Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-75dct Total loading time: 0 Render date: 2024-05-15T07:48:55.524Z Has data issue: false hasContentIssue false

7 - The Martian Planetary Boundary Layer

Published online by Cambridge University Press:  05 July 2017

Robert M. Haberle
Affiliation:
NASA Ames Research Center
R. Todd Clancy
Affiliation:
Space Science Institute, Boulder, Colorado
François Forget
Affiliation:
Laboratoire de Météorologie Dynamique, Paris
Michael D. Smith
Affiliation:
NASA-Goddard Space Flight Center
Richard W. Zurek
Affiliation:
NASA-Jet Propulsion Laboratory, California
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alexakis, A. 2009. Stratified shear flow instabilities at large Richardson numbers. Phys. Fluids, 21, 054108, doi: 10.1063/1.3147934.Google Scholar
Allison, M., Ross, J. D., and Solomon, N. 1999. Mapping the Martian meteorology. Fifth International Conference on Mars, LPI Contribution No. 972, Lunar and Planetary Institute, Tucson, Arizona, 972.Google Scholar
André, J. C., De Moor, G., Lacarrére, P., Therry, G., and du Vachat, R. 1978. Modeling 24-hour evolution of mean and turbulent structures of planetary boundary layer. J. Atmos. Sci., 35, 18611883.Google Scholar
Atreya, S. K., Wong, A.-S., Rennó, N. O., et al. 2006. Oxidant enhancement in Martian dust devils and storms: implications for life and habitability. Astrobiology, 6, 439450.CrossRefGoogle ScholarPubMed
Bagnold, R. A. 1941. The Physics of Blown Sand and Desert Dunes. New York: Methuen.Google Scholar
Balme, M., and Greeley, R. 2006. Dust devils on Earth and Mars. Rev. Geophys., 44 (3), RG3003, doi:10.1029/2005RG000188.Google Scholar
Basu, S., Vinuesa, J.-F., and Swift, A. 2008. Dynamic LES Modeling of a Diurnal Cycle. J. Appl. Met. Clim., 47, 11561174.CrossRefGoogle Scholar
Blackadar, A. K. 1957. Boundary-layer wind maxima and their significance for the growth of nocturnal inversion. Bull. Amer. Meteorol. Soc., 38, 283290.CrossRefGoogle Scholar
Blackadar, A. K. 1962. The vertical distribution of wind and turbulent exchange in a neutral atmosphere. J. Geophys. Res., 67, 30953102.Google Scholar
Blumsack, S. L., Gierasch, P. J., and Wessel, S. R. 1973. An analytical and numerical study of the Martian planetary boundary layer over slopes. J. Atmos. Sci., 30, 6680.2.0.CO;2>CrossRefGoogle Scholar
Brutsaert, W. H. 1982. Exchange processes at the Earth-atmosphere interface. Plate, E. (ed), Engineering Meteorology. Elsevier, 319369.Google Scholar
Cantor, B. A., James, P. B., Caplinger, M., and Wolff, M. J. 2001. Martian dust storms: 1999 Mars Orbiter Camera observations. J. Geophys. Res., 106 (E10), 2365323687.CrossRefGoogle Scholar
Cantor, B., Malin, M., and Edgett, K. S. 2002. Multiyear Mars Orbiter Camera (MOC) observations of repeated Martian weather phenomena during the northern summer season. J. Geophys. Res., 107 (E3), 3-13-8.Google Scholar
Cantor, B. A., Kanak, K. M., and Edgett, K. S. 2006. Mars Orbiter Camera observations of Martian dust devils and their tracks (September 1997 to January 2006) and evaluation of theoretical vortex models. J. Geophys. Res., 111 (E12), E12002.CrossRefGoogle Scholar
Canuto, V. M., Howard, A., Cheng, Y., and Dubovikov, M. S. 2001. Ocean turbulence. Part I: One-point closure model – momentum and heat vertical diffusivities. J. Phys. Oceanogr., 31, 14131426.Google Scholar
Canuto, V. M., Cheng, Y., and Howard, A. M. 2005. What causes divergences in local second-order models? J. Atmos. Sci., 62, 16451651.Google Scholar
Canuto, V. M., Cheng, Y., Howard, A. M., and Esau, I. N. 2008. Stably stratified flows: a model with no Ri(cr). J. Atmos. Sci., 65, 24372447.Google Scholar
Chamberlain, T. E., Cole, H. L., Dutton, R. G., Greene, G. C., and Tillman, J. E. 1976. Atmospheric measurements on Mars: the Viking meteorology experiment. Bull. Amer. Meteor. Soc., 57, 10941104.2.0.CO;2>CrossRefGoogle Scholar
Christensen, P. R., Banfield, J. L., Hamilton, V. E., et al. 2001. Mars Global Surveyor Thermal Emission Spectrometer experiment: investigation description and surface science results. J. Geophys. Res., 106 (E10), 2382323872.Google Scholar
Christensen, P. R., Mehall, G. L., Silverman, S. H., et al. 2003. Miniature Thermal Emission Spectrometer for the Mars Exploration Rovers. J. Geophys. Res., 108 (E12), 23823–23872.Google Scholar
Colaïtis, A., Spiga, A., Hourdin, F., Rio, C., Forget, F., and Millour, E. 2013. A thermal plume model for the Martian convective boundary layer. J. Geophys. Res., 118, 14681487.Google Scholar
Cot, C. 2001. Equatorial mesoscale wind and temperature fluctuations in the lower atmosphere. J. Geophys. Res., 106 (D2), 15231532.Google Scholar
