et al. (1999), Venus-like interaction of the solar wind with Mars, Geophys. Res. Lett., 26(1), 26852688, doi:10.1029/1999GL900591.
Craddock, R. A., and Howard, A. D. (2002), The case for rainfall on a warm, wet early Mars, J. Geophys. Res. – Planets, 107(E), 5111, doi:10.1029/2001JE001505.
Crider, D. H., Acuña, M. H., Connerney, J. E., et al. (2002), Observations of the latitude dependence of the location of the Martian magnetic pileup boundary, Geophys. Res. Lett., 29(8), 11–1, doi:10.1029/2001GL013860.
Crider, D. H., Brain, D. A., Acuña, M. H., et al. (2004), Mars Global Surveyor Observations of Solar Wind Magnetic Field Draping Around Mars, Space Sci. Rev., 111(1), 203221, doi:10.1023/B:SPAC.0000032714.66124.4e.
Crider, D. H., Espley, J., Brain, D. A., et al. (2005), Mars Global Surveyor observations of the Halloween 2003 solar superstorm’s encounter with Mars, J. Geophys. Res., 110(A), doi:10.1029/2004JA010881.
Curry, S. M., Liemohn, M., Fang, X., Brain, D., and Ma, Y. (2013), Simulated kinetic effects of the corona and solar cycle on high altitude ion transport at Mars, J. Geophys. Res. – Space, 118(6), 37003711, doi:10.1002/jgra.50358.
Curry, S. M., Luhmann, J. G., Ma, Y. J., et al. (2015), Response of Mars O+ pickup ions to the 8 March 2015 ICME: inferences from MAVEN data-based models, Geophys. Res. Lett., 42, 90959102, doi:10.1002/2015GL065304.
Delva, M., Mazelle, C., and Bertucci, C. (2011), Upstream Ion Cyclotron Waves at Venus and Mars, Space Sci. Rev., 162(1), 524, doi:10.1007/s11214-011-9828-2.
Dieval, C., Kallio, E., Barabash, S., et al. (2012), A case study of proton precipitation at Mars: Mars Express observations and hybrid simulations, J. Geophys. Res., 117(A), 06222, doi:10.1029/2012JA017537.
Dong, C., Bougher, S. W., Ma, Y., et al. (2014), Solar wind interaction with Mars upper atmosphere: results from the one-way coupling between the multifluid MHD model and the MTGCM model, Geophys. Res. Lett., 41(8), 27082715, doi:10.1002/2014GL059515.
Dong, C., Ma, Y., Bougher, S. W., et al. (2015a), Multifluid MHD study of the solar wind interaction with Mars’ upper atmosphere during the 2015 March 8th ICME event, Geophys. Res. Lett., 42, 91039112, doi:10.1002/2015GL065944.
Dong, Y., Fang, X., Brain, D. A., et al. (2015b), Strong plume fluxes at Mars observed by MAVEN: an important planetary ion escape channel, Geophys. Res. Lett., 42, 89428950, doi:10.1002/2015GL065346.
Dryer, M., and Heckman, G. R. (1967), On the hypersonic analogue as applied to planetary interaction with the solar plasma, Planet. Space Sci., 15, 515546.
Du, J., Zhang, T. L., Baumjohann, W., et al. (2010), Statistical study of low-frequency magnetic field fluctuations near Venus under the different interplanetary magnetic field orientations, J Geophys Res-Space, 115(A), 12251, doi:10.1029/2010JA015549.
Dubinin, E., Fraenz, M., Woch, J., et al. (2006a), Hydrogen exosphere at Mars: pickup protons and their acceleration at the bow shock, Geophys. Res. Lett., 33(2), 22103, doi:10.1029/2006GL027799.
Dubinin, E., Fränz, M., Woch, J., et al. (2006b), Plasma Morphology at Mars. Aspera-3 Observations, Space Sci Rev, 126(1), 209238, doi:10.1007/s11214-006-9039-4.
Dubinin, E., Modolo, R., Fraenz, M., et al. (2008a), Plasma environment of Mars as observed by simultaneous MEX-ASPERA-3 and MEX-MARSIS observations, J. Geophys. Res., 113(A), 10217, doi:10.1029/2008JA013355.
Dubinin, E., Modolo, R., Fraenz, M., et al. (2008b), Structure and dynamics of the solar wind/ionosphere interface on Mars: MEX-ASPERA-3 and MEX-MARSIS observations, Geophys. Res. Lett., 35(1), 11103, doi:10.1029/2008GL033730.
Dubinin, E., Chanteur, G., Fraenz, M., and Woch, J. (2008c), Field-aligned currents and parallel electric field potential drops at Mars. Scaling from the Earth’ aurora, Planetary and Space Science, 56(6), 868872, doi:10.1016/j.pss.2007.01.019.
Dubinin, E., Chanteur, G., Fraenz, M., et al. (2008d), Asymmetry of plasma fluxes at Mars. ASPERA-3 observations and hybrid simulations, Planetary and Space Science, 56(6), 832835, doi:10.1016/j.pss.2007.12.006.
Dubinin, E., Fraenz, M., Woch, J., et al. (2009a), Ionospheric storms on Mars: impact of the corotating interaction region, Geophys. Res. Lett., 36(1), 01105, doi:10.1029/2008GL036559.
Dubinin, E., Fraenz, M., Woch, J., Barabash, S., and Lundin, R. (2009b), Long-lived auroral structures and atmospheric losses through auroral flux tubes on Mars, Geophys. Res. Lett., 36(8), 08108, doi:10.1029/2009GL038209.
Dubinin, E., Fraenz, M., Fedorov, A., et al. (2011), Ion Energization and Escape on Mars and Venus, Space Sci. Rev., 162(1), 173211, doi:10.1007/s11214-011-9831-7.
Dubinin, E., Fraenz, M., Woch, J., et al. (2012), Upper ionosphere of Mars is not axially symmetrical, Earth, 64(2), 113120, doi:10.5047/eps.2011.05.022.