Crozier, W. D. 1964. The electric field of a New Mexico dust devil. J. Geophys. Res., 69, 54275429.Google Scholar
Davy, R., Taylor, P. A., Weng, W., and Li, P.-Y. 2009. A model of dust in the Martian lower atmosphere. J. Geophys. Res., 114 (D4), 4108.CrossRefGoogle Scholar
Davy, R., Davis, J. A., Taylor, P. A. 2010. Initial analysis of air temperature and related data from the Phoenix MET station and their use in estimating turbulent heat fluxes. J. Geophys. Res., 115 (E3).Google Scholar
Deardorff, J. W. 1972. Theoretical expression for the countergradient vertical heat flux. J. Geophys. Res., 72, 59005904.Google Scholar
Deardorff, J.W. 1976a. Clear and cloud-capped mixed layers – their numerical simulation, structure and growth and parameterization. In Seminars on the Treatment of the Boundary Layer in Numerical Weather Prediction, European Center for Medium Range Weather Forecasts, 234284.Google Scholar
Deardorff, J. W. 1976b. On the entrainment rate of a stratocumulus-topped mixed layer. Quart. J. R. Meteorol. Soc., 102, 563582.Google Scholar
Delory, G. T., Farrell, W. M., Atreya, S. K. 2006. Oxidant enhancement in Martian dust devils and storms: implications for life and habitability. Astrobiology, 6, 451462.Google Scholar
Dewan, E. M. 1979. Stratospheric wave spectra resembling turbulence. Science, 204, 832835.Google Scholar
Dewan, E. M., and Good, R. E. 1986. Saturation and the “universal” spectrum for vertical profiles of horizontal scalar winds in the atmosphere. J. Geophys. Res., 91, 27422748.Google Scholar
Drake, N. B., Tamppari, L. K., Baker, R. D., Cantor, B. A., and Hale, A. S. 2006. Dust devil tracks and wind streaks in the north polar region of Mars: a study of the 2007 Phoenix Mars Lander sites. Geophys. Res. Lett., 33, L19S02.Google Scholar
Ellehoj, M. D., Gunnlaugsson, H. P., Taylor, P. A. 2010. Convective vortices and dust devils at the Phoenix Mars mission landing site. J. Geophys. Res., 115 (E4), E00E16.Google Scholar
Emanuel, K. A. 1994. Atmospheric Convection. Oxford and New York: Oxford University Press.Google Scholar
Farrell, W. M., Delory, G. T., and Atreya, S. K. 2006. Martian dust storms as a possible sink of atmospheric methane. Geophys. Res. Lett., 33, L21203.CrossRefGoogle Scholar
Fergason, R. L., Christensen, P. R., and Kieffer, H. H. 2006. High-resolution thermal inertia derived from the Thermal Emission Imaging System (THEMIS): thermal model and applications. J. Geophys. Res., 111 (E12), E12004.Google Scholar
Ferri, F., Smith, P. H., Lemmon, M., and Rennó, N. O. 2003. Dust devils as observed by Mars Pathfinder. J. Geophys. Res., 108 (E12), 71.Google Scholar
Forget, F., Hourdin, F., Fournier, R. et al. 1999. Improved general circulation models of the Martian atmosphere from the surface to above 80 km. J. Geophys. Res. Planets, 104 (E10), 2415524176.Google Scholar
Forget, F., Spiga, A., Dolla, B., et al. 2007. Remote sensing of surface pressure on Mars with the Mars Express/OMEGA spectrometer: 1. Retrieval method. J. Geophys. Res., 112 (E8), E08S15.Google Scholar
Fritts, D. C., and Alexander, M. J. 2003. Gravity wave dynamics and effects in the middle atmosphere. Rev. Geophys., 41, 1003. doi:10.1029/2001RG000106.Google Scholar
Galperin, B., and Sukoriansky, S. 2010. Geophysical flows with anisotropic turbulence and dispersive waves: flows with stable stratification. Ocean Dyn., 60, 13191337.CrossRefGoogle Scholar
Galperin, B., Kantha, L. H., Hassid, S., and Rosati, A. R. 1988. A quasi-equilibrium turbulent energy model for geophysical flows. J. Atmos. Sci., 45, 5562.Google Scholar
Galperin, B., Kantha, L. H., Mellor, G. L., and Rosati, A. R. 1989. Modeling rotating stratified turbulent flows with application to oceanic mixed layers. J. Phys. Oceanogr., 19, 901916.Google Scholar
Galperin, B., Sukoriansky, S., and Anderson, P. S. 2007. On the critical Richardson number in stably stratified turbulence. Atmos. Sci. Let., 8, 6569.Google Scholar
Garratt, J. R. 1992. The atmospheric boundary layer. Cambridge University Press.Google Scholar
Gierasch, P. J., and Goody, R. M. 1968. A study of the thermal and dynamical structure of the lower Martian atmosphere. Plan. Space Sci., 16, 615646.Google Scholar
Golombek, M., Cook, R. A., Economou, T., et al. 1997. Overview of the Mars Pathfinder mission and assessment of landing site predictions. Science, 278, 17431748.Google Scholar
Gómez-Elvira, J., and REMS Team. 2008. Environmental Monitoring Station for Mars Science Laboratory. In Third International Workshop on The Mars Atmosphere: Modeling and Observations, November 10–13, 2008, Williamsburg, VA. LPI Contributions, 1447, 9052.Google Scholar
Gómez-Elvira, J., Armiens, C., Castañer, L., et al. 2012. REMS: the environmental sensor suite for the Mars Science Laboratory Rover. Space Sci. Rev., 170, 583640.CrossRefGoogle Scholar
Greeley, R., and Iversen, J. D. 1985. Wind as a geological process on Earth, Mars, Venus and Titan. New York: Cambridge University Press.Google Scholar
Gunnlaugsson, H. P., Holstein-Rathlou, C., Merrison, J. P., et al. 2008. Telltale wind indicator for the Mars Phoenix Lander. J. Geophys. Res., 113 (E3), E00A04.Google Scholar
Haberle, R. M., Pollack, J. B., Barnes, J. R., et al. 1993a. Mars atmospheric dynamics as simulated by the NASA Ames general circulation model: 1. The zonal-mean circulation. J. Geophys. Res., 98 (E2), 30933123.Google Scholar
Haberle, R. M., Houben, H. C., Hertenstein, R., and Herdtle, T. 1993b. A boundary layer model for Mars: comparison with Viking Lander and entry data. J. Atmos. Sci., 50, 15441559.2.0.CO;2>CrossRefGoogle Scholar
Haberle, R. M., Joshi, M. M., Murphy, J. R., et al. 1999. General circulation model simulations of the Mars Pathfinder atmospheric structure investigation/meteorology data. J. Geophys. Res., 104 (E4), 89578974.CrossRefGoogle Scholar
Haberle, R. M., Gómez-Elvira, J., de la Torre Juarez, M., et al. 2014. Preliminary interpretation of the REMS pressure data from the first 100 sols of the MSL mission. J. Geophys. Res. Planets, 119, 440453.Google Scholar
Harri, A.-M., Genzer, M., Kemppinen, O., et al. 2014a. Mars Science Laboratory relative humidity observations – initial results. J. Geophys. Res. Planets, 119, 21322147.Google Scholar
Harri, A.-M., Genzer, M., Kemppinen, O., et al. 2014b. Pressure observations by the Curiosity Rover – initial results. J. Geophys. Res. Planets, 119, 8292.CrossRefGoogle Scholar
Hassid, S., and Galperin, B. 1994. Modeling rotating flows with neutral and unstable stratification. J. Geophys. Res., 99, 1253312548.Google Scholar
Heavens, N. G., Richardson, M. I., and Toigo, A. D. 2008. Two aerodynamic roughness maps derived from Mars Orbiter Laser Altimeter (MOLA) data and their effects on boundary layer properties in a Mars general circulation model (GCM). J. Geophys. Res., 113 (E2), E02014, doi:10.1029/2007JE002991.CrossRefGoogle Scholar
Hébrard, E., Listowski, C., Coll, P., et al. 2012. An aerodynamic roughness length map derived from extended Martian rock abundance data. J. Geophys. Res., 117 (E4), E04008.Google Scholar
Hess, S., Henry, R., Leovy, C., et al. 1976. Preliminary Meteorological Results on Mars from the Viking 1 Lander. Science, 193, 788791.Google Scholar
Hess, S. L., Henry, R. M., Leovy, C. B., Ryan, J. A., and Tillman, J. E. 1977. Meteorological results from the surface of Mars: Viking 1 and 2. J. Geophys. Res., 82, 45594574.Google Scholar
Hinson, D. P., and Wilson, R. J. 2004. Temperature inversions, thermal tides, and water ice clouds in the Martian tropics. J. Geophys. Res., 109 (E1), 15.Google Scholar
Hinson, D. P., Simpson, R. A., Twicken, J. D., Tyler, G. L., and Flasar, F. M. 1999. Initial results from radio occultation measurements with Mars Global Surveyor. J. Geophys. Res., 104 (E11), 2699727012.Google Scholar
Hinson, D. P., Tyler, G. L., Hollingsworth, J. L., and Wilson, R. J. 2001. Radio occultation measurements of forced atmospheric waves on Mars. J. Geophys. Res., 106, 14631480.Google Scholar
Hinson, D. P., Smith, M. D., and Conrath, B. J. 2004. Comparison of atmospheric temperatures obtained through infrared sounding and radio occulation by Mars Global Surveyor. J. Geophys. Res., 109 (E12), E12002, doi:10.1029/2004JE002344.Google Scholar
Hinson, D. P., Pätzold, M., Tellmann, S., Häusler, B., and Tyler, G. L. 2008. The depth of the convective boundary layer on Mars. Icarus, 198, 5766.Google Scholar
Holstein-Rathlou, C., Gunnlaugsson, H. P., Merrison, J. P., et al. 2010. Winds at the Phoenix landing site. J. Geophys. Res., 115 (E5), E00E18.Google Scholar
Holtslag, A., and Moeng, C. 1991. Eddy diffusivity and countergradient transport in the convective atmospheric boundary layer. J. Atmos. Sci., 48, 16901700.Google Scholar
Joshi, M. M., Lawrence, B. N., and Lewis, S. R. 1996. The effect of spatial variations in unresolved topography on gravity wave drag in the Martian atmosphere. Geophys. Res. Lett., 23, 29272930.Google Scholar
Kanak, K. M., Lilly, D. K., and Snow, J. T. 2000. The formation of vertical Vortices in the convective boundary layer. Quart. J. R. Meteorol. Soc., 126, 27892810.Google Scholar
Karelsky, K. V., and Petrosyan, A. S. 1995. Numerical simulations of the near surface phenomena on Mars. Adv. in Space Res., 16, 4548.Google Scholar