Dubinin, E., Fraenz, M., Woch, J., et al. (2013), Toroidal and poloidal magnetic fields at Venus. Venus Express observations, Planetary and Space Science, 87, 1929, doi:10.1016/j.pss.2012.12.003.
Duru, F., Gurnett, D. A., Averkamp, T. F., et al. (2006), Magnetically controlled structures in the ionosphere of Mars, J. Geophys. Res., 111(A12), doi:10.1029/2006JA011975.
Duru, F., Gurnett, D. A., Frahm, R. A., et al. (2009), Steep, transient density gradients in the Martian ionosphere similar to the ionopause at Venus, J. Geophys. Res., 114(A), 12310, doi:10.1029/2009JA014711.
Duru, F., Morgan, D. D., and Gurnett, D. A. (2010), Overlapping ionospheric and surface echoes observed by the Mars Express radar sounder near the Martian terminator, Geophys. Res. Lett., 37(2), 23102, doi:10.1029/2010GL045859.
Eastwood, J. P., Sibeck, D. G., Angelopoulos, V. et al. (2008a), THEMIS observations of a hot flow anomaly: solar wind, magnetosheath, and ground-based measurements, Geophys. Res. Lett., 35(17), doi:10.1029/2008GL033475.
Eastwood, J. P., Brain, D. A., Halekas, J. S., et al. (2008b), Evidence for collisionless magnetic reconnection at Mars, Geophys. Res. Lett., 35(2), doi:10.1029/2007GL032289.
Edberg, N. J. T., Lester, M., Cowley, S. W. H., and Eriksson, A. I. (2008), Statistical analysis of the location of the Martian magnetic pileup boundary and bow shock and the influence of crustal magnetic fields, J. Geophys. Res., 113(A8), doi:10.1029/2008JA013096.
Edberg, N. J. T., Auster, U., Barabash, S., et al. (2009a), Rosetta and Mars Express observations of the influence of high solar wind pressure on the Martian plasma environment, Ann Geophys-Germany, 27(12), 45334545.
Edberg, N. J. T., Brain, D. A., Lester, M., et al. (2009b), Plasma boundary variability at Mars as observed by Mars Global Surveyor and Mars Express, Ann. Geophys., 27(9), 35373550, doi:10.5194/angeo-27-3537-2009.
Edberg, N. J. T., Nilsson, H., Williams, A. O., et al. (2010), Pumping out the atmosphere of Mars through solar wind pressure pulses, Geophys. Res. Lett., 37(3), 03107, doi:10.1029/2009GL041814.
Ergun, R. E., Andersson, L., Peterson, W. K., et al. (2006), Role of plasma waves in Mars’ atmospheric loss, Geophys. Res. Lett., 33(1), 14103, doi:10.1029/2006GL025785.
Espley, J. R. (2004), Observations of low-frequency magnetic oscillations in the Martian magnetosheath, magnetic pileup region, and tail, J. Geophys. Res., 109(A7), doi:10.1029/2003JA010193.
Espley, J. R. (2005), Low-frequency plasma oscillations at Mars during the October 2003 solar storm, J. Geophys. Res., 110(A9), doi:10.1029/2004JA010935.
Fang, X., Liemohn, M. W., Nagy, A. F., et al. (2008), Pickup oxygen ion velocity space and spatial distribution around Mars, J. Geophys. Res., 113(A), 02210, doi:10.1029/2007JA012736.
Fang, X., Liemohn, M. W., Nagy, A. F., Luhmann, J. G., and Ma, Y. (2010a), Escape probability of Martian atmospheric ions: controlling effects of the electromagnetic fields, J. Geophys. Res., 115(A), 04308, doi:10.1029/2009JA014929.
Fang, X., Liemohn, M. W., Nagy, A. F., Luhmann, J. G., and Ma, Y. (2010b), On the effect of the Martian crustal magnetic field on atmospheric erosion, Icarus, 206(1), 130138, doi:10.1016/j.icarus.2009.01.012.
Fedorov, A., Budnik, E., Sauvaud, J.-A., et al. (2006), Structure of the Martian wake, Icarus, 182(2), 329336, doi:10.1016/j.icarus.2005.09.021.
Fedorov, A., Ferrier, C., Sauvaud, J.-A., et al. (2008), Comparative analysis of Venus and Mars magnetotails, Planetary and Space Science, 56(6), 812817, doi:10.1016/j.pss.2007.12.012.
Feldman, P. D., Steffl, A. J., Parker, J. W., et al. (2011), Rosetta-Alice observations of exospheric hydrogen and oxygen on Mars, Icarus, 214(2), 394399, doi:10.1016/j.icarus.2011.06.013.
Fillingim, M. O., Peticolas, L. M., Lillis, R. J., et al. (2010), Localized ionization patches in the nighttime ionosphere of Mars and their electrodynamic consequences, Icarus, 206(1), 112119, doi:10.1016/j.icarus.2009.03.005.
Fowler, C. M., Andersson, L., Ergun, R. E., et al. (2015), The first in situ electron temperature and density measurements of the Martian nightside ionosphere, Geophys. Res. Lett., 42, 88548861, doi:10.1002/2015GL065267.
Fox, J. (1993), On the escape of oxygen and hydrogen from Mars, Geophys. Res. Lett., 20(17), 17471750.
Fox, J. L., and Bakalian, F. M. (2001), Photochemical escape of atomic carbon from Mars, J. Geophys. Res., 106(A), 2878528796, doi:10.1029/2001JA000108.
Fox, J. L., and Dalgarno, A. (1983), Nitrogen escape from Mars, Journal of Geophysical Research, 88, 90279032, doi:10.1029/JA088iA11p09027.
Fox, J. L., and Hać, A. B. (2009), Photochemical escape of oxygen from Mars: a comparison of the exobase approximation to a Monte Carlo method, Icarus, 204(2), 527544, doi:10.1016/j.icarus.2009.07.005.
Frahm, R. A., Sharber, J. R., Winningham, J. D., et al. (2007), Locations of atmospheric photoelectron energy peaks within the Mars environment, Space Sci. Rev., 126(1–4), 389402, doi:10.1007/s11214-006-9119-5.