Karelsky, K., Petrosyan, A., and Smirnov, I. 2007. A new model for boundary layer flows interacting with particulates in land surface on complex terrain. Quart. J. Hungarian Meteorol. Service, 111, 149159.Google Scholar
Kass, D. M., Schofield, J. T., Michaels, T. I., et al. 2003. Analysis of atmospheric mesoscale models for entry, descent, and landing. J. Geophys. Res., 108 (E12), 8090, doi:10.1029/2003JE002065.Google Scholar
Kauhanen, J., Siili, T., Järvenoja, S., and Savijärvi, H. 2008. The Mars limited area model and simulations of atmospheric circulations for the Phoenix landing area and season of operation. J. Geophys. Res., 113 (E3), E00A14, doi:10.1029/2007JE00301.Google Scholar
Kieffer, H. H., Chase, S. C., Martin, T. Z., Miner, E. D., and Palluconi, F. D. 1976. Martian north pole summer temperatures: dirty water ice. Science, 194, 13411344.Google Scholar
Kieffer, H. H., Martin, T. Z., Peterfreund, A. R., et al. 1977. Thermal and albedo mapping of Mars during the Viking primary mission. J. Geophys. Res., 82, 42494291.Google Scholar
Kitamura, Y. 2010. Modifications to the Mellor–Yamada–Nakanishi–Niino (MYNN) model for the stable stratification case. J. Met. Soc. Japan, 88, 857864.Google Scholar
Kok, J. F., and Rennó, N. O. 2008. Electrostatics in wind-blown sand. Phys. Rev. Lett., 100, 014501.Google Scholar
Kok, J. F., and Rennó, N. O. 2009. Electrification of wind-blown sand on Mars and its implications for atmospheric chemistry. Geophys. Res. Lett., 36, L05202.Google Scholar
Kurbatskiy, A. F., and Kurbatskaya, L. I. 2006. Three-parameter model of turbulence for the atmospheric boundary layer over an urbanized surface. Izvestiya, Atm. Ocean. Phys., 42, 439455.Google Scholar
Kursinski, E. R., Folkner, W., Zuffada, C., et al. 2004. The Mars Atmospheric Constellation Observatory (MACO) Concept. 393405 of: Kirchengast, G., Foelsche, U., and Steiner, A. (eds), Occultations for Probing Atmosphere and Climate. Springer. Papers from the 1st International Workshop on Occultations for Probing Atmosphere and Climate (OPAC-1).Google Scholar
Larsen, S. E., Jørgensen, H. E., Landberg, L., and Tillman, J. E. 2002. Aspects of the atmospheric surface layers on Mars and Earth. Boundary-Layer Meteorol., 105, 451470.Google Scholar
Launder, B. E., Reece, G. J., and Rodi, W. 1975. Progress in development of a Reynolds-stress turbulence closure. J. Fluid Mech., 68, 537566.Google Scholar
Lefevre, F., and Forget, F. 2009. Observed variations of methane on Mars unexplained by known atmospheric chemistry and physics. Nature, 460, 720723.Google Scholar
Lemmon, M., Wolff, M., Smith, M., et al. 2004. Atmospheric imaging results from the Mars Exploration Rovers: Spirit and Opportunity. Science, 306, 17531756.Google Scholar
Leovy, C. B., and Mintz, Y. 1969. Numerical simulation of the atmospheric circulation and climate of Mars. J. Atmos. Sci., 26, 11671190.Google Scholar
Lilly, D. K. 1962. On the numerical simulation of buoyant convection. Tellus, 14, 148172.CrossRefGoogle Scholar
Määttänen, A., and Savijärvi, H. 2004. Sensitivity tests with a 1-dimensional boundary layer Mars model. Boundary-Layer Meteorol., 113, 305320.Google Scholar
Malin, M. C., and Edgett, K. S. 2001. Mars Global Surveyor Mars Orbiter Camera: interplanetary cruise through primary mission. J. Geophys. Res., 106 (E10), 2342923570.Google Scholar
Malin, M. C., Carr, M. H., Danielson, G. E., et al. 1999. Early views of the Martian surface from the Mars Orbiter Camera of Mars Global Surveyor. Science, 279, 16811685.CrossRefGoogle Scholar
Martínez, G., Valero, F., and Vázquez, L. 2009a. Characterization of the Martian Convective Boundary Layer. J. Atmos. Sci., 66, 20442058.Google Scholar
Martínez, G., Valero, F., and Vázquez, L. 2009b. Characterization of the Martian surface layer. J. Atmos. Sci., 66, 187198.Google Scholar
Martínez, G., Valero, F., and Vázquez, L. 2011. The TKE budget in the convective Martian planetary boundary layer. Quart. J. R. Meteorol. Soc., 137, 21942208.Google Scholar
Mellon, M. T., Jakosky, B. M., Kieffer, H. H., and Christensen, P. R. 2000. High-resolution thermal inertia mapping from the Mars Global Surveyor Thermal Emission spectrometer. Icarus, 148, 437455.Google Scholar
Mellor, G. L. 1973. Analytic prediction of properties of stratified planetary surface layers. J. Atmos. Sci., 30, 10611069.Google Scholar
Mellor, G. L, and Herring, H. J. 1973. Survey of mean turbulent field closure models. AIAA J., 11, 590599.Google Scholar
Mellor, G. L., and Yamada, T. 1974. A hierarchy of turbulence closure models for planetary boundary layers. J. Atmos. Sci., 31, 17911806.Google Scholar
Mellor, G. L., and Yamada, T. 1982. Development of a turbulence closure model for geophysical fluid problems. Rev. Geophys. Space Phys., 20, 851875.Google Scholar
Melnik, O., and Parrot, M. 1998. Electrostatic discharge in Martian dust storms. J. Geophys. Res., 103 (A12), 2910729117.Google Scholar
Metzger, S. M., Carr, J. R., Johnson, J. R., Parker, T. J., and Lemmon, M. 1999. Dust devil vortices seen by the Mars Pathfinder camera. Geophys. Res. Lett., 26, 27812784.Google Scholar
Michaels, T. I. 2006. Numerical modeling of Mars dust devils: albedo track generation. Geophys. Res. Lett., 33, L19S08, doi:10.1029/2006GL026268.Google Scholar
Michaels, T. I., and Rafkin, S. C. R. 2004. Large eddy simulation of atmospheric convection on Mars. Quart. J. R. Meteorol. Soc., 130, 12511274.CrossRefGoogle Scholar
Michaels, T. I., and Rafkin, S. C. R. 2008. Meteorological predictions for candidate 2007 Phoenix Mars Lander sites using the Mars Regional Atmospheric Modeling System (MRAMS). J. Geophys. Res., 113 (E3), E00A07, doi:10.1029/2007JE003013.Google Scholar
Moeng, C. H., Dudhia, J., Klemp, J., and Sullivan, P. 2007. Examining two-way grid nesting for large eddy simulation of the PBL using the WRF model. Monthly Weather Review, 135, 22952311.Google Scholar
Monin, A. S., and Obukhov, A. M. 1954. Osnovnye zakonomernosti turbulentnogo peremeshivanija v prizemnon sloe atmosfery (Basic laws of turbulent mixing in the atmosphere near the ground). Trudy Geofiz. Inst. AN SSSR, 24, 163187.Google Scholar
Monin, A. S., and Yaglom, A. M. 1975. Statistical Fluid Mechanics. MIT Press.Google Scholar
Moores, J. E., Lemmon, M. T., Smith, P. H., Komguem, L., and Whiteway, J. A. 2010. Atmospheric dynamics at the Phoenix landing site as seen by the Surface Stereo Imager. J. Geophys. Res., 115 (E1), E00E08.Google Scholar
Moudden, Y., and McConnell, J. C. 2005. A new model for multiscale modeling of the Martian atmosphere, GM3. J. Geophys. Res., 110 (E4), E00A07, doi:10.1029/2007JE003013.Google Scholar
Murphy, J. R., and Nelli, S. 2002. Mars Pathfinder convective vortices: frequency of occurrence. J. Geophys. Res., 29, 2103, doi:10.1029/2002GL015214.Google Scholar
Nayvelt, L., Gierasch, P. J., and Cook, K. H. 1997. Modeling and observations of Martian stationary waves. J. Atmos. Sci., 54, 9861013.Google Scholar
Newman, C. E., Lewis, S. R., Read, P. L., and Forget, F. 2002a. Modeling the Martian Dust Cycle, 1. Representations of Dust Transport Processes. J. Geophys. Res., 107 (E12), doi:10.1029/2002JE001910.Google Scholar
Newman, C. E., Lewis, S. R., Read, P. L., and Forget, F. 2002b. Modeling the Martian Dust Cycle, 2. Multiannual Radiatively Active Dust Transport Simulations. J. Geophys. Res., 107 (E12), doi:10.1029/2002JE001920.Google Scholar
Odaka, M. 2001. A numerical simulation of Martian atmospheric convection with a two-dimensional anelastic model: a case of dust-free Mars. Geophys. Res. Lett., 28, 895898.Google Scholar
Odaka, M., Nakajima, K., Takehiro, S., Ishiwatari, M., and Hayashi, Y. 1998. A numerical study of the Martian atmospheric convection with a two-dimensional anelastic model. Earth, Planets, and Space, 50, 431437.Google Scholar
Oyama, V., Berdahl, B., and Carle, G. 1977. Preliminary findings of Viking gas-exchange experiment and a model for Martian surface chemistry. Nature, 265, 110114.Google Scholar
Pallman, A. J. 1983. The thermal structure of the atmospheric surface layer on Mars as modified by the radiative effect of Aeolian dust. J. Geophys. Res., 88, 54835493.Google Scholar
Petrosyan, A., Galperin, B., Larsen, S. E., et al. 2011. The Martian atmospheric boundary layer. Rev. Geophys., 49, RG3005.Google Scholar
Pollack, J. B., Leovy, C. B., Mintz, Y., and Van Camp, W. 1976. Winds on Mars during the Viking season: predictions based on a general circulation model with topography. Geophys. Res. Lett., 3, 479482.Google Scholar
Pollack, J., Colburn, D., Kahn, R., et al. 1977. Properties of aerosols in the Martian atmosphere, as inferred from Viking Lander imaging data. J. Geophys. Res., 82, 44794496.Google Scholar
Pollack, J. B., Leovy, C. B., Greiman, P. W., and Mintz, Y. 1981. A Martian general circulation experiment with large topography. J. Atmos. Sci., 38, 329.Google Scholar
Pope, S. B. 2005. Turbulent Flows. Cambridge University Press.Google Scholar
Putzig, N. E., and Mellon, M. T. 2007. Apparent thermal inertia and the surface heterogeneity of Mars. Icarus, 191, 6894.Google Scholar
Rafkin, S. C. R. 2003. The effect of convective adjustment on the global circulation of Mars as simulated by a general circulation model. In Albee, A. (ed), Sixth International Conference on Mars, 1, 3059.Google Scholar