Fränz, M., Dubinin, E., Roussos, E., et al. (2007), Plasma Moments in the Environment of Mars, Space Sci Rev, 126(1–4), 165207, doi:10.1007/s11214-006-9115-9.
Futaana, Y., Barabash, S., Grigoriev, A., et al. (2006), First ENA observations at Mars: ENA emissions from the Martian upper atmosphere, Icarus, 182(2), 424430, doi:10.1016/j.icarus.2005.09.019.
Futaana, Y., Barabash, S., Yamauchi, M., et al. (2008), Mars Express and Venus Express multi-point observations of geoeffective solar flare events in December 2006, Planetary and Space Science, 56(6), 873880, doi:10.1016/j.pss.2007.10.014.
Grard, R., Skalsky, A., Nairn, C., Trotignon, J. G., and Schwingenschuh, K. (1992), Waves and cold plasmas near Mars, Advances in Space Research, 12, 243249.
Gurnett, D. A., Morgan, D. D., Duru, F., et al. (2010), Large density fluctuations in the Martian ionosphere as observed by the Mars Express radar sounder, Icarus, 206(1), 8394, doi:10.1016/j.icarus.2009.02.019.
Haider, S. A., Mahajan, K. K., and Kallio, E. (2011), Mars ionosphere: a review of experimental results and modeling studies, Rev. Geophys., 49(4), 4001, doi:10.1029/2011RG000357.
Halekas, J. S., Brain, D. A., Lillis, R. J., et al. (2006), Current sheets at low altitudes in the Martian magnetotail, Geophys. Res. Lett., 33(1), 13101, doi:10.1029/2006GL026229.
Halekas, J. S., Brain, D. A., Lin, R. P., Luhmann, J. G., and Mitchell, D. L. (2008), Distribution and variability of accelerated electrons at Mars, Advances in Space Research, 41(9), 13471352, doi:10.1016/j.asr.2007.01.034.
Halekas, J. S., Eastwood, J. P., Brain, D. A., et al. (2009), In situ observations of reconnection Hall magnetic fields at Mars: evidence for ion diffusion region encounters, J. Geophys. Res., 114(A), 11204, doi:10.1029/2009JA014544.
Halekas, J. S., Brain, D. A., and Eastwood, J. P. (2011), Large-amplitude compressive “sawtooth” magnetic field oscillations in the Martian magnetosphere, J. Geophys. Res., 116(A), 07222, doi:10.1029/2011JA016590.
Halekas, J. S., et al. (2015), MAVEN observations of solar wind hydrogen deposition in the atmosphere of Mars, Geophys. Res. Lett., 42, 89018909, doi:10.1002/2015GL064693.
Harada, Y., Halekas, J. S., McFadden, J. P., et al. (2015a), Marsward and tailward ions in the near-Mars magnetotail: MAVEN observations, Geophys. Res. Lett., 42, 89258932, doi:10.1002/2015GL065005.
Harada, Y., Halekas, J. S., McFadden, J. P., et al. (2015b), Magnetic reconnection in the near-Mars magnetotail: MAVEN observations, Geophys. Res. Lett., 42, 88388845, doi:10.1002/2015GL065004.
Harnett, E. M., and Winglee, R. M. (2003), 2.5-D fluid simulations of the solar wind interacting with multiple dipoles on the surface of the Moon, J. Geophys. Res. – Space, 108(A), 1088, doi:10.1029/2002JA009617.
Harnett, E. M., and Winglee, R. M. (2006), Three-dimensional multifluid simulations of ionospheric loss at Mars from nominal solar wind conditions to magnetic cloud events, J. Geophys. Res., 111(A), 09213, doi:10.1029/2006JA011724.
Hasegawa, H., Fujimoto, M., Phan, T. D., et al. (2004), Transport of solar wind into Earth’s magnetosphere through rolled-up Kelvin–Helmholtz vortices, Nature, 430(7), 755758, doi:10.1038/nature02799.
Hassler, D. M. et al. (2012), The Radiation Assessment Detector (RAD) investigation, Space Sci. Rev., 170(1), 503558, doi:10.1007/s11214-012-9913-1.
Hodges, R. R. (2002), The rate of loss of water from mars, Geophys. Res. Lett., 29(3), 1038, doi:10.1029/2001GL013853.
Hoke, M. R. T., and Hynek, B. M. (2009), Roaming zones of precipitation on ancient Mars as recorded in valley networks, J. Geophys. Res., 114(E), 08002, doi:10.1029/2008JE003247.
Hunten, D. M. (1982), Thermal and nonthermal escape mechanisms for terrestrial bodies, Planetary and Space Science, 30, 773783, doi:10.1016/0032-0633(82)90110-6.
Hunten, D. M. (1992), Evolution of the atmosphere of Venus and Mars, in Venus and Mars: Atmospheres, Ionosphers, and Solar Wind Interactions, Proceedings of the Chapman Conference, Balatonfured, Hungary, June 4–8, 1990 (A92-50426-21-91).
Hutchins, K. S., Jakosky, B. M., and Luhmann, J. G. (1997), Impact of a paleomagnetic field on sputtering loss of Martian atmospheric argon and neon, J. Geophys. Res., 102(E), 91839190, doi:10.1029/96JE03838.
Jakosky, B. M., and Jones, J. H. (1994), Evolution of water on Mars, Nature, 370(6), 328329, doi:10.1038/370328a0.
Jakosky, B. M., and Phillips, R. J. (2001), Mars’ volatile and climate history, Nature, 412(6), 237244.
Jakosky, B. M., Pepin, R. O., Johnson, R. E., and Fox, J. L. (1994), Mars atmospheric loss and isotopic fractionation by solar-wind-induced sputtering and photochemical escape, Icarus, 111, 271288, doi:10.1006/icar.1994.1145.
Jakosky, B. M., Grebowsky, J. M., Luhmann, J. M., et al. (2015a), The Mars Atmosphere and Volatile Evolution (MAVEN) mission, Space Sci Rev, 21, doi:10.1007/s11214-015-0139-x.