Rafkin, S. C. R., and Michaels, T. I. 2003. Meteorological predictions for 2003 Mars Exploration Rover high-priority landing sites. J. Geophys. Res., 108 (E12), 8091, doi:10.1029/2002JE002027.Google Scholar
Rafkin, S. C. R., Haberle, R. M., and Michaels, T. I. 2001. The Mars Regional Atmospheric Modeling System: model description and selected simulations. Icarus, 151, 228256.Google Scholar
Rafkin, S. C. R., Michaels, T. I., and Haberle, R. M. 2004. Meteorological predictions for the Beagle 2 mission to Mars. Geophys. Res. Lett., 31, 1703.CrossRefGoogle Scholar
Rennó, N. O. 2008. A general theory for convective plumes and vortices. Tellus A, 60, 688699.Google Scholar
Rennó, N. O., and Kok, J. F. 2008. Electrical activity and dust lifting on Earth, Mars and beyond. Springer. 419434.Google Scholar
Rennó, N. O., Burkett, M. L., and Larkin, M. P. 1998. A simple thermodynamical theory for dust devils. J. Atmos. Sci., 55, 32443252.Google Scholar
Rennó, N. O., Nash, A. A., Lunine, J., and Murphy, J. 2000. Martian and terrestrial dust devils: test of a scaling theory using Pathfinder data. J. Geophys. Res., 105 (E1), 18591865.Google Scholar
Rennó, N. O., Abreu, V., Koch, J., et al. 2004. MATADOR 2002: A field experiment on convective plumes and dust devils. J. Geophys. Res., 109 (E7), E07001, doi:10.1029/2003JE002219.Google Scholar
Rennó, N., Bos, B., Catling, D., et al. 2009. Possible physical and thermodynamical evidence for liquid water at the Phoenix landing site. J. Geophys. Res., 114 (E1), E00E03, doi:10.1029/2009JE003362.Google Scholar
Richardson, M. I., Toigo, A. D., and Newman, C. E. 2007. PlanetWRF: a general purpose, local to global numerical model for planetary atmospheric and climate dynamics. J. Geophys. Res., 112 (E9), E09001, doi:10.1029/2006JE002825.Google Scholar
Ringrose, T. J., Towner, M. C., and Zarnecki, J. C. 2003. Convective vortices on Mars: a reanalysis of Viking Lander 2 meteorological data, sols 1–60. Icarus, 163, 7887.CrossRefGoogle Scholar
Rippeth, T. P. 2005. Mixing in seasonally stratified shelf seas: a shifting paradigm. Phil. Trans. R. Soc. A, 363, 28372854.Google Scholar
Ristorcelli, J. R. 1997. Toward a turbulence constitutive relation for geophysical flows. Theor. Comput. Fluid Dynamics, 9, 207221.Google Scholar
Ruf, C., Rennó, N. O., Kok, J. F., 2009. The emission of non-thermal microwave radiation by a Martian dust storm. Geophys. Res. Lett., 36, L13202.Google Scholar
Ryan, J., and Lucich, R. 1983. Possible Dust Devils, Vortices on Mars. J. Geophys. Res., 88, 1100511011.Google Scholar
Savijärvi, H. 1991a. A model study of the PBL structure on Mars and the Earth. Contrib. Atmos. Phys., 64, 219229.Google Scholar
Savijärvi, H. 1991b. Radiative fluxes on a dustfree Mars. Contrib. Atmos. Phys., 64, 103111.Google Scholar
Savijärvi, H. 1999. A model study of the atmospheric boundary layer in the Mars Pathfinder Lander conditions. Quart. J. R. Meteorol. Soc., 125, 483493.Google Scholar
Savijärvi, H. 2012a. Mechanisms of the diurnal cycle in the atmospheric boundary layer of Mars. Quart. J. R. Meteorol. Soc., 138, 552560.Google Scholar
Savijärvi, H. 2012b. The convective boundary layer on Mars: some 1-D simulation results. Icarus, 221, 617623.Google Scholar
Savijärvi, H., and Kauhanen, J. 2008. Surface and boundary layer modelling for the Mars Exploration Rover sites. Quart. J. R. Meteorol. Soc., 134, 635641.Google Scholar
Savijärvi, H., and Määttänen, A. 2010. Boundary layer simulations for the Mars Phoenix Lander site. Quart. J. R. Meteorol. Soc., 136, 14971505.Google Scholar
Savijärvi, H., and Siili, T. 1993. The Martian slope winds and the nocturnal PBL jet. J. Atmos. Sci., 50, 7788.Google Scholar
Savijärvi, H., Määttänen, A., Kauhanen, J., and Harri, A.-M. 2004. Mars Pathfinder: new data and new model simulations. Quart. J. R. Meteorol. Soc., 130, 669683.Google Scholar
Schmidt, D. S., Schmidt, R. A., and Dent, J. D. 1998. Electrostatic force on saltating sand. J. Geophys. Res., 103 (D8), 89979001.Google Scholar
Schofield, J. T., Barnes, J. R., Crisp, D., et al. 1997. The Mars Pathfinder Atmospheric Structure Investigation/Meteorology (ASI/MET) experiment. Science, 278, 17521758.Google Scholar
Segschneider, J., Grieger, B., Keller, H. U., et al. 2005. Response of the intermediate complexity Mars Climate Simulator to different obliquity angles. Planet. Space Sci., 53, 659670.Google Scholar
Seiff, A., and Kirk, D. B. 1977. Structure of the atmosphere of Mars in summer at mid-latitude. J. Geophys. Res., 82, 43644388.Google Scholar
Seiff, A., Tillman, J., Murphy, J., et al. 1997. The atmosphere structure and meteorology instrument on the Mars Pathfinder Lander. J. Geophys. Res., 102 (E2), 40454056.Google Scholar