Jakosky, B. M., Grebowsy, J. M., Luhmann, J. G., and Brain, D. A. (2015b), Initial results from the MAVEN mission to Mars, Geophys. Res. Lett., 42, 87918802, doi:10.1002/2015GL065271.
Jakosky, B. M. et al. (2015c), MAVEN observations of the response of Mars to an interplanetary coronal mass ejection, Science, 350(6), 0210, doi:10.1126/science.aad0210.
Johnson, R. E., and Luhmann, J. G. (1998), Sputter contribution to the atmospheric corona on Mars, J. Geophys. Res., 103, 3649, doi:10.1029/97JE03266.
Kallio, E., Koskinen, H., Barabash, S., Nairn, C. M. C., and Schwingenschuh, K. (1995), Oxygen outflow in the Martian magnetotail, Geophys. Res. Lett., 22(1), 24492452, doi:10.1029/95GL02474.
Kallio, E., Frahm, R. A., Futaana, Y., Fedorov, A., and Janhunen, P. (2008), Morphology of the magnetic field near Mars and the role of the magnetic crustal anomalies: dayside region, Planetary and Space Science, 56(6), 852855, doi:10.1016/j.pss.2007.12.002.
Kallio, E., Liu, K., Jarvinen, R., Pohjola, V., and Janhunen, P. (2010), Oxygen ion escape at Mars in a hybrid model: high energy and low energy ions, Icarus, 206(1), 152163, doi:10.1016/j.icarus.2009.05.015.
Kallio, E., Chaufray, J.-Y., Modolo, R., Snowden, D., and Winglee, R. (2011), Modeling of Venus, Mars, and Titan, Space Sci. Rev., 162(1), 267307, doi:10.1007/s11214-011-9814-8.
Khodachenko, M. L. et al. (2007), Coronal mass ejection (CME) activity of low mass M stars as an important factor for the habitability of terrestrial exoplanets. I. CME impact on expected magnetospheres of Earth-like exoplanets in close-in habitable zones, Astrobiology, 7(1), 167184, doi:10.1089/ast.2006.0127.
Kim, J., Nagy, A. F., Fox, J. L., and Cravens, T. E. (1998), Solar cycle variability of hot oxygen atoms at Mars, J. Geophys. Res., 103(A), 2933929342, doi:10.1029/98JA02727.
Kotova, G. A., Verigin, M. I., Shutte, N. M., et al. (1997), Planetary heavy ions in the magnetotail of Mars – results of the TAUS and MAGMA experiments aboard PHOBOS, Advances in Space Research, 20, 173, doi:10.1016/S0273-1177(97)00529-2.
Krasnopolsky, V. A. (1993), Photochemistry of the Martian atmosphere (mean conditions), Icarus, 101, 313332, doi:10.1006/icar.1993.1027.
Krasnopolsky, V. A., and Feldman, P. D. (2001), Detection of molecular hydrogen in the atmosphere of Mars, Science, 294(5), 19141917, doi:10.1126/science.1065569.
Krasnopolsky, V. A., Bjoraker, G. L., Mumma, M. J., and Jennings, D. E. (1997), High-resolution spectroscopy of Mars at 3.7 and 8 µm: a sensitive search of H2O2, H2CO, HCl, and CH4, and detection of HDO, J. Geophys. Res., 102(E), 65256534, doi:10.1029/96JE03766.
Krest’yanikova, M. A., and Shematovich, V. I. (2005), Stochastic models of hot planetary and satellite coronas: a photochemical source of hot oxygen in the upper atmosphere of Mars, Sol. Syst. Res., 39(1), 2232, doi:10.1007/s11208-005-0002-9.
Krymskii, A. M., Breus, T. K., Ness, N. F., et al. (2002), Structure of the magnetic field fluxes connected with crustal magnetization and topside ionosphere at Mars, J. Geophys. Res. – Space, 107(A), 1245, doi:10.1029/2001JA000239.
Lammer, H., and Bauer, S. J. (1991), Nonthermal atmospheric escape from Mars and Titan, Journal of Geophysical Research, 96, 18191825, doi:10.1029/90JA01676.
Lammer, H., Selsis, F., Ribas, I., et al. (2003), Atmospheric loss of exoplanets resulting from stellar X-ray and extreme-ultraviolet heating, Astrophysical Journal, 598(2), L121–L124, doi:10.1086/380815.
Lammer, H., Kasting, J. F., Chassefière, E., et al. (2008), Atmospheric escape and evolution of terrestrial planets and satellites, Space Sci. Rev., 139(1), 399436, doi:10.1007/s11214-008-9413-5.
Lammer, H., Kasting, J. F., Chassefière, E., et al. (2009), Atmospheric escape and evolution of terrestrial planets and satellites, Comparative Aeronomy, 2, 399, doi:10.1007/978-0-387-87825-6_11.
Leblanc, F., and Johnson, R. E. (2002), Role of molecular species in pickup ion sputtering of the Martian atmosphere, J. Geophys. Res. – Planet, 107(E), 5010, doi:10.1029/2000JE001473.
Leblanc, F., Luhmann, J. G., Johnson, R. E., and Chassefiere, E. (2002), Some expected impacts of a solar energetic particle event at Mars, J. Geophys. Res. – Space, 107(A), 1058, doi:10.1029/2001JA900178.
Leblanc, F., Witasse, O., Winningham, J., et al. (2006), Origins of the Martian aurora observed by Spectroscopy for Investigation of Characteristics of the Atmosphere of Mars (SPICAM) on board Mars Express, J. Geophys. Res., 111(A), 09313, doi:10.1029/2006JA011763.
Leblanc, F., Modolo, R., Curry, S., et al. (2015), Mars heavy ion precipitating flux as measured by Mars Atmosphere and Volatile Evolution, Geophys. Res. Lett., 42, 91359141, doi:10.1002/2015GL066170.
Ledvina, S. A., Ma, Y. J., and Kallio, E. (2008), Modeling and simulating flowing plasmas and related phenomena, Space Sci. Rev., 139(1), 143189, doi:10.1007/s11214-008-9384-6.
Liemohn, M. W., Mitchell, D. L., Nagy, A. F., et al. (2003), Comparisons of electron fluxes measured in the crustal fields at Mars by the MGS magnetometer/electron reflectometer instrument with a B field-dependent transport code, J. Geophys. Res., 108(E), 5134, doi:10.1029/2003JE002158.
Liemohn, M. W. et al. (2006), Numerical interpretation of high-altitude photoelectron observations, Icarus, 182(2), 383395, doi:10.1016/j.icarus.2005.10.036.
Lillis, R. J., Frey, H. V., and Manga, M. (2008), Rapid decrease in Martian crustal magnetization in the Noachian era: implications for the dynamo and climate of early Mars, Geophys. Res. Lett., 35(1), 14203, doi:10.1029/2008GL034338.
Lillis, R. J., Fillingim, M. O., and Brain, D. A. (2011), Three-dimensional structure of the Martian nightside ionosphere: predicted rates of impact ionization from Mars Global Surveyor magnetometer and electron reflectometer measurements of precipitating electrons, J. Geophys. Res., 116(A), 12317, doi:10.1029/2011JA016982.
Lillis, R. J., Brain, D. A., Delory, G. T., et al. (2012), Evidence for superthermal secondary electrons produced by SEP ionization in the Martian atmosphere, J. Geophys. Res., 117(E), 03004, doi:10.1029/2011JE003932.
Lillis, R. J., Brain, D. A., Bougher, S. W., et al. (2015), Characterizing atmospheric escape from Mars today and through time, with MAVEN, Space Sci. Rev., 195, 357422.
Liu, Y., Nagy, A. F., Groth, C. P. T., et al. (1999), 3D multi-fluid MHD studies of the solar wind interaction with Mars, Geophys. Res. Lett., 26(1), 26892692, doi:10.1029/1999GL900584.
Luhmann, J. G. (1990), A model of the ion wake of Mars, Geophysical Research Letters, 17, 869872, doi:10.1029/GL017i006p00869.
Luhmann, J. G. (1992), Pervasive large-scale magnetic fields in the Venus nightside ionosphere and their implications, Journal of Geophysical Research, 97, 61036121, doi:10.1029/92JE00514.
Luhmann, J. G. (1995), Plasma interactions with unmagnetized bodies, Introduction to Space Physics.
Luhmann, J., and Kozyra, J. U. (1991), Dayside pickup oxygen ion precipitation at Venus and Mars – spatial distributions, energy deposition and consequences, J. Geophys. Res., 96, 54575467.
Luhmann, J. G., and Schwingenschuh, K. (1990), A model of the energetic ion environment of Mars, Journal of Geophysical Research, 95, 939945, doi:10.1029/JA095iA02p00939.
Luhmann, J. G., Russell, C. T., Brace, L. H., and Vaisberg, O. L. (1992a), The intrinsic magnetic field and solar-wind interaction of Mars, In Mars, 10901134.
Luhmann, J. G., Johnson, R. E., and Zhang, M. H. G. (1992b), Evolutionary impact of sputtering of the Martian atmosphere by O+ pickup ions, Geophysical Research Letters, 19, 21512154, doi:10.1029/92GL02485.
Luhmann, J. G., Acuña, M. H., Purucker, M., Russell, C. T., and Lyon, J. G. (2002), The Martian magnetosheath: how Venus-like? Planetary and Space Science, 50(5), 489502, doi:10.1016/S0032-0633(02)00028-4.
Luhmann, J. G., Dong, C., Ma, Y., et al. (2015), Implications of MAVEN Mars near-wake measurements and models, Geophys. Res. Lett., 42, 90879094, doi:10.1002/2015GL066122.
Lundin, R. (2011), Ion acceleration and outflow from Mars and Venus: an overview, Space Sci. Rev., 162(1), 309334, doi:10.1007/s11214-011-9811-y.
Lundin, R., Borg, H., Hultqvist, B., Zakharov, A., and Pellinen, R. (1989), First measurements of the ionospheric plasma escape from Mars, Nature, 341, 609612, doi:10.1038/341609a0.
Lundin, R., Zakharov, A., Pellinen, R., et al. (1990), ASPERA/Phobos measurements of the ion outflow from the Martian ionosphere, Geophysical Research Letters, 17, 873876, doi:10.1029/GL017i006p00873.
Lundin, R., Norberg, O., Dubinin, E. M., Pisarenko, N., and Koskinen, H. (1991), On the momentum transfer of the solar wind to the Martian topside ionosphere, Geophysical Research Letters, 18, 10591062, doi:10.1029/90GL02604.
Lundin, R., Barabash, S., Andersson, H., et al. (2004), Solar wind-induced atmospheric erosion at Mars: first results from ASPERA-3 on Mars Express, Science, 305(5), 19331936, doi:10.1126/science.1101860.
Lundin, R., Winningham, D., Barabash, S., et al. (2006), Plasma acceleration above Martian magnetic anomalies, Science, 311(5), 980983, doi:10.1126/science.1122071.
Lundin, R., Barabash, S., Fedorov, A., et al. (2008), Solar forcing and planetary ion escape from Mars, Geophys. Res. Lett., 35(9), 09203, doi:10.1029/2007GL032884.
Lundin, R., Barabash, S., Holmström, M., et al. (2009), Atmospheric origin of cold ion escape from Mars, Geophys. Res. Lett., 36(1), 17202, doi:10.1029/2009GL039341.
Lundin, R., Barabash, S., Yamauchi, M., Nilsson, H., and Brain, D. (2011), On the relation between plasma escape and the Martian crustal magnetic field, Geophys. Res. Lett., 38(2), 02102, doi:10.1029/2010GL046019.
Ma, Y.-J., and Nagy, A. F. (2007), Ion escape fluxes from Mars, Geophys. Res. Lett., 34(8), 08201, doi:10.1029/2006GL029208.
Ma, Y., Nagy, A. F., Hansen, K. C., et al. (2002), Three-dimensional multispecies MHD studies of the solar wind interaction with Mars in the presence of crustal fields, J. Geophys. Res. – Space, 107(A), 1282, doi:10.1029/2002JA009293.