Sinclair, P. C. 1973. The lower structure of dust devils. J. Atmos. Sci., 30, 15991619.Google Scholar
Smith, D. E., Zuber, M. T., Frey, H. V., et al. 2001. Mars Orbiter Laser Altimeter: experiment summary after the first year of global mapping of Mars. J. Geophys. Res., 106 (E10), 2368923722.Google Scholar
Smith, M. D., Wolff, M. J., Lemmon, M. T., et al. 2004. First Atmospheric Science Results from the Mars Exploration Rovers Mini-TES. Science, 306, 17501753.Google Scholar
Smith, M. D., Wolff, M. J., Spanovich, N., et al. 2006. One Martian year of atmospheric observations using MER Mini-TES. J. Geophys. Res., 111 (E12), E12S13.Google Scholar
Smith, P., Tomasko, M., Britt, D., et al. 1997. The Imager for Mars Pathfinder experiment. J. Geophys. Res., 102 (E2), 40034025.Google Scholar
Sorbjan, Z. 2007. Statistics of shallow convection on Mars based on large-eddy simulations. Part 1: shearless conditions. Boundary-Layer Meteorol., 123, 121142.Google Scholar
Sorbjan, Z., Wolff, M., and Smith, M. D. 2009. Thermal structure of the atmospheric boundary layer of Mars based on mini-TES observations. Quart. J. R. Meteorol. Soc., 135, 17761787.Google Scholar
Souza, E. P., Rennó, N. O., and Silva Dias, M. A. F. 2000. Convective circulations induced by surface heterogeneities. J. Atmos. Sci., 57, 29152922.Google Scholar
Spiga, A. 2011. Elements of comparison between Martian and terrestrial mesoscale meteorological phenomena: katabatic winds and boundary layer convection. Plan. Space Sci., 59, 915922.Google Scholar
Spiga, A., and Forget, F. 2009. A new model to simulate the Martian mesoscale and microscale atmospheric circulation: validation and first results. J. Geophys. Res., 114 (E2), E02009, doi:10.1029/2008JE003242.Google Scholar
Spiga, A., Forget, F., Dolla, B., et al. 2007. Remote sensing of surface pressure on Mars with the Mars Express/OMEGA spectrometer: 2. Meteorological maps. J. Geophys. Res., 112 (E8), E08S16, doi:10.1029/2006JE002870.Google Scholar
Spiga, A., Forget, F., Lewis, S. R., and Hinson, D. P. 2010. Structure and dynamics of the convective boundary layer on Mars as inferred from large-eddy simulations and remote-sensing measurements. Quart. J. R. Meteorol. Soc., 136, 414428.Google Scholar
Squyres, S., Arvidson, R., Baumgartner, E., et al. 2003. Athena Mars Rover science investigation. J. Geophys. Res., 108 (E12), 8062, doi:10.1029/2003JE002121.Google Scholar
Sreenivasan, K. 1995. On the universality of the Kolmogorov constant. Phys. Fluids, 7, 27782784.Google Scholar
Stow, C. D. 1969. Dust and storm electrification. Weather, 24, 134137.Google Scholar
Stull, R. B. 1976. Internal gravity waves generated by penetrative convection. J. Atmos. Sci., 33, 12791286.Google Scholar
Stull, R. B. 1988. An introduction to boundary layer meteorology. Springer.Google Scholar
Stull, R. B. 1991. Static stability – an update. Bull. Amer. Meteor. Soc., 72, 15211529.Google Scholar
Sukoriansky, S., and Galperin, B. 2008. Anisotropic turbulence and internal waves in stably stratified flows (QNSE theory). Phys. Scr., T132, 014036.Google Scholar
Sukoriansky, S., Galperin, B., and Staroselsky, I. 2005. A quasinormal scale elimination model of turbulent flows with stable stratification. Phys. Fluids, 17, 085107.Google Scholar
Sutton, J. L., Leovy, C. B., and Tillman, J. E. 1978. Diurnal variations of the Martian surface layer meteorological parameters during the first 45 sols at two Viking Lander sites. J. Atmos. Sci., 35, 23462355.Google Scholar
Svensson, G., Holtslag, A. A. M., Kumar, V., et al. 2011. Evaluation of the diurnal cycle in the atmospheric boundary layer over land as represented by a variety of single-column models: the second GABLS experiment. Boundary Layer Meteorol., 140, 177206.Google Scholar
Takahashi, Y. O., Fujiwara, H., Fukunishi, H., et al. 2003. Topographically induced north–south asymmetry of the meridional circulation in the Martian atmosphere. J. Geophys. Res., 108 (E3), 5018, doi:10.1029/2001JE001638.Google Scholar
Takahashi, Y. O., Fujiwara, H., and Fukunishi, H. 2006. Vertical and latitudinal structure of the migrating diurnal tide in the Martian atmosphere: numerical investigations. J. Geophys. Res., 111 (E1), E01003, doi:10.1029/2005JE002543.Google Scholar
Tamppari, L. K., Bass, D., Cantor, B., et al. 2010. Phoenix and MRO coordinated atmospheric measurements. J. Geophys. Res., 115 (E5), E00E17, doi:10.1029/2009JE003415.Google Scholar
Taylor, P. A, Catling, D. C., Daly, M., et al. 2008. Temperature, pressure, and wind instrumentation in the Phoenix meteorological package. J. Geophys. Res., 113 (E3), E00A10, doi:10.1029/2007JE003015.Google Scholar