Ma, Y., Nagy, A. F., Sokolov, I. V., and Hansen, K. C. (2004), Three-dimensional, multispecies, high spatial resolution MHD studies of the solar wind interaction with Mars, J. Geophys. Res., 109(A), 07211, doi:10.1029/2003JA010367.
Manning, C. V., Ma, Y., Brain, D. A., McKay, C. P., and Zahnle, K. J. (2011), Parametric analysis of modeled ion escape from Mars, Icarus, 212(1), 131137, doi:10.1016/j.icarus.2010.11.028.
McElroy, M. B. (1972), Mars: an evolving atmosphere, Science, 175, 443445.
McElroy, M. B., Kong, T. Y., and Yung, Y. L. (1977), Photochemistry and evolution of Mars’ atmosphere – a Viking perspective, J. Geophys. Res., 82, 43794388.
McKenna-Lawlor, S. M. P., Dryer, M., Fry, C. D., et al. (2005), Predictions of energetic particle radiation in the close Martian environment, J. Geophys. Res., 110(A), 03102, doi:10.1029/2004JA010587.
Melosh, H. J., and Vickery, A. M. (1989), Impact erosion of the primordial atmosphere of Mars, Nature, 338, 487489, doi:10.1038/338487a0.
Mendillo, M., Withers, P., Hinson, D., Rishbeth, H., and Reinisch, B. (2006), Effects of Solar Flares on the Ionosphere of Mars, Science, 311(5), 11351138, doi:10.1126/science.1122099.
Mitchell, D. L., Lin, R. P., Rème, H., et al. (2000), Oxygen Auger electrons observed in Mars’ ionosphere, Geophys. Res. Lett., 27(1), 18711874, doi:10.1029/1999GL010754.
Mitchell, D. L., Lin, R. P., Mazelle, C., et al. (2001), Probing Mars’ crustal magnetic field and ionosphere with the MGS Electron Reflectometer, J. Geophys. Res., 106(E), 2341923428, doi:10.1029/2000JE001435.
Modolo, R., and Chanteur, G. M. (2008), A global hybrid model for Titan’s interaction with the Kronian plasma: application to the Cassini Ta flyby, J. Geophys. Res., 113(A), 01317, doi:10.1029/2007JA012453.
Modolo, R., Chanteur, G. M., Dubinin, E., and Matthews, A. P. (2005), Influence of the solar EUV flux on the Martian plasma environment, Ann. Geophys. – Germany, 23(2), 433444, doi:10.5194/angeo-23-433-2005.
Modolo, R., Chanteur, G. M., Dubinin, E., and Matthews, A. P. (2006), Simulated solar wind plasma interaction with the Martian exosphere: influence of the solar EUV flux on the bow shock and the magnetic pile-up boundary, Ann. Geophys. – Germany, 24(12), 34033410.
Modolo, R., Chanteur, G. M., and Dubinin, E. (2012), Dynamic Martian magnetosphere: transient twist induced by a rotation of the IMF, Geophys. Res. Lett., 39(1), 01106, doi:10.1029/2011GL049895.
Moore, T. E., and Horwitz, J. L. (2007), Stellar ablation of planetary atmospheres, Rev. Geophys., 45(3), 3002, doi:10.1029/2005RG000194.
Morgan, D. D., Gurnett, D. A., Kirchner, D. L., et al. (2006), Solar control of radar wave absorption by the Martian ionosphere, Geophys. Res. Lett., 33(13), doi:10.1029/2006GL026637.
Moses, S. L., Coroniti, F. V., and Scarf, F. L. (1988), Expectations for the microphysics of the Mars-solar wind interaction, Geophysical Research Letters, 15, 429432, doi:10.1029/GL015i005p00429.
Nagy, A. F., Liemohn, M. W., Fox, J. L., and Kim, J. (2001), Hot carbon densities in the exosphere of Mars, J. Geophys. Res., 106(A), 2156521568, doi:10.1029/2001JA000007.
Nagy, A. F., Winterhalter, D., Sauer, K., et al. (2004), The plasma environment of Mars, Space Sci. Rev., 111(1), 33114, doi:10.1023/B:SPAC.0000032718.47512.92.
Najib, D., Nagy, A. F., Tóth, G., and Ma, Y. (2011), Three-dimensional, multifluid, high spatial resolution MHD model studies of the solar wind interaction with Mars, J. Geophys. Res. – Space, 116(A), A05204, doi:10.1029/2010JA016272.
Němec, F., Morgan, D. D., Gurnett, D. A., and Duru, F. (2010), Nightside ionosphere of Mars: radar soundings by the Mars Express spacecraft, J. Geophys. Res., 115(E), 12009, doi:10.1029/2010JE003663.
Němec, F., Morgan, D. D., Gurnett, D. A., and Brain, D. A. (2011), Areas of enhanced ionization in the deep nightside ionosphere of Mars, J. Geophys. Res., 116(E), 06006, doi:10.1029/2011JE003804.
Nielsen, E., Zou, H., Gurnett, D. A., et al. (2006), Observations of vertical reflections from the topside Martian ionosphere, Space Sci. Rev., 126(1–4), 373388, doi:10.1007/s11214-006-9113-y.
Nielsen, E., Morgan, D., Kirchner, D., Plaut, J., and Picardi, G. (2007), Absorption and reflection of radio waves in the Martian ionosphere, Planetary and Space Science, 55(7–8), 864870, doi:10.1016/j.pss.2006.10.005.
Nilsson, H., Carlsson, E., Gunell, H., et al. (2006), Investigation of the influence of magnetic anomalies on ion distributions at Mars, Space Sci. Rev., 126(1–4), 355372, doi:10.1007/s11214-006-9030-0.
Nilsson, H., Carlsson, E., Brain, D. A., et al. (2010), Ion escape from Mars as a function of solar wind conditions: a statistical study, Icarus, 206(1), 4049, doi:10.1016/j.icarus.2009.03.006.