Taylor, P. A., Kahanpää, H., Weng, W., et al. 2010. On pressure measurement and seasonal pressure variations during the Phoenix mission. J. Geophys. Res., 115 (E3), E00E15, doi:10.1029/2009JE003422.Google Scholar
Tennekes, H., and Lumley, J. L. 1972. A First Course in Turbulence. MIT Press.Google Scholar
Thomas, P., and Gierasch, P. J. 1985. Dust Devils on Mars. Science, 230, 175177.Google Scholar
Tillman, J. E., Landberg, L., and Larsen, S. E. 1994. The boundary layer of Mars: fluxes, stability, turbulent spectra, and growth of the mixed layer. J. Atmos. Sci., 51, 17091727.Google Scholar
Toigo, A. D., and Richardson, M. I. 2002. A mesoscale model for the Martian atmosphere. J. Geophys. Res., 107 (E7), 5049, doi:10.1029/ 2000JE001489.Google Scholar
Toigo, A. D., and Richardson, M. I. 2003. Meteorology of proposed Mars Exploration Rover landing sites. J. Geophys. Res., 108 (E12), doi:10.1029/2003JE002064.Google Scholar
Toigo, A. D., Richardson, M. I., Ewald, S. P., and Gierasch, P. J. 2003. Numerical simulation of Martian dust devils. J. Geophys. Res., 108 (E6), 5047, doi:10.1029/2002JE002002.Google Scholar
Tyler, D., and Barnes, J. R. 2013. Mesoscale modeling of the circulation in the Gale Crater region: an investigation into the complex forcing of convective boundary layer depths. Mars, 8, 5877.Google Scholar
Tyler, D., Barnes, J. R., and Haberle, R. M. 2002. Simulation of surface meteorology at the Pathfinder and VL1 sites using a Mars mesoscale model. J. Geophys. Res., 107 (E4), 5018, doi:10.1029/2001JE001618.Google Scholar
Tyler, D., Barnes, J. R., and Skyllingstad, E. D. 2008. Mesoscale and large-eddy simulation model studies of the Martian atmosphere in support of Phoenix. J. Geophys. Res., 113 (E3), E00A12, doi:10.1029/2007JE003012.Google Scholar
Tyler, G. L., Balmino, G., Hinson, D. P., et al. 1992. Radio science investigations with Mars Observer. J. Geophys. Res., 97 (E5), 77597780.Google Scholar
VanZandt, T. E. 1982. A universal spectrum of buoyancy waves in the atmosphere. Geophys. Res. Lett., 9, 575578.Google Scholar
Webster, P. J. 1977. The low latitude circulation of Mars. Icarus, 30, 626649.Google Scholar
Weng, W., Taylor, P. A., and Savijärvi, H. 2006. Modelling the Martian boundary layer. In 2nd International Workshop on Mars Atmosphere Modeling and Observations. 27 Febrary–3 March, Granada, Spain, 123.Google Scholar
Whiteway, J., Daly, M., Carswell, A., et al. 2008. Lidar on the Phoenix mission to Mars. J. Geophys. Res., 113 (E3), E00A08, doi:10.1029/2007JE003002.Google Scholar
Whiteway, J., Komguem, L., Dickinson, C., et al. 2009a. Phoenix Lidar observations of dust, clouds, and precipitation on Mars. In Lunar and Planetary Institute Science Conference, 40, 2202.Google Scholar
Whiteway, J. A., Komguem, L., Dickinson, C., et al. 2009b. Mars water-ice clouds and precipitation. Science, 325, 6870.Google Scholar
Wilson, R. J., and Hamilton, K. P. 1996. Comprehensive model simulation of thermal tides in the Martian atmosphere. J. Atmos. Sci., 53, 12901326.Google Scholar
Wing, D. R., and Austin, G. L. 2006. Description of the University of Auckland global Mars mesoscale meteorological model. Icarus, 185, 370382.Google Scholar
Withers, P., and Catling, D. 2010. Observations of atmospheric tides at the season and latitude of the Phoenix atmospheric entry. Geophys. Res. Lett., 37, L24204, doi:10.1029/2010GL045382.Google Scholar
Wolkenberg, P., Grassi, D., Formisano, V., et al. 2009. Simultaneous observations of the Martian atmosphere by Planetary Fourier Spectrometer on Mars Express and Miniature Thermal Emission Spectrometer on Mars Exploration Rover. J. Geophys. Res., 114 (E4), E04012, doi:10.1029/2008JE003216.Google Scholar
Wyngaard, J. C. 2010. Turbulence in the Atmosphere. Cambridge University Press.Google Scholar
Ye, Z. J., Segal, M., and Pielke, R. A. 1990. A comparative study of daytime thermally induced upslope flow on Mars and Earth. J. Atmos. Sci., 47, 612628.Google Scholar
Zent, A. P., Hecht, M. H., Cobos, D. R., et al. 2009. Thermal and Electrical Conductivity Probe (TECP) for Phoenix. J. Geophys. Res., 114 (E3), E00A27, doi:10.1029/2007JE003052.Google Scholar
Zent, A. P., Hecht, M. H., Cobos, D. R., et al. 2010. Initial results from the thermal and electrical conductivity probe (TECP) on Phoenix. J. Geophys. Res., 115 (E3), E00E14, doi:10.1029/2009JE003420.Google Scholar
Zilitinkevich, S. S., Elperin, T., Kleeorin, N., and Rogachevskii, I. 2007. Energy and flux-budget (EFB) turbulence closure model for stably stratified flows. Part I: Steady-state, homogeneous regimes. Boundary-Layer Meteorol., 125, 167191.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×