Nilsson, H., Edberg, N., Stenberg, G., and Barabash, S. (2011), Heavy ion escape from Mars, influence from solar wind conditions and crustal magnetic fields, Icarus, doi:10.1016/j.icarus.2011.08.003.
Nilsson, H., Stenberg, G., Futaana, Y., et al. (2012), Ion distributions in the vicinity of Mars: signatures of heating and acceleration processes, Earth, 64(2), 135148, doi:10.5047/eps.2011.04.011.
Øieroset, M., Mitchell, D. L., Phan, T. D., Lin, R. P., and Acuña, M. H. (2001), Hot diamagnetic cavities upstream of the Martian bow shock, Geophys. Res. Lett., 28(5), 887890, doi:10.1029/2000GL012289.
Ong, M., Luhmann, J. G., Russell, C. T., Strangeway, R. J., and Brace, L. H. (1991), Venus ionospheric “clouds” – relationship to the magnetosheath field geometry, Journal of Geophysical Research, 96, 11133, doi:10.1029/91JA01100.
Opgenoorth, H. J., Dhillon, R. S., Rosenqvist, L., et al. (2010), Day-side ionospheric conductivities at Mars, Planetary and Space Science, 58(10), 11391151, doi:10.1016/j.pss.2010.04.004.
Owen, T., Maillard, J. P., de Bergh, C., and Lutz, B. L. (1988), Deuterium on Mars – the abundance of HDO and the value of D/H, Science, 240, 17671770.
Penz, T., Erkaev, N. V., Biernat, H. K., et al. (2004), Ion loss on Mars caused by the Kelvin–Helmholtz instability, Planetary and Space Science, 52(13), 11571167, doi:10.1016/j.pss.2004.06.001.
Penz, T., Arshukova, I. L., Terada, N., et al. (2005), A comparison of magnetohydrodynamic instabilities at the Martian ionopause, Advances in Space Research, 36(1), 20492056, doi:10.1016/j.asr.2004.11.039.
Phillips, J. L., Luhmann, J. G., Knudsen, W. C., and Brace, L. H. (1988), Asymmetries in the location of the Venus ionopause, Journal of Geophysical Research, 93, 39273941, doi:10.1029/JA093iA05p03927.
Podgornyi, I. M., Dubinin, E. M., Israelevich, P. L., and Sonett, C. P. (1982), Comparison of measurements of electromagnetic induction in the magnetosphere of Venus with laboratory simulations, Moon and the Planets, 27, 397406, doi:10.1007/BF00929994.
Purucker, M. E., Johnson, C. L., Winslow, R. M., et al. (2012), Evidence for a crustal magnetic signature on Mercury form MESSENGER magnetometer observations, in 43rd Lunar and Planetary Science Conference, March 19–23, The Woodlands, TX, LPI Contribution No. 1659.
Rahmati, A., Larson, D. E., Cravens, T. E., et al. (2015), MAVEN insights into oxygen pickup ions at Mars, Geophys. Res. Lett., 42, 88708876, doi:10.1002/2015GL065262.
Ribas, I., Guinan, E. F., Güdel, M., and Audard, M. (2005), Evolution of the solar activity over time and effects on planetary atmospheres. I. High-energy irradiances (1–1700 Å), Astrophysical Journal, 622(1), 680694, doi:10.1086/427977.
Richer, E., Chanteur, G. M., Modolo, R., and Dubinin, E. (2012), Reflection of solar wind protons on the Martian bow shock: investigations by means of 3-dimensional simulations, Geophys. Res. Lett., 39(1), 17101, doi:10.1029/2012GL052858.
Russell, C. T. (2001), Solar wind and interplanetary magnetic field: a tutorial, Space Weather, 125, 7389, doi:10.1029/GM125p0073.
Russell, C. T., and Elphic, R. C. (1979), Observation of magnetic flux ropes in the Venus ionosphere, Nature, 279, 616618, doi:10.1038/279616a0.
Russell, C. T., and Vaisberg, O. (1983), The interaction of the solar wind with Venus, in Venus, Tucson, AZ, University of Arizona Press, 873940 (A83-37401 17-91).
Russell, C. T., Luhmann, J. G., Schwingenschuh, K., Riedler, W., and Yeroshenko, Y. (1990), Upstream waves at Mars – PHOBOS observations, Geophysical Research Letters, 17, 897900, doi:10.1029/GL017i006p00897.
Safaeinili, A., Kofman, W., Mouginot, J., et al. (2007), Estimation of the total electron content of the Martian ionosphere using radar sounder surface echoes, Geophys. Res. Lett., 34(2), 23204, doi:10.1029/2007GL032154.
Sagdeev, R. Z., and Zakharov, A. V. (1989), Brief history of the Phobos mission, Nature, 341(6243), 581585, doi:10.1038/341581a0.
Schneider, N. M., Deighan, J. I., Jain, S. K., et al. (2015), Discovery of diffuse aurora on Mars, Science, 350(6261), doi:10.1126/science.aad0313.
Schwadron, N. A., Townsend, L., Kozarev, K., et al. (2010), Earth–Moon–Mars Radiation Environment Module framework, Space Weather, 8(1), doi:10.1029/2009SW000523.
Simon, S., Boesswetter, A., Bagdonat, T., and Motschmann, U. (2007), Physics of the Ion Composition Boundary: a comparative 3-D hybrid simulation study of Mars and Titan, Ann. Geophys. – Germany, 25(1), 99115.
Spreiter, J. R., Summers, A. L., and Rizzi, A. W. (1970), Solar wind flow past nonmagnetic planets – Venus and Mars, Planet. Space Sci., 18, 12811299.
Tatrallyay, M., Gévai, G., Apáthy, I., et al. (1997), Magnetic field overshoots in the Martian bow shock, J. Geophys. Res., 102(A), 21572164, doi:10.1029/96JA00073.
Terada, N., Machida, S., and Shinagawa, H. (2002), Global hybrid simulation of the Kelvin–Helmholtz instability at the Venus ionopause, J. Geophys. Res. – Space, 107(A), 1471, doi:10.1029/2001JA009224.
Terada, N., Kulikov, Y. N., Lammer, H., et al. (2009), Atmosphere and water loss from early Mars under extreme solar wind and extreme ultraviolet conditions, Astrobiology, 9(1), 5570, doi:10.1089/ast.2008.0250.
Trotignon, J. G., Mazelle, C., Bertucci, C., and Acuña, M. H. (2006), Martian shock and magnetic pile-up boundary positions and shapes determined from the Phobos 2 and Mars Global Surveyor data sets, Planetary and Space Science, 54(4), 357369, doi:10.1016/j.pss.2006.01.003.
Uluşen, D., and Linscott, I. (2008), Low-energy electron current in the Martian tail due to reconnection of draped interplanetary magnetic field and crustal magnetic fields, J. Geophys. Res., 113(E), 06001, doi:10.1029/2007JE002916.
Uluşen, D., Brain, D. A., Luhmann, J. G., and Mitchell, D. L. (2012), Investigation of Mars’ ionospheric response to solar energetic particle events, J. Geophys. Res., 117(A), 12306, doi:10.1029/2012JA017671.
Valeille, A., Combi, M. R., Bougher, S. W., Tenishev, V., and Nagy, A. F. (2009a), Three-dimensional study of Mars upper thermosphere/ionosphere and hot oxygen corona: 2. Solar cycle, seasonal variations, and evolution over history, J. Geophys. Res. – Planets, 114, E11006, doi:10.1029/2009JE003389.
Valeille, A., Tenishev, V., Bougher, S. W., Combi, M. R., and Nagy, A. F. (2009b), Three-dimensional study of Mars upper thermosphere/ionosphere and hot oxygen corona: 1. General description and results at equinox for solar low conditions, J. Geophys. Res. – Planets, 114, E11005, doi:10.1029/2009JE003388.
Verigin, M. I., Shuttle, N. M., Galeev, A. A., et al. (1991), Ions of planetary origin in the Martian magnetosphere (Phobos 2/TAUS experiment), Planet. Space Sci., 39, 131137, doi:10.1016/0032-0633(91)90135-W.
Verigin, M. I., Kotova, G. A., Remizov, A. P., et al. (2001), Evidence of the influence of equatorial Martian crustal magnetization on the position of the planetary magnetotail boundary by phobos 2 data, Advances in Space Research, 28(6), 885889, doi:10.1016/S0273-1177(01)00510-5.
Vignes, D., Acuña, M. H., Connerney, J. E. P., et al. (2002), Factors controlling the location of the Bow Shock at Mars, Geophys. Res. Lett., 29(9), 42–1, doi:10.1029/2001GL014513.
Vignes, D., Acuña, M. H., Connerney, J. E. P., et al. (2004), Magnetic flux ropes in the Martian atmosphere: global characteristics, Space Sci. Rev., 111(1), 223231, doi:10.1023/B:SPAC.0000032716 .21619.f2.
Watson, C. C., Haff, P. K., and Tombrello, T. A. (1980), Solar wind sputtering effects in the atmospheres of Mars and Venus, In Lunar and Planetary Science Conference, 11, 24792502.
Wei, H. Y., and Russell, C. T. (2006), Proton cyclotron waves at Mars: exosphere structure and evidence for a fast neutral disk, Geophys. Res. Lett., 33(23), doi:10.1029/2006GL026244.
Withers, P. (2005), Ionospheric characteristics above Martian crustal magnetic anomalies, Geophys. Res. Lett., 32(16), doi:10.1029/2005GL023483.
Withers, P. (2009), A review of observed variability in the dayside ionosphere of Mars, Advances in Space Research, 44(3), 277307, doi:10.1016/j.asr.2009.04.027.
Wolff, R. S., Goldstein, B. E., and Yeates, C. M. (1980), The onset and development of Kelvin–Helmholtz instability at the Venus ionopause, J. Geophys. Res., 85, 76977707, doi:10.1029/JA085iA13p07697.
Wood, B. E., Müller, H. R., Zank, G. P., Linsky, J. L., and Redfield, S. (2005), New mass-loss measurements from astrospheric Lyα absorption, Astrophysical Journal, 628(2), L143–L146, doi:10.1086/432716.
Yagi, M., Leblanc, F., Chaufray, J. Y., et al. (2012), Mars exospheric thermal and non-thermal components: seasonal and local variations, Icarus, 221(2), 682693, doi:10.1016/j.icarus.2012.07.022.
Yamauchi, M., Futaana, Y., Fedorov, A., et al. (2012), Ion acceleration by multiple reflections at Martian bow shock, Earth, 64(2), 6171, doi:10.5047/eps.2011.07.007.
Yau, A. W., Abe, T., and Peterson, W. K. (2007), The polar wind: recent observations, Journal of Atmospheric and Solar-Terrestrial Physics, 69(1), 19361983, doi:10.1016/j.jastp.2007.08.010.
Yeroshenko, Y., Riedler, W., Schwingenschuh, K., Luhmann, J. G., and Ong, M. (1990), The magnetotail of Mars – PHOBOS observations, Geophysical Research Letters, 17, 885888, doi:10.1029/GL017i006p00885.
Yung, Y. L., Wen, J. S., Pinto, J. P., et al. (1988), HDO in the Martian atmosphere – implications for the abundance of crustal water, Icarus, 76(1), 146159, doi:10.1016/0019-1035(88)90147-9.
Zahnle, K. J., and Kasting, J. F. (1986), Mass fractionation during transonic escape and implications for loss of water from Mars and Venus, Icarus, 68, 462480, doi:10.1016/0019-1035(86)90051-5.
Zhang, T. L., Luhmann, J. G., and Russell, C. T. (1991a), The magnetic barrier at Venus, Journal of Geophysical Research, 96, 11145, doi:10.1029/91JA00088.
Zhang, T. L., Schwingenschuh, K., Lichtenegger, H., Riedler, W., and Russell, C. T. (1991b), Interplanetary magnetic field control of the Mars bow shock – evidence for Venus like interaction, Journal of Geophysical Research, 96, 11265, doi:10.1029/91JA01099.